Evaluación de las interacciones Biopolímero Escleroglucano (grado EOR), entrecruzador y nanopartícula basado en el comportamiento de las propiedades reológicas y desempeño en recobro mejorado

dc.contributor.advisorCortés Correa, Farid Bernardo
dc.contributor.advisorCorredor Rojas, Laura Milena
dc.contributor.authorCastro García, Rubén Hernán
dc.contributor.cvlacRubén Hernán Castrospa
dc.contributor.googlescholarRUBEN HERNAN CASTRO GARCIA, PhD(c)spa
dc.contributor.orcidRuben Hernan Castro Garcia [0000-0001-7267-4221]spa
dc.contributor.researchgateRuben Castrospa
dc.contributor.researchgroupGrupo de Investigación en Fenómenos de Superficie “Michael Polanyi”spa
dc.contributor.scopusCastro-García, Rubén Hernán [55932131800]spa
dc.date.accessioned2024-04-09T20:14:30Z
dc.date.available2024-04-09T20:14:30Z
dc.date.issued2024
dc.descriptionilustraciones, gráficosspa
dc.description.abstractLos biopolímeros como goma xantana (XG), goma diutan (DG), hidroxietilcelulosa (HEC), carboximetilcelulosa (CMC), esquizofilan (SPG) y escleroglucano (SG), surgen como candidatos prometedores para aplicaciones de recobro mejorado (EOR) debido a sus estructuras moleculares. Estos biopolímeros exhiben buenas propiedades reológicas y alta resistencia a la hidrólisis, el pH, los electrolitos, esfuerzos mecánicos y a la temperatura, pero son susceptibles a la oxidación y la degradación biológica. En este estudio se realizaron pruebas experimentales fluido- fluido para evaluar el efecto de la fuerza iónica, el pH, la temperatura y el esfuerzo de corte sobre la viscosidad de soluciones de SG (grado EOR). Se observó que el SG conservó sus propiedades reológicas y estabilidad en las condiciones evaluadas debido a su estructura semirrígida de triple hélice y naturaleza no iónica. Además, las soluciones de SG exhibieron una excelente filtrabilidad. En las pruebas experimentales roca-fluido realizadas a condiciones de yacimiento, el SG aumentó la eficiencia de desplazamiento de petróleo entre un 18 y un 35 % en comparación con la inyección de agua. Finalmente, el estudio experimental de biodegradación demostró que el SG es susceptible a la degradación microbiana, en ausencia o presencia del biocida, debido a que las bacterias utilizan el biopolímero como fuente de carbono. Se evaluó el efecto de nanopartículas (Nps) de diferentes tamaños y naturalezas al agregarlas a soluciones de SG, evaluando inicialmente el cambio de viscosidad y posteriormente su impacto en la degradación microbiana del biopolímero. Se utilizó el método de dos pasos para preparar los nanofluidos (las Nps primero se sintetizan y luego se dispersan en el fluido). El método de dos pasos se utiliza en las industrias para producir nanofluidos a gran escala debido a su bajo costo de producción. Sin embargo, es un desafío evitar la aglomeración de las Nps. Por esta razón, se evaluó el efecto de cuatro métodos de preparación y de nueve nanopartículas (SiO2, Al2O3 y TiO2) sobre la viscosidad y estabilidad del SG. La evaluación de estabilidad exhibió que los nanofluidos SG+Al2O3 y SG+TiO2 son altamente inestables, pero los nanofluidos SG+SiO2 son estables independiente del método de preparación. Todos los nanofluidos mostraron una filtrabilidad deficiente. Teniendo en cuenta el desempeño de los nanofluidos, se planteó la síntesis de carboximetil-escleroglucano con Nps de SiO2. Para esto, se adaptó una reacción de O-Alquilación para insertar un grupo hidrofílico (ácido monocloroacético - MCAA) en las subunidades de anhidroglucosa (AGU) del SG. De esta reacción se obtuvieron dos derivados de SG (denominados CMS) con diferentes grados de sustitución (0,22 para CMS-A y 0,44 para CMS-B), los cuales se obtuvieron al cambiar la cantidad de bicarbonato de sodio utilizado en la carboximetilación. Posteriormente, la formación del enlace amida entre la Nps de sílice aminofuncionalizadas y ambos carboximetil-escleroglucanos se realizó por medio una reacción de amidación usando una carbodiimida (DCC). Los materiales sintetizados fueron caracterizados mediante diferentes técnicas analíticas. Se evaluó la resistencia de los CMS y de los nanohíbridos (NH) a la degradación térmica, química, mecánica y microbiana para determinar la aplicabilidad de estos nuevos productos como aditivos EOR. Los resultados mostraron que los materiales tienen un comportamiento similar al SG. Sin embargo, en las pruebas de biodegradación del CMS sin biocida se observó una reducción de la viscosidad del biopolímero entre un 30 y un 38% (similar a los resultados de SG con biocida), frente a la del 92% del SG sin biocida. En las pruebas de biodegradación de NH se observó que la población de bacterias disminuyó, evidenciándose un control antimicrobiano y efecto de la viscosidad del biopolímero, incluso en ausencia de biocida. El principal objetivo de este estudio se basó en evaluar si las modificaciones físicas y químicas del sistema SG y nanopartículas mejoran la estabilidad del biopolímero en ambientes degradados (térmico, químico, mecánico y microbiano), lo que le permitirá conservar su poder viscosificante e incrementar la eficiencia de desplazamiento de petróleo a condiciones del yacimiento. Este estudio proporciona evidencia clara de nuevos nanohíbridos base celulosa y ofrece una comprensión de su resistencia a los efectos degradativos para procesos EOR. Finalmente, abre el panorama sobre el efecto antimicrobiano de la nanotecnología en la inyección de biopolímeros y EOR. (Tomado de la fuente)spa
dc.description.abstractBiopolymers such as xanthan gum (XG), diutan gum (DG), hydroxyethylcellulose (HEC), carboxymethylcellulose (CMC), schizophyllan (SPG), and scleroglucan (SG) have emerged as promising candidates for enhanced oil recovery (EOR) applications due to their molecular structures. These biopolymers exhibit remarkable rheological properties and resistance to hydrolysis, pH, electrolytes, mechanical shearing, and temperature but are susceptible to oxidation and biological degradation. Fluid-fluid experimental tests were performed to evaluate the effect of the ionic strength, pH, temperature, and shear stress on the viscosity of the EOR-grade SG solutions. It was observed that the SG retained its rheological properties and stability under the evaluated conditions due to its semi-rigid triple helix structure and non-ionic nature. Additionally, the SG solutions exhibited excellent filterability. In the rock-fluid experiments performed at reservoir conditions, the SG increased the oil displacement efficiency between 18–35% compared to waterflooding. Finally, the experimental biodegradation study showed that SG is susceptible to microbial degradation, in the absence or presence of the biocide, because bacteria use the biopolymer as a carbon source. The effect of nanoparticles (Nps) of different sizes and natures was evaluated by adding them to the SG solutions, initially evaluating the change in the viscosity and subsequently its impact on the microbial degradation of the biopolymer. A two-step method was used to prepare the nanofluids (the Nps are first synthesized and then dispersed into the fluid). The two-step method is used in industries to produce nanofluids at a large scale due to its low production cost. However, it is challenging to avoid the agglomeration of NPs. For this reason, the effect of the four preparation methods and the nine nanoparticles (SiO2, Al2O3, and TiO2) on the viscosity and stability of the Scleroglucan (SG) was evaluated. The stability tests showed that the SG+Al2O3 and SG+TiO2 nanofluids are highly unstable but the SG+SiO2 nanofluids are stable (regardless of the preparation method). All nanofluids exhibited poor filterability. According to the performance of the nanofluids, the synthesis of carboxymethyl-scleroglucan-SiO2 NPs nanohybrids (NH) was proposed. An O-Alquilation reaction was adapted to insert a hydrophilic group (monochloroacetic acid - MCAA) into the SG's anhydroglucose subunits (AGUs). From this reaction, two carboxymethyl derivatives of SG (CMS) with different degrees of substitution (0,22 for CMS-A and 0,44 for CMS-B) were obtained by changing the amount of sodium bicarbonate used. Subsequently, the amide bond formation between the amino-functionalized nano-silica and both carboxymethyl-scleroglucans was mediated by a carbodiimide using an amidation reaction. The synthesized materials were characterized using different analytical techniques. The resistance of the CMS and Nanohybrids (NH) to thermal, chemical, mechanical, and microbial degradation was evaluated to determine the applicability of these new products as EOR additives. The results showed that the materials have a similar behavior to the SG. However, in biodegradation tests of the CMS without biocide, a reduction in the viscosity of the biopolymer between 30 and 38% (similar to SG with biocide results) was observed, compared to that of 92% of the SG without biocide. In the NH biodegradation tests, it was observed that the bacteria population decreased, evidencing an antimicrobial control and viscosity increase of the biopolymer, even in the absence of biocide. The main objective of this study was to evaluate if the physical and chemical modifications of the SG and nanoparticles system improve the biopolymer stability in degradative environments (thermal, chemical, mechanical, and microbial), which will allow it to retain its viscosifying power, and increase the oil displacement efficiency at reservoir conditions. This study provides clear evidence of novel cellulose-based nanohybrids and offers an understanding of their resistance to the degradative effects on EOR performance. Finally, it opens the landscape on the antimicrobial effects of nanotechnology in biopolymer flooding and EOR.eng
dc.description.curricularareaIngeniería Química E Ingeniería De Petróleos.Sede Medellínspa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingenieríaspa
dc.description.methodsSe sintetizaron, caracterizaron y validaron cuatro nuevos productos, los cuales presentan un avance significativo en cuanto a materiales ecológicos base celulosa para implementación en procesos EOR: -Dos nuevos biopolímeros EOR sintetizados mediante reacción de O-Alquilación del biopolímero escleroglucano (grado EOR), denominados CMS-A y CMS-B (los cuales poseen diferente grado de sustitución). -Dos nuevos nanohíbridos de biopolímero sintetizados mediante reacción de amidación de los CMS-A y CMS-B y nanopartículas de sílice funcionalizada con APTES 2%, denominados NH-A y NH-B, los cuales poseen alta resistencia a efectos degradativos térmicos, químicos, mecánicos y especialmente microbianos (que afectan al escleroglucano y en general a los biopolímeros por su naturaleza de fuente de carbono que sirve de nutrientes a las bacterias). Se demostró que los nuevos nanohíbridos EOR base celulosa presentan control microbiano debido al impedimento estérico que generan las nuevas estructuras base nanotecnología acopladas a la celulosa del biopolímero escleroglucano, abriendo una discusión a nivel mundial de mejoramiento y resistencia a degradación por bacterias de biopolímeros de la misma naturaleza probados en procesos EOR en campo (p.e. goma diutan -DG, hidroxietilcelulosa -HEC, carboximetilcelulosa -CMC, esquizofilan -SPG y el mismo escleroglucano -SG con otros grados de pureza).spa
dc.description.researchareaRecobro Mejorado de Petróleo Mediante el Uso de Nanotecnologíaspa
dc.description.sponsorshipContrato FP44842-326-2017 suscrito entre Ecopetrol, Unalmed y Colciencias, entidades que aportaron los recursos requeridos para el desarrollospa
dc.format.extent184 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85890
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Doctorado en Ingeniería - Sistemas Energéticosspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesCastro, R. H., Burgos, I., Corredor, L. M., Llanos, S., Franco, C. A., Cor-tés, F. B., & Romero Bohórquez, A. R. Carboxymethyl Scleroglu-can Synthesized via O-Alkylation Reaction with Different Degrees of Substitution: Rheology and Thermal Stability. Polymers. 2024. 16(2), 207spa
dc.relation.referencesCastro, R. H., Corredor, L. M., Burgos, I., Llanos, S., Franco, C. A., Cortés, F. B., Idrobo, E. A. & Romero Bohórquez, A. R. Synthesis and Characterization of New Nanohybrids Based on Carboxymethyl Scleroglucan and Silica Nanoparticles. Nanomaterials. 2024. 14(6), 499spa
dc.relation.referencesRubén Castro, S.L., Jenny Rodríguez, Henderson Quintero, José Francisco Zapata Arango. Heavy Oil and High-Temperature Polymer EOR Applications. Ciencia, Tecnología y Futuro – CT&F, 2020(Edicion Especial Recobro Mejorado 2020): p. 12.DOI: 10.29047/01225383.258spa
dc.relation.referencesAPI, R., Recommended Practices for Evaluation of Polymers Used in enhanced oil recovery operations. June. 1: p. 1990.spa
dc.relation.referencesRodríguez-Mateus, Z.-P., et al., Biodegradation and toxicity of scleroglucan for enhanced oil recovery. 2022. 12(1): p. 5-12.spa
dc.relation.referencesTM, N.J.N.A.o.C.E.I., Houston, Texas, Standard Test Method–Field Monitoring of Bacterial Growth in Oil and Gas Systems. 2004.spa
dc.relation.referencesCastro, R.H., Corredor, L.M., Llanos, S., Rodríguez, Z.P., Burgos, I., Niño, J.A., Idrobo, E. A., Romero Bohórquez, A. R., Zapata, K. & Cortés, F. B. Evaluation of the Thermal, Chemical, Mechanical, and Microbial Stability of New Nanohybrids based on Carboxymethyl-Scleroglucan and Silica Nanoparticles for EOR Applications. Nanomaterials. 2024. 14.spa
dc.relation.referencesCasadei, M.A., et al., Physical gels of a carboxymethyl derivative of scleroglucan: Synthesis and characterization. 2007. 67(3): p. 682-689.DOI: https://doi.org/10.1016/j.ejpb.2007.04.010.spa
dc.relation.referencesJouenne, S.J.J.o.P.S. and Engineering, Polymer flooding in high temperature, high salinity conditions: Selection of polymer type and polymer chemistry, thermal stability. 2020. 195: p. 107545.spa
dc.relation.referencesCastro, R.H. and Daza J.A., Tecnologías de inyección de polímero HPAM: review Colombia. 2022spa
dc.relation.referencesFranco, C.A., et al., Field Applications of nanotechnology in the oil and gas industry: Recent advances and perspectives. 2021. 35(23): p. 19266-19287.spa
dc.relation.referencesCorredor, L.M., et al., Oil Displacement Efficiency of a Silica/HPAM Nanohybrid. 2021. 35(16): p. 13077-13085.spa
dc.relation.referencesCastro, R.H., et al., Polymers for EOR Application in High Temperature and High Viscosity Oils: Rock–Fluid Behavior. Energies, 2020. 13(22): p. 5944.spa
dc.relation.referencesBluhm, T.L., et al., Solid-state and solution conformation of scleroglucan. Carbohydrate Research, 1982. 100(1): p. 117-130.spa
dc.relation.referencesFarina, J., et al., Isolation and physicochemical characterization of soluble scleroglucan from Sclerotium rolfsii. Rheological properties, molecular weight and conformational characteristics. Carbohydrate Polymers, 2001. 44(1): p. 41-50.spa
dc.relation.referencesLiang, K., et al., Comparative Study on Enhancing Oil Recovery under High Temperature and High Salinity: Polysaccharides Versus Synthetic Polymer. ACS Omega, 2019. 4(6): p. 10620-10628.spa
dc.relation.referencesSeright, R.S., J.M. Seheult, and T. Talashek. Injectivity characteristics of EOR polymers. in SPE annual technical conference. 2008. Society of Petroleum Engineers.spa
dc.relation.referencesZhang, G. and R. Seright. Hydrodynamic retention and rheology of EOR polymers in porous media. in SPE International Symposium on Oilfield Chemistry. 2015. Society of Petroleum Engineers.spa
dc.relation.referencesFournier, R., J.-E. Tiehi, and A. Zaitoun. Laboratory Study of a New EOR-Grade Scleroglucan. in SPE EOR Conference at Oil and Gas West Asia. 2018. Society of Petroleum Engineers.spa
dc.relation.referencesKozlowicz, B., et al. Qualification and Field Injection of Scleroglucan. in IOR 2019–20th European Symposium on Improved Oil Recovery. 2019.spa
dc.relation.referencesKozlowicz, B., et al. Scleroglucan Polymer Stability: Thermal, Chemical, and Microbial. in SPE Improved Oil Recovery Conference. SPE, 2020. Society of Petroleum Engineers.spa
dc.relation.referencesLiu, Z., K. Zhang, and X.J.R.A. Cheng, Rheology of bacterial suspensions under confinement. 2019. 58: p. 439-451.spa
dc.relation.referencesHatwalne, Y., et al., Rheology of active-particle suspensions. 2004. 92(11): p. 118101.spa
dc.relation.referencesChui, J.Y., et al., Rheology of bacterial superfluids in viscous environments. 2021. 17(29): p. 7004-7013.spa
dc.relation.referencesWilson, W.W., et al., Status of methods for assessing bacterial cell surface charge properties based on zeta potential measurements. 2001. 43(3): p. 153-164.spa
dc.relation.referencesSurvase, S.A., et al., Scleroglucan: fermentative production, downstream processing and applications. 2007. 45(2): p. 107-118.spa
dc.relation.referencesPizarro, S., A.M. Ronco, and M.J.R.c.d.n. Gotteland, ß-glucanos:¿ qué tipos existen y cuáles son sus beneficios en la salud? 2014. 41(4): p. 439-446.spa
dc.relation.referencesCastillo, N.A., A.L. Valdez, and J.I.J.F.i.m. Fariña, Microbial production of scleroglucan and downstream processing. 2015. 6: p. 1106.spa
dc.relation.referencesMamonova, I., et al., Biological activity of metal nanoparticles and their oxides and their effect on bacterial cells. 2015. 10(1-2): p. 128-134.spa
dc.relation.referencesKhalandi, B., et al., A review on potential role of silver nanoparticles and possible mechanisms of their actions on bacteria. 2017. 11(02): p. 70-76.spa
dc.relation.referencesSelvarajan, V., S. Obuobi, and P.L.R.J.F.i.c. Ee, Silica nanoparticles—a versatile tool for the treatment of bacterial infections. 2020. 8: p. 602.spa
dc.relation.referencesWang, L., C. Hu, and L.J.I.j.o.n. Shao, The antimicrobial activity of nanoparticles: present situation and prospects for the future. 2017: p. 1227-1249.spa
dc.relation.referencesChwalibog, A., et al., Visualization of interaction between inorganic nanoparticles and bacteria or fungi. 2010: p. 1085-1094.spa
dc.relation.referencesLinklater, D.P., et al., Antibacterial action of nanoparticles by lethal stretching of bacterial cell membranes. 2020. 32(52): p. 2005679.spa
dc.relation.referencesGutiérrez-Rojas, I., N. Moreno-Sarmiento, and D.J.R.I.d.M. Montoya, Mecanismos y regulación de la hidrólisis enzimática de celulosa en hongos filamentosos: casos clásicos y nuevos modelos. 2015. 32(1): p. 1-12.spa
dc.relation.referencesMuñoz‐Elías, E.J. and J.D.J.C.m. McKinney, Carbon metabolism of intracellular bacteria. 2006. 8(1): p. 10-22.spa
dc.relation.referencesPathak, V.M.J.B. and Bioprocessing, Review on the current status of polymer degradation: a microbial approach. 2017. 4(1): p. 1-31.spa
dc.relation.referencesArora, A. and A.J.M.T.P. Mishra, Antibacterial polymers–a mini review. 2018. 5(9): p. 17156-17161.spa
dc.relation.referencesRaffa, P. and P. Druetta, Chemical Enhanced Oil Recovery: Advances in Polymer Flooding and Nanotechnology. 2019: Walter de Gruyter GmbH & Co KG.spa
dc.relation.referencesGbadamosi, A.O., et al., An overview of chemical enhanced oil recovery: recent advances and prospects. International Nano Letters, 2019: p. 1-32.spa
dc.relation.referencesShahzad Kamal, M. and A.S. Sultan, Enhanced Oil Recovery. Functional Polymers, 2019: p. 1045-1077.spa
dc.relation.referencesSorbie, K.S., Polymer-improved oil recovery. 2013: Springer Science & Business Media.spa
dc.relation.referencesAbidin, A., T. Puspasari, and W. Nugroho, Polymers for enhanced oil recovery technology. Procedia Chemistry, 2012. 4: p. 11-16.spa
dc.relation.referencesSeright, R., Potential for polymer flooding reservoirs with viscous oils. SPE Reservoir Evaluation & Engineering, 2010. 13(04): p. 730-740.spa
dc.relation.referencesSeright, R.S., et al., Stability of partially hydrolyzed polyacrylamides at elevated temperatures in the absence of divalent cations. Spe Journal, 2010. 15(02): p. 341-348.spa
dc.relation.referencesSeright, R.S., J.M. Seheult, and T. Talashek. Injectivity characteristics of EOR polymers. in SPE annual technical conference and exhibition. 2008. Society of Petroleum Engineers.spa
dc.relation.referencesSveistrup, M., et al., Viability of biopolymers for enhanced oil recovery. Journal of Dispersion Science and Technology, 2016. 37(8): p. 1160-1169.spa
dc.relation.referencesAcharya, K., C. Schulman, and M.H. Young, Physiological response of daphnia magna to linear anionic polyacrylamide: ecological implications for receiving waters. Water, Air, & Soil Pollution, 2010. 212(1-4): p. 309-317.spa
dc.relation.referencesKing, D.J. and R.R. Noss, Toxicity of polyacrylamide and acrylamide monomer. Reviews on environmental health, 1989. 8(1-4): p. 3-16.spa
dc.relation.referencesWalker, C., et al., Principles of ecotoxicology Taylor and Francis. Nueva York, 2001: p. 163-78.spa
dc.relation.referencesLiang, K., et al., Comparative Study on Enhancing Oil Recovery under High Temperature and High Salinity: Polysaccharides Versus Synthetic Polymer. ACS Omega, 2019. 4(6): p. 10620-10628.spa
dc.relation.referencesAli, J.A., et al., Recent advances in application of nanotechnology in chemical enhanced oil recovery: Effects of nanoparticles on wettability alteration, interfacial tension reduction, and flooding. Egyptian journal of petroleum, 2018.spa
dc.relation.referencesCorredor-Rojas, L.M., et al., Rheological behavior of surface modified silica nanoparticles dispersed in Partially Hydrolyzed Polyacrylamide and Xanthan Gum solutions: Experimental measurements, mechanistic understanding, and model development. Energy & Fuels, 2018.spa
dc.relation.referencesBera, A., et al., Mechanistic study on silica nanoparticles-assisted guar gum polymer flooding for enhanced oil recovery in sandstone reservoirs. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020: p. 124833.spa
dc.relation.referencesCastro-Garcia, R.-H., et al., Polymer flooding to improve volumetric sweep efficiency in waterflooding processes. CT&F-Ciencia, Tecnología y Futuro, 2016. 6(3): p. 71-90.spa
dc.relation.referencesManrique, E., M. Ahmadi, and S. Samani, Historical and recent observations in polymer floods: an update review. CT&F-Ciencia, Tecnología y Futuro, 2017. 6(5): p. 17-48.spa
dc.relation.referencesPu, W., et al., A comprehensive review of polysaccharide biopolymers for enhanced oil recovery (EOR) from flask to field. Journal of Industrial and Engineering Chemistry, 2018. 61: p. 1-11.spa
dc.relation.referencesAl-Saleh, M.A., et al., Biopolymer Solution Evaluation Methodology: Thermal and Mechanical Assessment for Enhanced Oil Recovery with High Salinity Brines. Processes, 2019. 7(6): p. 339.spa
dc.relation.referencesRivenq, R., A. Donche, and C. Nolk, Improved scleroglucan for polymer flooding under harsh reservoir conditions. SPE reservoir engineering, 1992. 7(01): p. 15-20.spa
dc.relation.referencesKalpakci, B., et al. Thermal stability of scleroglucan at realistic reservoir conditions. in SPE/DOE Enhanced Oil Recovery Symposium. 1990. Society of Petroleum Engineers.spa
dc.relation.referencesViñarta, S.C., et al., Sclerotium rolfsii scleroglucan: the promising behavior of a natural polysaccharide as a drug delivery vehicle, suspension stabilizer and emulsifier. 2007. 41(3): p. 314-323.spa
dc.relation.referencesBakhshi, M., et al., Effect of hydrophobic modification on the structure and rheology of aqueous and brine solutions of scleroglucan polymer. Korean Journal of Chemical Engineering, 2017. 34(3): p. 903-912spa
dc.relation.referencesSchmid, J., V. Meyer, and V. Sieber, Scleroglucan: biosynthesis, production and application of a versatile hydrocolloid. Applied microbiology and biotechnology, 2011. 91(4): p. 937-947.spa
dc.relation.referencesRivenq, R., A. Donche, and C.J.S.r.e. Nolk, Improved scleroglucan for polymer flooding under harsh reservoir conditions. 1992. 7(01): p. 15-20.spa
dc.relation.referencesSeright, R.S., et al., Stability and behavior in carbonate cores for new enhanced-oil-recovery polymers at elevated temperatures in hard saline brines. 2021. 24(01): p. 1-18.spa
dc.relation.referencesJensen, T., et al. Chemical EOR under harsh conditions: Scleroglucan as a viable commercial solution. in SPE Improved Oil Recovery Conference. 2018. OnePetro.spa
dc.relation.referencesCarreau, P.J., Rheological equations from molecular network theories. Transactions of the Society of Rheology, 1972. 16(1): p. 99-127.spa
dc.relation.referencesFarina, J., et al., Isolation and physicochemical characterization of soluble scleroglucan from Sclerotium rolfsii. Rheological properties, molecular weight and conformational characteristics. Carbohydrate Polymers, 2001. 44(1): p. 41-50.spa
dc.relation.referencesJones, O.G. and D.J. McClements, Functional biopolymer particles: design, fabrication, and applications. Comprehensive Reviews in Food Science and Food Safety, 2010. 9(4): p. 374-397.spa
dc.relation.referencesSheng, J., Modern chemical enhanced oil recovery: theory and practice. 2010: Gulf Professional Publishing.spa
dc.relation.referencesSurvase, S.A., et al., Scleroglucan: fermentative production, downstream processing and applications. 2007. 45(2): p. 107-118.spa
dc.relation.referencesValeur, E. and M.J.C.S.R. Bradley, Amide bond formation: beyond the myth of coupling reagents. 2009. 38(2): p. 606-631.DOI: https://doi.org/10.1039/B701677H.spa
dc.relation.referencesAbraham, T.W. and E.S. Sumner. Method for solubilizing biopolymer solids for enhanced oil recovery applications. 2019, Google Patents.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.lembBiopolímeros
dc.subject.lembNanopartículas
dc.subject.lembReología
dc.subject.lembViscosidad
dc.subject.lembRecobro del petróleo
dc.subject.lembCampos petrolíferos
dc.subject.lembBiodegradación
dc.subject.lembPetróleo - Investigaciones
dc.subject.lembPetróleo - Pruebas
dc.subject.proposalRecobro mejoradospa
dc.subject.proposalBiopolímerospa
dc.subject.proposalEscleroglucanospa
dc.subject.proposalNanofluidosspa
dc.subject.proposalNanohíbridosspa
dc.subject.proposalDegradación químicaspa
dc.subject.proposalDegradación microbianaspa
dc.subject.proposalDegradación térmicaspa
dc.subject.proposalDegradación mecánicaspa
dc.subject.proposalEnhanced Oil Recovery (EOR)eng
dc.subject.proposalBiopolymereng
dc.subject.proposalScleroglucaneng
dc.subject.proposalNanofluidseng
dc.subject.proposalNanohybridseng
dc.subject.proposalThermal degradationeng
dc.subject.proposalChemical degradationeng
dc.subject.proposalMechanical degradationeng
dc.subject.proposalMicrobial degradationeng
dc.titleEvaluación de las interacciones Biopolímero Escleroglucano (grado EOR), entrecruzador y nanopartícula basado en el comportamiento de las propiedades reológicas y desempeño en recobro mejoradospa
dc.title.translatedExperimental investigation of the interactions between the Scleroglucan, cross-linkers, and nanoparticles based on its rheological behavior and enhanced oil recovery performanceeng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleConvocatoria No. 758-2016 Doctorado Nacional en Empresaspa
oaire.fundernameMinisterio de Ciencia Tecnología e Innovación- Mincienciasspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
80170660.2024.pdf
Tamaño:
6.72 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería - Sistemas Energéticos

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: