Identificación de receptores para una proteína del merozoíto de Plasmodium vivax en células hospederas de malaria
| dc.contributor.advisor | Patarroyo Gutiérrez, Manuel Alfonso | spa |
| dc.contributor.advisor | Kalkum, Markus | spa |
| dc.contributor.author | Molina Franky, Jessica Stephanie | spa |
| dc.contributor.researchgroup | Department of Immunology and Theranostics City of Hope | spa |
| dc.contributor.researchgroup | Fundación Instituto de Inmunología de Colombia (FIDIC) | spa |
| dc.contributor.researchgroup | Grupo de Investigación Básica en Biología Molecular e Inmunología (GIBBMI) | spa |
| dc.date.accessioned | 2025-05-22T19:09:04Z | |
| dc.date.available | 2025-05-22T19:09:04Z | |
| dc.date.issued | 2024-12-16 | |
| dc.description | ilustraciones, diagramas, fotografías | spa |
| dc.description.abstract | La malaria humana es causada principalmente por Plasmodium vivax y Plasmodium falciparum, siendo estas las especies más extendidas y letales, respectivamente. El estudio de P. vivax enfrenta desafíos debido a su invasión exclusiva de reticulocitos, células precursoras de los eritrocitos. La maduración rápida y la escasa disponibilidad de los reticulocitos han dificultado el desarrollo de un cultivo continuo in vitro que permita estudiar la biología y las interacciones receptor-ligando del parásito. En este contexto, se exploró el potencial de las líneas celulares eritroides JK-1 y BEL-A2 como alternativas a los reticulocitos, confirmándose su idoneidad mediante la invasión exitosa del parásito. Además, se empleó cromatografía líquida acoplada a espectrometría de masas (LC-MS/MS) para realizar una comparación cuantitativa de los proteomas de membrana de estas líneas celulares en relación con los reticulocitos y los eritrocitos maduros. Este análisis reveló similitudes significativas entre los proteomas de membrana de JK-1, BEL-A2 y los reticulocitos. Adicionalmente, se identificaron potenciales candidatos a receptores, como SLC7A5, SLC7A1, SLC1A5, CD36, ITGB1, PHB2 y CNNM3, que podrían desempeñar un papel en la vía de invasión específica del parásito. Finalmente, se evaluó la utilidad de ensayos de captura por afinidad asociado a LC-MS/MS, realizando una prueba de concepto sobre la interacción entre PfRH5 y BSG. Esta técnica sentó las bases para identificar los receptores de PvRBP1a157-650, fusionada con TurboID en líneas celulares eritroides. Mediante esta técnica de etiquetado por proximidad, se biotinilaron los receptores en contacto con el ligando, permitiendo la identificación de interacciones específicas entre PvRBP1a157-650 con el receptor de transferrina 1 (CD71), basigina y prohibitina-2, confirmadas por monitoreo de reacciones paralelas y verificadas en su especificidad y constantes de afinidad mediante ELISA. Cabe resaltar que este es el primer reporte que describe a PHB2 como receptor en la interacción de P. vivax con su célula diana. Estos hallazgos enriquecen el conocimiento sobre las interacciones receptor-ligando de P. vivax y refuerzan la relevancia de las células JK-1 y BEL-A2 como modelos celulares alternativos en su estudio. (Texto tomado de la fuente). | spa |
| dc.description.abstract | Human malaria is primarily caused by Plasmodium vivax and Plasmodium falciparum, which are the most widespread and lethal species, respectively. The study of P. vivax presents challenges due to its exclusive invasion of reticulocytes, the precursor cells of erythrocytes. The rapid maturation and limited availability of reticulocytes have hindered the development of continuous in vitro cultures to study the biology and receptor-ligand interactions of the parasite. In this context, the potential of the erythroid cell lines JK-1 and BEL-A2 was explored as alternatives to reticulocytes, with their suitability confirmed through the successful invasion of the parasite. Furthermore, liquid chromatography coupled with mass spectrometry (LC-MS/MS) was used to quantitatively compare the membrane proteomes of these cell lines in relation to reticulocytes and mature erythrocytes. This analysis revealed significant similarities between the membrane proteomes of JK-1, BEL-A2, and reticulocytes. Furthermore, potential receptor candidates were identified, including SLC7A5, SLC7A1, SLC1A5, CD36, ITGB1, PHB2, and CNNM3, which may play a role in the specific invasion pathway of the parasite. Finally, the utility of affinity capture assays associated with LC-MS/MS was evaluated, conducting a proof of concept on the interaction between PfRH5 and BSG. This technique laid the groundwork for identifying the receptors of PvRBP1a157-650, fused with TurboID, in the erythroid cell lines. Using this proximity labeling technique, receptors in contact with the ligand were biotinylated, allowing for the identification of specific interactions between PvRBP1a157-650 and transferrin receptor protein 1 (CD71), basigin, and prohibitin-2. These interactions were confirmed through monitoring of parallel reactions and verified for their specificity and binding constants using ELISA, representing the first report of PHB2 as a receptor for P. vivax. These findings enhance the understanding of receptor-ligand interactions in P. vivax and underscore the significance of JK-1 and BEL-A2 cells as alternative cellular models for their study. | eng |
| dc.description.degreelevel | Doctorado | spa |
| dc.description.degreename | Doctor en Biotecnología | spa |
| dc.format.extent | 199 páginas + 6 anexos | spa |
| dc.format.mimetype | application/pdf | spa |
| dc.identifier.instname | Universidad Nacional de Colombia | spa |
| dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
| dc.identifier.repourl | https://repositorio.unal.edu.co | spa |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88183 | |
| dc.language.iso | spa | spa |
| dc.publisher | Universidad Nacional de Colombia | spa |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
| dc.publisher.faculty | Facultad de Ciencias | spa |
| dc.publisher.place | Bogotá, Colombia | spa |
| dc.publisher.program | Bogotá - Ciencias - Doctorado en Biotecnología | spa |
| dc.relation.indexed | Bireme | spa |
| dc.relation.references | 1. D. Bargieri, et al., Host Cell Invasion by Apicomplexan Parasites: The Junction Conundrum. PLoS Pathog 10, e1004273 (2014). | spa |
| dc.relation.references | 2. W. A. Krotoski, Discovery of the hypnozoite and a new theory of malarial relapse. Transactions of the Royal Society of Tropical Medicine and Hygiene 79, 1–11 (1985). | spa |
| dc.relation.references | 3. C. Reyes, Y. A. Picón Jaimes, M. Kalkum, M. A. Patarroyo, The Black Box of Cellular and Molecular Events of Plasmodium vivax Merozoite Invasion into Reticulocytes. IJMS 23, 14528 (2022). | spa |
| dc.relation.references | 4. B. Malleret, et al., Plasmodium vivax: restricted tropism and rapid remodeling of CD71-positive reticulocytes. Blood 125, 1314–1324 (2015). | spa |
| dc.relation.references | 5. Y. W. Leong, B. Russell, B. Malleret, L. Rénia, Erythrocyte tropism of malarial parasites: The reticulocyte appeal. Front. Microbiol. 13, 1022828 (2022). | spa |
| dc.relation.references | 6. A. F. Cowman, J. Healer, D. Marapana, K. Marsh, Malaria: Biology and Disease. Cell 167, 610–624 (2016). | spa |
| dc.relation.references | 7. M. A. Hernández-Castañeda, et al., A Profound Membrane Reorganization Defines Susceptibility of Plasmodium falciparum Infected Red Blood Cells to Lysis by Granulysin and Perforin. Front. Immunol. 12, 643746 (2021). | spa |
| dc.relation.references | 8. S. Bantuchai, H. Imad, W. Nguitragool, Plasmodium vivax gametocytes and transmission. Parasitology International 87, 102497 (2022). | spa |
| dc.relation.references | 9. D. Vlachou, et al., Real-time, in vivo analysis of malaria ookinete locomotion and mosquito midgut invasion: Malaria ookinete motility and mosquito midgut invasion. Cellular Microbiology 6, 671–685 (2004). | spa |
| dc.relation.references | 10. G. Siciliano, et al., Critical Steps of Plasmodium falciparum Ookinete Maturation. Front. Microbiol. 11, 269 (2020). | spa |
| dc.relation.references | 11. E. Hanssen, P. J. McMillan, L. Tilley, Cellular architecture of Plasmodium falciparum-infected erythrocytes. International Journal for Parasitology 40, 1127–1135 (2010). | spa |
| dc.relation.references | 12. C. R. Harding, F. Frischknecht, The Riveting Cellular Structures of Apicomplexan Parasites. Trends in Parasitology 36, 979–991 (2020). | spa |
| dc.relation.references | 13. K. Frénal, J.-F. Dubremetz, M. Lebrun, D. Soldati-Favre, Gliding motility powers invasion and egress in Apicomplexa. Nat Rev Microbiol 15, 645–660 (2017). | spa |
| dc.relation.references | 14. A.-J. Huh, et al., Parasitemia Characteristics of Plasmodium vivax Malaria Patients in the Republic of Korea. J Korean Med Sci 26, 42 (2011). | spa |
| dc.relation.references | 15. C. L. Mitchell, et al., Under the Radar: Epidemiology of Plasmodium ovale in the Democratic Republic of the Congo. J Infect Dis 223, 1005–1014 (2021). | spa |
| dc.relation.references | 16. W. E. Collins, G. M. Jeffery, Plasmodium ovale: Parasite and Disease. Clin Microbiol Rev 18, 570–581 (2005). | spa |
| dc.relation.references | 17. J. Gruszczyk, et al., Transferrin receptor 1 is a reticulocyte-specific receptor for Plasmodium vivax. Science 359, 48–55 (2018). | spa |
| dc.relation.references | 18. B. Malleret, et al., Plasmodium vivax binds host CD98hc (SLC3A2) to enter immature red blood cells. Nat Microbiol 6, 991–999 (2021). | spa |
| dc.relation.references | 19. S. Antwi-Baffour, et al., Haematological parameters and their correlation with the degree of malaria parasitaemia among outpatients attending a polyclinic. Malar J 22, 281 (2023). | spa |
| dc.relation.references | 20. C. Daneshvar, et al., Clinical and Laboratory Features of Human Plasmodium knowlesi Infection. Clin Infect Dis 49, 852–860 (2009). | spa |
| dc.relation.references | 21. F. Perandin, et al., Development of a Real-Time PCR Assay for Detection of Plasmodium falciparum, Plasmodium vivax, and Plasmodium ovale for Routine Clinical Diagnosis. J Clin Microbiol 42, 1214–1219 (2004). | spa |
| dc.relation.references | 22. R. W. Moon, et al., Normocyte-binding protein required for human erythrocyte invasion by the zoonotic malaria parasite Plasmodium knowlesi. Proc. Natl. Acad. Sci. U.S.A. 113, 7231–7236 (2016). | spa |
| dc.relation.references | 23. R. Naidu, et al., Reticulocyte Infection Leads to Altered Behaviour, Drug Sensitivity and Host Cell Remodelling by Plasmodium falciparum. bioRxiv 862169 (2019). | spa |
| dc.relation.references | 24. J. A. Dvorak, L. H. Miller, W. C. Whitehouse, T. Shiroishi, Invasion of Erythrocytes by Malaria Merozoites. Science 187, 748–750 (1975). | spa |
| dc.relation.references | 25. P. R. Gilson, B. S. Crabb, Morphology and kinetics of the three distinct phases of red blood cell invasion by Plasmodium falciparum merozoites. Int J Parasitol 39, 91–96 (2009). | spa |
| dc.relation.references | 26. A. F. Cowman, D. Berry, J. Baum, The cellular and molecular basis for malaria parasite invasion of the human red blood cell. The Journal of Cell Biology 198, 961–971 (2012). | spa |
| dc.relation.references | 27. G. E. Weiss, B. S. Crabb, P. R. Gilson, Overlaying Molecular and Temporal Aspects of Malaria Parasite Invasion. Trends in Parasitology 32, 284–295 (2016). | spa |
| dc.relation.references | 28. M. J. Boyle, et al., Sequential Processing of Merozoite Surface Proteins during and after Erythrocyte Invasion by Plasmodium falciparum. Infect. Immun. 82, 924–936 (2014). | spa |
| dc.relation.references | 29. A. F. Cowman, B. S. Crabb, Invasion of Red Blood Cells by Malaria Parasites. Cell 124, 755–766 (2006). | spa |
| dc.relation.references | 30. A. Keeley, D. Soldati, The glideosome: a molecular machine powering motility and host-cell invasion by Apicomplexa. Trends in Cell Biology 14, 528–532 (2004). | spa |
| dc.relation.references | 31. W. Trager, J. B. Jensen, Human Malaria Parasites in Continuous Culture. Science 193, 673–675 (1976). | spa |
| dc.relation.references | 32. A. S. Paul, E. S. Egan, M. T. Duraisingh, Host–parasite interactions that guide red blood cell invasion by malaria parasites: Current Opinion in Hematology 22, 220–226 (2015). | spa |
| dc.relation.references | 33. J. Molina-Franky, M. E. Patarroyo, M. Kalkum, M. A. Patarroyo, The Cellular and Molecular Interaction Between Erythrocytes and Plasmodium falciparum Merozoites. Front. Cell. Infect. Microbiol. 12, 816574 (2022). | spa |
| dc.relation.references | 34. S. J. Draper, et al., Malaria Vaccines: Recent Advances and New Horizons. Cell Host & Microbe 24, 43–56 (2018). | spa |
| dc.relation.references | 35. W.-H. Tham, J. G. Beeson, J. C. Rayner, Plasmodium vivax vaccine research – we’ve only just begun. International Journal for Parasitology 47, 111–118 (2017). | spa |
| dc.relation.references | 36. C. E. Chitnis, L. H. Miller, Identification of the erythrocyte binding domains of Plasmodium vivax and Plasmodium knowlesi proteins involved in erythrocyte invasion. Journal of Experimental Medicine 180, 497–506 (1994). | spa |
| dc.relation.references | 37. S.-K. Lee, et al., Complement receptor 1 is the human erythrocyte receptor for Plasmodium vivax erythrocyte binding protein. Proc. Natl. Acad. Sci. U.S.A. 121, e2316304121 (2024). | spa |
| dc.relation.references | 38. M. S. Alam, M. Zeeshan, S. Rathore, Y. D. Sharma, Multiple Plasmodium vivax proteins of Pv-fam-a family interact with human erythrocyte receptor Band 3 and have a role in red cell invasion. Biochem Biophys Res Commun 478, 1211–1216 (2016). | spa |
| dc.relation.references | 39. S. Rathore, et al., Basigin Interacts with Plasmodium vivaxTryptophan-rich Antigen PvTRAg38 as a Second Erythrocyte Receptor to Promote Parasite Growth. J Biol Chem 292, 462–476 (2017). | spa |
| dc.relation.references | 40. M. S. Alam, S. Rathore, R. K. Tyagi, Y. D. Sharma, Host-parasite interaction: multiple sites in the Plasmodium vivax tryptophan-rich antigen PvTRAg38 interact with the erythrocyte receptor band 3. FEBS Lett 590, 232–241 (2016). | spa |
| dc.relation.references | 41. V. K. Goel, et al., Band 3 is a host receptor binding merozoite surface protein 1 during the Plasmodium falciparum invasion of erythrocytes. Proceedings of the National Academy of Sciences 100, 5164–5169 (2003). | spa |
| dc.relation.references | 42. M. R. Baldwin, X. Li, T. Hanada, S.-C. Liu, A. H. Chishti, Merozoite surface protein 1 recognition of host glycophorin A mediates malaria parasite invasion of red blood cells. Blood 125, 2704–2711 (2015). | spa |
| dc.relation.references | 43. P. A. Orlandi, F. W. Klotz, J. D. Haynes, A Malaria Invasion Receptor, the 175-Kilodalton Erythrocyte Binding Antigen of Plasmodium falciparum Recognizes the Terminal Neu5Ac(a2-3)Gal- Sequences of Glycophorin A. The Journal of cell biology 116, 901–909 (1992). | spa |
| dc.relation.references | 44. C.-A. Lobo, Glycophorin C is the receptor for the Plasmodium falciparum erythrocyte binding ligand PfEBP-2 (baebl). Blood 101, 4628–4631 (2003). | spa |
| dc.relation.references | 45. R. Lanzillotti, T. L. Coetzer, The 10 kDa domain of human erythrocyte protein 4.1 binds the Plasmodium falciparum EBA-181 protein. Malar J 5, 100 (2006). | spa |
| dc.relation.references | 46. D. C. G. Mayer, et al., Glycophorin B is the erythrocyte receptor of Plasmodium falciparum erythrocyte-binding ligand, EBL-1. Proc. Natl. Acad. Sci. U.S.A. 106, 5348–5352 (2009). | spa |
| dc.relation.references | 47. S. J. Bartholdson, et al., Semaphorin-7A Is an Erythrocyte Receptor for Plasmodium falciparum Merozoite-Specific TRAP Homolog, MTRAP. PLoS Pathog 8, e1003031 (2012). | spa |
| dc.relation.references | 48. K. Kato, D. C. G. Mayer, S. Singh, M. Reid, L. H. Miller, Domain III of Plasmodium falciparum apical membrane antigen 1 binds to the erythrocyte membrane protein Kx. Proceedings of the National Academy of Sciences 102, 5552–5557 (2005). | spa |
| dc.relation.references | 49. T. Triglia, W.-H. Tham, A. Hodder, A. F. Cowman, Reticulocyte binding protein homologues are key adhesins during erythrocyte invasion by Plasmodium falciparum. Cellular Microbiology 11, 1671–1687 (2009). | spa |
| dc.relation.references | 50. M. T. Duraisingh, et al., Phenotypic variation of Plasmodium falciparum merozoite proteins directs receptor targeting for invasion of human erythrocytes. EMBO J 22, 1047–1057 (2003). | spa |
| dc.relation.references | 51. W.-H. Tham, et al., Complement receptor 1 is the host erythrocyte receptor for Plasmodium falciparum PfRh4 invasion ligand. Proceedings of the National Academy of Sciences 107, 17327–17332 (2010). | spa |
| dc.relation.references | 52. C. Crosnier, et al., Basigin is a receptor essential for erythrocyte invasion by Plasmodium falciparum. Nature 480, 534–537 (2011). | spa |
| dc.relation.references | 53. H. Nagaoka, et al., Antibodies against a short region of PfRipr inhibit Plasmodium falciparum merozoite invasion and PfRipr interaction with Rh5 and SEMA7A. Sci Rep 10, 6573 (2020). | spa |
| dc.relation.references | 54. E. Ovchynnikova, F. Aglialoro, M. Von Lindern, E. Van Den Akker, The Shape Shifting Story of Reticulocyte Maturation. Front. Physiol. 9, 829 (2018). | spa |
| dc.relation.references | 55. M. Moras, S. D. Lefevre, M. A. Ostuni, From Erythroblasts to Mature Red Blood Cells: Organelle Clearance in Mammals. Front. Physiol. 8, 1076 (2017). | spa |
| dc.relation.references | 56. J. H. Yeo, Y. W. Lam, S. T. Fraser, Cellular dynamics of mammalian red blood cell production in the erythroblastic island niche. Biophys Rev 11, 873–894 (2019). | spa |
| dc.relation.references | 57. P. Thiagarajan, C. J. Parker, J. T. Prchal, How Do Red Blood Cells Die? Front. Physiol. 12, 655393 (2021). | spa |
| dc.relation.references | 58. C. J. Stevens-Hernandez, J. F. Flatt, S. Kupzig, L. J. Bruce, Reticulocyte Maturation and Variant Red Blood Cells. Front. Physiol. 13, 834463 (2022). | spa |
| dc.relation.references | 59. R. Thomson-Luque, et al., In-depth phenotypic characterization of reticulocyte maturation using mass cytometry. Blood Cells, Molecules, and Diseases 72, 22–33 (2018). | spa |
| dc.relation.references | 60. Heilmeyer, L., and Westha üser, R, Reifungs studien an uberlebenden reticulozyten in vitro und ihre bedeutung fur die schatzing der taglichen hemoglobin production in vivo. Ztschr Klin Med 121, 361–379 (1932). | spa |
| dc.relation.references | 61. H. C. Mel, M. Prenant, N. Mohandas, Reticulocyte motility and form: studies on maturation and classification. Blood 49, 1001–1009 (1977). | spa |
| dc.relation.references | 62. A. Brun, G. Gaudernack, S. Sandberg, A new method for isolation of reticulocytes: positive selection of human reticulocytes by immunomagnetic separation. Blood 76, 2397–2403 (1990). | spa |
| dc.relation.references | 63. T. M. Grzywa, D. Nowis, J. Golab, The role of CD71+ erythroid cells in the regulation of the immune response. Pharmacology & Therapeutics 228, 107927 (2021). | spa |
| dc.relation.references | 64. M. Bermúdez, D. A. Moreno-Pérez, G. Arévalo-Pinzón, H. Curtidor, M. A. Patarroyo, Plasmodium vivax in vitro continuous culture: the spoke in the wheel. Malar J 17, 301 (2018). | spa |
| dc.relation.references | 65. E. M. Pasini, C. H. M. Kocken, Parasite-Host Interaction and Pathophysiology Studies of the Human Relapsing Malarias Plasmodium vivax and Plasmodium ovale Infections in Non-Human Primates. Front. Cell. Infect. Microbiol. 10, 614122 (2021). | spa |
| dc.relation.references | 66. K. Shaw-Saliba, et al., Insights into an Optimization of Plasmodium vivax Sal-1 in vitro culture: The Aotus Primate Model. PLoS Negl Trop Dis 10, e0004870 (2016). | spa |
| dc.relation.references | 67. M. Ocampo, et al., Plasmodium vivax Duffy binding protein peptides specifically bind to reticulocytes. Peptides 23, 13–22 (2002). | spa |
| dc.relation.references | 68. M. Urquiza, Identification and polymorphism of Plasmodium vivax RBP-1 peptides which bind specifically to reticulocytes. Peptides 23, 2265–2277 (2002). | spa |
| dc.relation.references | 69. R. Udomsangpetch, et al., Short-term in vitro culture of field isolates of Plasmodium vivax using umbilical cord blood. Parasitology International 56, 65–69 (2007). | spa |
| dc.relation.references | 70. B. Mons, J. J. A. B. Croon, W. Van Der Star, H. J. Van Der Kaay, Erythrocytic schizogony and invasion of Plasmodium vivax in vitro. International Journal for Parasitology 18, 307–311 (1988). | spa |
| dc.relation.references | 71. T. J. Satchwell, et al., Genetic manipulation of cell line derived reticulocytes enables dissection of host malaria invasion requirements. Nat Commun 10, 3806 (2019). | spa |
| dc.relation.references | 72. T. P. Feldman, Y. Ryan, E. S. Egan, Plasmodium falciparum infection of human erythroblasts induces transcriptional changes associated with dyserythropoiesis. Blood Advances 7, 5496–5509 (2023). | spa |
| dc.relation.references | 73. T. Panichakul, et al., Production of erythropoietic cells in vitro for continuous culture of Plasmodium vivax. International Journal for Parasitology 37, 1551–1557 (2007). | spa |
| dc.relation.references | 74. C. Fernandez-Becerra, et al., Red blood cells derived from peripheral blood and bone marrow CD34+ human haematopoietic stem cells are permissive to Plasmodium parasites infection. Mem. Inst. Oswaldo Cruz 108, 801–803 (2013). | spa |
| dc.relation.references | 75. T. Furuya, J. M. Sá, C. E. Chitnis, T. E. Wellems, T. T. Stedman, Reticulocytes from cryopreserved erythroblasts support Plasmodium vivax infection in vitro. Parasitology International 63, 278–284 (2014). | spa |
| dc.relation.references | 76. F. Noulin, et al., Cryopreserved Reticulocytes Derived from Hematopoietic Stem Cells Can Be Invaded by Cryopreserved Plasmodium vivax Isolates. PLoS ONE 7, e40798 (2012). | spa |
| dc.relation.references | 77. Y. Okuno, et al., Establishment of an Erythroid Cell Line (JK-1) that Spontaneously Diferentiates to Red Cells. 66, 8. | spa |
| dc.relation.references | 78. K. Trakarnsanga, et al., An immortalized adult human erythroid line facilitates sustainable and scalable generation of functional red cells. Nat Commun 8, 14750 (2017). | spa |
| dc.relation.references | 79. Y. Okuno, et al., Establishment of an erythroid cell line (JK-1) that spontaneously differentiates to red cells. Cancer 66, 1544–1551 (1990). | spa |
| dc.relation.references | 80. U. Kanjee, et al., CRISPR/Cas9 knockouts reveal genetic interaction between strain-transcendent erythrocyte determinants of Plasmodium falciparum invasion. Proc Natl Acad Sci U S A 114, E9356–E9365 (2017). | spa |
| dc.relation.references | 81. J. Gruszczyk, et al., Transferrin receptor 1 is a reticulocyte-specific receptor for Plasmodium vivax. Science 359, 48–55 (2018). | spa |
| dc.relation.references | 82. N. R. King, et al., Basigin mediation of Plasmodium falciparum red blood cell invasion does not require its transmembrane domain or interaction with monocarboxylate transporter 1. PLoS Pathog 20, e1011989 (2024). | spa |
| dc.relation.references | 83. J. Iyer, A. C. Grüner, L. Rénia, G. Snounou, P. R. Preiser, Invasion of host cells by malaria parasites: a tale of two protein families. Molecular Microbiology 65, 231–249 (2007). | spa |
| dc.relation.references | 84. R. Horuk, et al., A Receptor for the Malarial Parasite Plasmodium vivax: the Erythrocyte Chemokine Receptor. Science 261, 1182–1184 (1993). | spa |
| dc.relation.references | 85. J. R. Ryan, et al., Evidence for transmission of Plasmodium vivax among a duffy antigen negative population in Western Kenya. Am J Trop Med Hyg 75, 575–581 (2006). | spa |
| dc.relation.references | 86. Y. A. Picón-Jaimes, et al., Relationship between Duffy Genotype/Phenotype and Prevalence of Plasmodium vivax Infection: A Systematic Review. TropicalMed 8, 463 (2023). | spa |
| dc.relation.references | 87. L. Chan, M. H. Dietrich, W. Nguitragool, W. Tham, Plasmodium vivaxReticulocyte Binding Proteins for invasion into reticulocytes. Cellular Microbiology 22 (2020). | spa |
| dc.relation.references | 88. J. M. Carlton, et al., Comparative genomics of the neglected human malaria parasite Plasmodium vivax. Nature 455, 757–763 (2008). | spa |
| dc.relation.references | 89. M. R. Galinski, C. C. Medina, P. Ingravallo, J. W. Barnwell, A reticulocyte-binding protein complex of Plasmodium vivax merozoites. Cell 69, 1213–1226 (1992). | spa |
| dc.relation.references | 90. S. Gupta, et al., Targeting a Reticulocyte Binding Protein and Duffy Binding Protein to Inhibit Reticulocyte Invasion by Plasmodium vivax. Sci Rep 8, 10511 (2018). | spa |
| dc.relation.references | 91. J.-H. Han, et al., Identification of a reticulocyte-specific binding domain of Plasmodium vivax reticulocyte-binding protein 1 that is homologous to the PfRh4 erythrocyte-binding domain. Sci Rep 6, 26993 (2016). | spa |
| dc.relation.references | 92. C. T. França, et al., Plasmodium vivax Reticulocyte Binding Proteins Are Key Targets of Naturally Acquired Immunity in Young Papua New Guinean Children. PLoS Negl Trop Dis 10, e0005014 (2016). | spa |
| dc.relation.references | 93. E. D. Gupta, et al., Naturally Acquired Human Antibodies Against Reticulocyte-Binding Domains of Plasmodium vivax Proteins, PvRBP2c and PvRBP1a, Exhibit Binding-Inhibitory Activity. J Infect Dis 215, 1558–1568 (2017). | spa |
| dc.relation.references | 94. J. Li, E.-T. Han, Dissection of the Plasmodium vivax reticulocyte binding-like proteins (PvRBPs). Biochemical and Biophysical Research Communications 426, 1–6 (2012). | spa |
| dc.relation.references | 95. Z. Bozdech, et al., The transcriptome of Plasmodium vivax reveals divergence and diversity of transcriptional regulation in malaria parasites. Proc. Natl. Acad. Sci. U.S.A. 105, 16290–16295 (2008). | spa |
| dc.relation.references | 96. F. B. Ntumngia, et al., Identification and Immunological Characterization of the Ligand Domain of Plasmodium vivax Reticulocyte Binding Protein 1a. The Journal of Infectious Diseases 218, 1110–1118 (2018). | spa |
| dc.relation.references | 97. H. Curtidor, et al., Conserved Binding Regions Provide the Clue for Peptide-Based Vaccine Development: A Chemical Perspective. Molecules 22, 2199 (2017). | spa |
| dc.relation.references | 98. M. E. Patarroyo, M. A. Patarroyo, Emerging Rules for Subunit-Based, Multiantigenic, Multistage Chemically Synthesized Vaccines. Acc. Chem. Res. 41, 377–386 (2008). | spa |
| dc.relation.references | 99. M. Liu, W. C. Van Voorhis, R. J. Quinn, Development of a target identification approach using native mass spectrometry. Sci Rep 11, 2387 (2021). | spa |
| dc.relation.references | 100. A.-C. Gingras, K. T. Abe, B. Raught, Getting to know the neighborhood: using proximity-dependent biotinylation to characterize protein complexes and map organelles. Current Opinion in Chemical Biology 48, 44–54 (2019). | spa |
| dc.relation.references | 101. K. F. Cho, et al., Proximity labeling in mammalian cells with TurboID and split-TurboID. Nat Protoc 15, 3971–3999 (2020). | spa |
| dc.relation.references | 102. B. T. Lobingier, et al., An Approach to Spatiotemporally Resolve Protein Interaction Networks in Living Cells. Cell 169, 350-360.e12 (2017). | spa |
| dc.relation.references | 103. M. Kalocsay, APEX Peroxidase-Catalyzed Proximity Labeling and Multiplexed Quantitative Proteomics. Methods Mol Biol 2008, 41–55 (2019). | spa |
| dc.relation.references | 104. T. C. Branon, et al., Efficient proximity labeling in living cells and organisms with TurboID. Nat Biotechnol 36, 880–887 (2018). | spa |
| dc.relation.references | 105. K. J. Roux, D. I. Kim, M. Raida, B. Burke, A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. Journal of Cell Biology 196, 801–810 (2012). | spa |
| dc.relation.references | 106. R. M. Sears, D. G. May, K. J. Roux, BioID as a Tool for Protein-Proximity Labeling in Living Cells. Methods Mol Biol 2012, 299–313 (2019). | spa |
| dc.relation.references | 107. E. Choi‐Rhee, H. Schulman, J. E. Cronan, Promiscuous protein biotinylation by Escherichia coli biotin protein ligase. Protein Science 13, 3043–3050 (2004). | spa |
| dc.relation.references | 108. J. E. Cronan, Targeted and proximity-dependent promiscuous protein biotinylation by a mutant Escherichia coli biotin protein ligase. J Nutr Biochem 16, 416–418 (2005). | spa |
| dc.relation.references | 109. S. K. Henke, J. E. Cronan, Successful Conversion of the Bacillus subtilis BirA Group II Biotin Protein Ligase into a Group I Ligase. PLoS ONE 9, e96757 (2014). | spa |
| dc.relation.references | 110. D. I. Kim, et al., Probing nuclear pore complex architecture with proximity-dependent biotinylation. Proc. Natl. Acad. Sci. U.S.A. 111 (2014). | spa |
| dc.relation.references | 111. C. B. Schnider, D. Bausch-Fluck, F. Brühlmann, V. T. Heussler, P.-C. Burda, BioID Reveals Novel Proteins of the Plasmodium Parasitophorous Vacuole Membrane. mSphere 3, e00522-17 (2018). | spa |
| dc.relation.references | 112. J. S. Wichers, et al., Identification of novel inner membrane complex and apical annuli proteins of the malaria parasite Plasmodium falciparum. Cellular Microbiology 23 (2021). | spa |
| dc.relation.references | 113. I. M. Lamb, et al., Mitochondrially targeted proximity biotinylation and proteomic analysis in Plasmodium falciparum. PLoS ONE 17, e0273357 (2022). | spa |
| dc.relation.references | 114. S. V. Ambekar, J. R. Beck, G. R. Mair, TurboID Identification of Evolutionarily Divergent Components of the Nuclear Pore Complex in the Malaria Model Plasmodium berghei. mBio 13, e01815-22 (2022). | spa |
| dc.relation.references | 115. N. Mohandas, X. An, Malaria and human red blood cells. Med Microbiol Immunol 201, 593–598 (2012). | spa |
| dc.relation.references | 116. N. J. White, et al., Malaria. The Lancet 383, 723–735 (2014). | spa |
| dc.relation.references | 117. N. Thawani, et al., Plasmodium Products Contribute to Severe Malarial Anemia by Inhibiting Erythropoietin-Induced Proliferation of Erythroid Precursors. The Journal of Infectious Diseases 209, 140–149 (2014). | spa |
| dc.relation.references | 118. Q. Chen, et al., Identification of Plasmodium falciparum Erythrocyte Membrane Protein 1 (PfEMP1) as the Rosetting Ligand of the Malaria Parasite Plasmodium falciparum. Journal of Experimental Medicine 187, 15–23 (1998). | spa |
| dc.relation.references | 119. M. Niang, et al., The variant STEVOR protein of Plasmodium falciparum is a red cell binding protein important for merozoite invasion and rosetting. Cell Host & Microbe 16, 81–93 (2014). | spa |
| dc.relation.references | 120. S. Goel, et al., RIFINs are adhesins implicated in severe Plasmodium falciparum malaria. Nat Med 21, 314–317 (2015). | spa |
| dc.relation.references | 121. J. Molina-Franky, M. E. Patarroyo, M. Kalkum, M. A. Patarroyo, The Cellular and Molecular Interaction Between Erythrocytes and Plasmodium falciparum Merozoites. Front. Cell. Infect. Microbiol. 12, 816574 (2022). | spa |
| dc.relation.references | 122. A. R. Jensen, Y. Adams, L. Hviid, Cerebral Plasmodium falciparum malaria: The role of PfEMP1 in its pathogenesis and immunity, and PfEMP1‐based vaccines to prevent it. Immunological Reviews 293, 230–252 (2020). | spa |
| dc.relation.references | 123. A. K. Zakama, N. Ozarslan, S. L. Gaw, Placental Malaria. Curr Trop Med Rep 7, 162–171 (2020). | spa |
| dc.relation.references | 124. J. K. Baird, Neglect of Plasmodium vivax malaria. Trends in Parasitology 23, 533–539 (2007). | spa |
| dc.relation.references | 125. N. M. Anstey, et al., Pulmonary Manifestations of Uncomplicated falciparum and vivax Malaria: Cough, Small Airways Obstruction, Impaired Gas Transfer, and Increased Pulmonary Phagocytic Activity. J Infect Dis 185, 1326–1334 (2002). | spa |
| dc.relation.references | 126. S. R. Meshnick, et al., Hematologic and clinical indices of malaria in a semi-immune population of western Thailand. The American Journal of Tropical Medicine and Hygiene 70, 8–14 (2004). | spa |
| dc.relation.references | 127. G. S. Tanwar, et al., Clinical profiles of 13 children with Plasmodium vivax cerebral malaria. Annals of Tropical Paediatrics 31, 351–356 (2011). | spa |
| dc.relation.references | 128. S. O. Tan, et al., Thrombocytopaenia in pregnant women with malaria on the Thai-Burmese border. Malar J 7, 209 (2008). | spa |
| dc.relation.references | 129. V. Gupta, et al., Severe Plasmodium vivax Malaria: A Report on Serial Cases from Bikaner in Northwestern India. The American Journal of Tropical Medicine and Hygiene 80, 194–198 (2009). | spa |
| dc.relation.references | 130. M. A. Alexandre, et al., Severe Plasmodium vivax Malaria, Brazilian Amazon. Emerg. Infect. Dis. 16, 1611–1614 (2010). | spa |
| dc.relation.references | 131. B. O. Carvalho, et al., On the Cytoadhesion of Plasmodium vivax –Infected Erythrocytes. J INFECT DIS 202, 638–647 (2010). | spa |
| dc.relation.references | 132. A. Marín-Menéndez, et al., Rosetting in Plasmodium vivax: A Cytoadhesion Phenotype Associated with Anaemia. PLoS Negl Trop Dis 7, e2155 (2013). | spa |
| dc.relation.references | 133. N. C. Bittencourt, L. P. Bertolla, L. Albrecht, Insights on Rosetting Phenomenon in Plasmodium vivax Malaria. Curr Clin Micro Rpt 8, 1–7 (2021). | spa |
| dc.relation.references | 134. F. McQuaid, J. A. Rowe, Rosetting revisited: a critical look at the evidence for host erythrocyte receptors in Plasmodium falciparum rosetting. Parasitology 147, 1–11 (2020). | spa |
| dc.relation.references | 135. World Health Organization, World malaria report 2023 (2023). | spa |
| dc.relation.references | 136. Instituto Nacional de Salud, Boletín Epidemiológico Semanal. Semana epidemiológica 52. (2023). | spa |
| dc.relation.references | 137. The RTS,S Clinical Trials Partnership, Efficacy and safety of RTS,S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: final results of a phase 3, individually randomised, controlled trial. The Lancet 386, 31–45 (2015). | spa |
| dc.relation.references | 138. M. B. Laurens, RTS,S/AS01 vaccine (MosquirixTM): an overview. Human Vaccines & Immunotherapeutics 16, 480–489 (2020). | spa |
| dc.relation.references | 139. A. Olotu, et al., Seven-Year Efficacy of RTS,S/AS01 Malaria Vaccine among Young African Children. New England Journal of Medicine 374, 2519–2529 (2016). | spa |
| dc.relation.references | 140. M. S. Datoo, et al., Safety and efficacy of malaria vaccine candidate R21/Matrix-M in African children: a multicentre, double-blind, randomised, phase 3 trial. The Lancet 403, 533–544 (2024). | spa |
| dc.relation.references | 141. R. O. Payne, et al., Human vaccination against Plasmodium vivax Duffy-binding protein induces strain-transcending antibodies. JCI Insight 2, e93683 (2017). | spa |
| dc.relation.references | 142. K. Singh, et al., Malaria vaccine candidate based on Duffy-binding protein elicits strain transcending functional antibodies in a Phase I trial. npj Vaccines 3, 48 (2018). | spa |
| dc.relation.references | 143. M. M. Hou, et al., Vaccination with Plasmodium vivax Duffy-binding protein inhibits parasite growth during controlled human malaria infection. Sci. Transl. Med. 15, eadf1782 (2023). | spa |
| dc.relation.references | 144. B. T. Grimberg, et al., Plasmodium vivax Invasion of Human Erythrocytes Inhibited by Antibodies Directed against the Duffy Binding Protein. PLoS Med 4, e337 (2007). | spa |
| dc.relation.references | 145. P. Gosi, et al., Polymorphism patterns in Duffy-binding protein among Thai Plasmodium vivax isolates. Malar J 7, 112 (2008). | spa |
| dc.relation.references | 146. Y. Hu, et al., Genetic diversity, natural selection and haplotype grouping of Plasmodium vivax Duffy-binding protein genes from eastern and western Myanmar borders. Parasites Vectors 12, 546 (2019). | spa |
| dc.relation.references | 147. A. J. Guy, V. Irani, J. S. Richards, P. A. Ramsland, Structural patterns of selection and diversity for Plasmodium vivax antigens DBP and AMA1. Malar J 17, 183 (2018). | spa |
| dc.relation.references | 148. J. W. Bennett, et al., Phase 1/2a Trial of Plasmodium vivax Malaria Vaccine Candidate VMP001/AS01B in Malaria-Naive Adults: Safety, Immunogenicity, and Efficacy. PLoS Negl Trop Dis 10, e0004423 (2016). | spa |
| dc.relation.references | 149. R. Palacios, et al., Phase I Safety and Immunogenicity Trial of Plasmodium vivax CS Derived Long Synthetic Peptides Adjuvanted with Montanide ISA 720 or Montanide ISA 51. The American Journal of Tropical Medicine and Hygiene 84, 12–20 (2011). | spa |
| dc.relation.references | 150. M. Arévalo-Herrera, et al., Randomized clinical trial to assess the protective efficacy of a Plasmodium vivax CS synthetic vaccine. Nat Commun 13, 1603 (2022). | spa |
| dc.relation.references | 151. M. Arévalo-Herrera, et al., Protective Efficacy of Plasmodium vivax Radiation-Attenuated Sporozoites in Colombian Volunteers: A Randomized Controlled Trial. PLoS Negl Trop Dis 10, e0005070 (2016). | spa |
| dc.relation.references | 152. Y. Wu, et al., Phase 1 Trial of Malaria Transmission Blocking Vaccine Candidates Pfs25 and Pvs25 Formulated with Montanide ISA 51. PLoS ONE 3, e2636 (2008). | spa |
| dc.relation.references | 153. J. Molina-Franky, et al., Plasmodium falciparum pre-erythrocytic stage vaccine development. Malaria journal 19, 56 (2020). | spa |
| dc.relation.references | 154. D. R. Salamanca, et al., Plasmodium falciparum Blood Stage Antimalarial Vaccines: An Analysis of Ongoing Clinical Trials and New Perspectives Related to Synthetic Vaccines. Frontiers in microbiology 10, 2712 (2019). | spa |
| dc.relation.references | 155. Blomqvist, K, “Thawing of glycerolyte-frozen parasites with NaCl” in Methods in Malaria Research, Methods in Malaria Research. MR4/ATCC, Manassas, (2008), p. 15. | spa |
| dc.relation.references | 156. G. W. Rangel, et al., Enhanced ex vivo Plasmodium vivax Intraerythrocytic Enrichment and Maturation for Rapid and Sensitive Parasite Growth Assays. Antimicrob Agents Chemother 62, e02519-17 (2018). | spa |
| dc.relation.references | 157. G. Snounou, et al., High sensitivity of detection of human malaria parasites by the use of nested polymerase chain reaction. Molecular and Biochemical Parasitology 61, 315–320 (1993). | spa |
| dc.relation.references | 158. S. M. Miller, et al., Random distribution of mixed species malaria infections in Papua New Guinea. The American Journal of Tropical Medicine and Hygiene 62, 225–231 (2000). | spa |
| dc.relation.references | 159. P. A. Camargo-Ayala, et al., High Plasmodium malariae Prevalence in an Endemic Area of the Colombian Amazon Region. PLoS ONE 11, e0159968 (2016). | spa |
| dc.relation.references | 160. C. A. Schneider, W. S. Rasband, K. W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9, 671–675 (2012). | spa |
| dc.relation.references | 161. M. HaileMariam, et al., S-Trap, an Ultrafast Sample-Preparation Approach for Shotgun Proteomics. J. Proteome Res. 17, 2917–2924 (2018). | spa |
| dc.relation.references | 162. D. Matulis, Selective Precipitation of Proteins. CP Protein Science 83 (2016). | spa |
| dc.relation.references | 163. L. K. Pino, S. C. Just, M. J. MacCoss, B. C. Searle, Acquiring and Analyzing Data Independent Acquisition Proteomics Experiments without Spectrum Libraries. Molecular & Cellular Proteomics 19, 1088–1103 (2020). | spa |
| dc.relation.references | 164. M. C. Chambers, et al., A cross-platform toolkit for mass spectrometry and proteomics. Nat Biotechnol 30, 918–920 (2012). | spa |
| dc.relation.references | 165. V. Demichev, C. B. Messner, S. I. Vernardis, K. S. Lilley, M. Ralser, DIA-NN: neural networks and interference correction enable deep proteome coverage in high throughput. Nat Methods 17, 41–44 (2020). | spa |
| dc.relation.references | 166. A. Quaglieri, et al., Mass Dynamics 2.0: An improved modular web-based platform for accelerated proteomics insight generation and decision making. bioRxiv 517480 (2022). | spa |
| dc.relation.references | 167. D. W. Huang, B. T. Sherman, R. A. Lempicki, Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4, 44–57 (2009). | spa |
| dc.relation.references | 168. B. T. Sherman, et al., DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Research 50, W216–W221 (2022). | spa |
| dc.relation.references | 169. F. Supek, M. Bošnjak, N. Škunca, T. Šmuc, REVIGO Summarizes and Visualizes Long Lists of Gene Ontology Terms. PLoS ONE 6, e21800 (2011). | spa |
| dc.relation.references | 170. R Core Team, R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2023). | spa |
| dc.relation.references | 171. U. Omasits, C. H. Ahrens, S. Müller, B. Wollscheid, Protter: interactive protein feature visualization and integration with experimental proteomic data. Bioinformatics 30, 884–886 (2014). | spa |
| dc.relation.references | 172. J. Hallgren, et al., “DeepTMHMM predicts alpha and beta transmembrane proteins using deep neural networks” (Bioinformatics, 2022). | spa |
| dc.relation.references | 173. F. Teufel, et al., SignalP 6.0 predicts all five types of signal peptides using protein language models. Nat Biotechnol 40, 1023–1025 (2022). | spa |
| dc.relation.references | 174. A. Pierleoni, P. L. Martelli, R. Casadio, PredGPI: a GPI-anchor predictor. BMC Bioinformatics 9, 392 (2008). | spa |
| dc.relation.references | 175. P. Cao, et al., Characterisation of Plasmodium vivax lactate dehydrogenase dynamics in Plasmodium vivax infections. Commun Biol 7, 355 (2024). | spa |
| dc.relation.references | 176. A. V. Pandey, B. L. Tekwani, Formation of haemozoin/β‐haematin under physiological conditions is not spontaneous. FEBS Letters 393, 189–192 (1996). | spa |
| dc.relation.references | 177. C. Richard, F. Verdier, Transferrin Receptors in Erythropoiesis. IJMS 21, 9713 (2020). | spa |
| dc.relation.references | 178. S. Acharya, P. Kala, Role of CD71 in acute leukemia– An immunophenotypic marker for erythroid lineage or proliferation? Indian J Pathol Microbiol 62, 418 (2019). | spa |
| dc.relation.references | 179. Ashland, OR: Becton, Dickinson and Company, FlowJoTM Software (for Windows) Version 10.8.1. (2023). | spa |
| dc.relation.references | 180. A. Lex, N. Gehlenborg, H. Strobelt, R. Vuillemot, H. Pfister, UpSet: Visualization of Intersecting Sets. IEEE Trans. Visual. Comput. Graphics 20, 1983–1992 (2014). | spa |
| dc.relation.references | 181. J. D. Batchelor, et al., Red Blood Cell Invasion by Plasmodium vivax: Structural Basis for DBP Engagement of DARC. PLoS Pathog 10, e1003869 (2014). | spa |
| dc.relation.references | 182. M. J. G. Southcott, M. J. A. Tanner, D. J. Anstee, The Expression of Human Blood Group Antigens During Erythropoiesis in a Cell Culture System. Blood 93, 4425–4435 (1999). | spa |
| dc.relation.references | 183. C. M. Woods, B. Boyer, P. K. Vogt, E. Lazarides, Control of erythroid differentiation: asynchronous expression of the anion transporter and the peripheral components of the membrane skeleton in AEV- and S13-transformed cells. The Journal of cell biology 103, 1789–1798 (1986). | spa |
| dc.relation.references | 184. M. E. Lehnert, H. F. Lodish, Unequal synthesis and differential degradation of alpha and beta spectrin during murine erythroid differentiation. The Journal of cell biology 107, 413–426 (1988). | spa |
| dc.relation.references | 185. M. Hanspal, J. T. Prchal, J. Palek, Biogenesis of erythrocyte membrane skeleton in health and disease. Stem Cells 11, 8–12 (1993). | spa |
| dc.relation.references | 186. K. Chen, et al., Resolving the distinct stages in erythroid differentiation based on dynamic changes in membrane protein expression during erythropoiesis. Proc. Natl. Acad. Sci. U.S.A. 106, 17413–17418 (2009). | spa |
| dc.relation.references | 187. M. C. Wilkes, A. Shibuya, K. M. Sakamoto, Signaling Pathways That Regulate Normal and Aberrant Red Blood Cell Development. Genes (Basel) 12, 1646 (2021). | spa |
| dc.relation.references | 188. Y. Lee, et al., Cryo-EM structure of the human L-type amino acid transporter 1 in complex with glycoprotein CD98hc. Nat Struct Mol Biol 26, 510–517 (2019). | spa |
| dc.relation.references | 189. R. Yan, X. Zhao, J. Lei, Q. Zhou, Structure of the human LAT1–4F2hc heteromeric amino acid transporter complex. Nature 568, 127–130 (2019). | spa |
| dc.relation.references | 190. F. Verrey, et al., CATs and HATs: the SLC7 family of amino acid transporters. Pflugers Archiv European Journal of Physiology 447, 532–542 (2004). | spa |
| dc.relation.references | 191. N. N. T. Nguyen, et al., Hepatitis C Virus Modulates Solute carrier family 3 member 2 for Viral Propagation. Sci Rep 8, 15486 (2018). | spa |
| dc.relation.references | 192. JosephD. Smith, et al., Analysis of adhesive domains from the A4VAR Plasmodium falciparum erythrocyte membrane protein-1 identifies a CD36 binding domain. Molecular and Biochemical Parasitology 97, 133–148 (1998). | spa |
| dc.relation.references | 193. X. Y. Yam, M. Niang, K. G. Madnani, P. R. Preiser, Three Is a Crowd – New Insights into Rosetting in Plasmodium falciparum. Trends in Parasitology 33, 309–320 (2017). | spa |
| dc.relation.references | 194. L. H. Miller, D. I. Baruch, K. Marsh, O. K. Doumbo, The pathogenic basis of malaria. Nature 415, 673–679 (2002). | spa |
| dc.relation.references | 195. D. I. Baruch, et al., Identification of a Region of PfEMP1 That Mediates Adherence of Plasmodium falciparum Infected Erythrocytes to CD36: Conserved Function With Variant Sequence. Blood 90, 3766–3775 (1997). | spa |
| dc.relation.references | 196. L. M. Albritton, J. W. Kim, L. Tseng, J. M. Cunningham, Envelope-binding domain in the cationic amino acid transporter determines the host range of ecotropic murine retroviruses. J Virol 67, 2091–2096 (1993). | spa |
| dc.relation.references | 197. T. Yoshimoto, E. Yoshimoto, D. Meruelo, Identification of amino acid residues critical for infection with ecotropic murine leukemia retrovirus. J Virol 67, 1310–1314 (1993). | spa |
| dc.relation.references | 198. N. N. Olaya-Galán, et al., Risk factor for breast cancer development under exposure to bovine leukemia virus in Colombian women: A case-control study. PLoS ONE 16, e0257492 (2021). | spa |
| dc.relation.references | 199. C. S. Tailor, A. Nouri, Y. Zhao, Y. Takeuchi, D. Kabat, A sodium-dependent neutral-amino-acid transporter mediates infections of feline and baboon endogenous retroviruses and simian type D retroviruses. J Virol 73, 4470–4474 (1999). | spa |
| dc.relation.references | 200. A. L. Feire, R. M. Roy, K. Manley, T. Compton, The Glycoprotein B Disintegrin-Like Domain Binds Beta 1 Integrin To Mediate Cytomegalovirus Entry. J Virol 84, 10026–10037 (2010). | spa |
| dc.relation.references | 201. J. Xiao, J. M. Palefsky, R. Herrera, J. Berline, S. M. Tugizov, The Epstein–Barr virus BMRF-2 protein facilitates virus attachment to oral epithelial cells. Virology 370, 430–442 (2008). | spa |
| dc.relation.references | 202. K. A. Weigel-Kelley, M. C. Yoder, A. Srivastava, α5β1 integrin as a cellular coreceptor for human parvovirus B19: requirement of functional activation of β1 integrin for viral entry. Blood 102, 3927–3933 (2003). | spa |
| dc.relation.references | 203. K. L. Graham, et al., Integrin-Using Rotaviruses Bind α2β1 Integrin α2 I Domain via VP4 DGE Sequence and Recognize αXβ2 and αVβ3 by Using VP7 during Cell Entry. J Virol 77, 9969–9978 (2003). | spa |
| dc.relation.references | 204. M. S. Maginnis, et al., Beta1 integrin mediates internalization of mammalian reovirus. J Virol 80, 2760–2770 (2006). | spa |
| dc.relation.references | 205. V. Nägele, et al., Neisseria meningitidis adhesin NadA targets beta1 integrins: functional similarity to Yersinia invasin. J Biol Chem 286, 20536–20546 (2011). | spa |
| dc.relation.references | 206. P. Wintachai, et al., Identification of prohibitin as a Chikungunya virus receptor protein. J. Med. Virol. 84, 1757–1770 (2012). | spa |
| dc.relation.references | 207. P. Fu, Z. Yang, L. A. Bach, Prohibitin-2 binding modulates insulin-like growth factor-binding protein-6 (IGFBP-6)-induced rhabdomyosarcoma cell migration. J Biol Chem 288, 29890–29900 (2013). | spa |
| dc.relation.references | 208. W. Su, S. Huang, H. Zhu, B. Zhang, X. Wu, Interaction between PHB2 and Enterovirus A71 VP1 Induces Autophagy and Affects EV-A71 Infection. Viruses 12, 414 (2020). | spa |
| dc.relation.references | 209. G. Arévalo-Pinzón, et al., A single amino acid change in the Plasmodium falciparum RH5 (PfRH5) human RBC binding sequence modifies its structure and determines species-specific binding activity. Vaccine 30, 637–646 (2012). | spa |
| dc.relation.references | 210. J. Molina-Franky, et al., A novel platform for peptide-mediated affinity capture and LC-MS/MS identification of host receptors involved in Plasmodium invasion. Journal of Proteomics 231, 104002 (2021). | spa |
| dc.relation.references | 211. W. Wong, et al., Structure of Plasmodium falciparum Rh5–CyRPA–Ripr invasion complex. Nature 565, 118–121 (2019). | spa |
| dc.relation.references | 212. K. E. Wright, et al., Structure of malaria invasion protein RH5 with erythrocyte basigin and blocking antibodies. Nature 515, 427–430 (2014). | spa |
| dc.relation.references | 213. R. B. Merrifield, Solid Phase Peptide Synthesis. I. The Synthesis of a Tetrapeptide. J. Am. Chem. Soc. 85, 2149–2154 (1963). | spa |
| dc.relation.references | 214. R. A. Houghten, General method for the rapid solid-phase synthesis of large numbers of peptides: specificity of antigen-antibody interaction at the level of individual amino acids. Proceedings of the National Academy of Sciences 82, 5131–5135 (1985). | spa |
| dc.relation.references | 215. H. Zhang, et al., Targeting CDK9 Reactivates Epigenetically Silenced Genes in Cancer. Cell 175, 1244-1258.e26 (2018). | spa |
| dc.relation.references | 216. J. Y. Cheung, et al., The central role of protein kinase C epsilon in cyanide cardiotoxicity and its treatment. Toxicol. Sci. (2019). https://doi.org/10.1093/toxsci/kfz137. | spa |
| dc.relation.references | 217. C. A. Barrero, et al., Histone 3.3 Participates in a Self-Sustaining Cascade of Apoptosis That Contributes to the Progression of Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 188, 673–683 (2013). | spa |
| dc.relation.references | 218. Codon optimization. NovoPro Labs. Available at: https://www.novoprolabs.com/tools/codon-optimization. | spa |
| dc.relation.references | 219. A.-M. Deans, et al., Invasion Pathways and Malaria Severity in Kenyan Plasmodium falciparum Clinical Isolates. Infect Immun 75, 3014–3020 (2007). | spa |
| dc.relation.references | 220. F. Yu, S. E. Haynes, A. I. Nesvizhskii, IonQuant Enables Accurate and Sensitive Label-Free Quantification With FDR-Controlled Match-Between-Runs. Molecular & Cellular Proteomics 20, 100077 (2021). | spa |
| dc.relation.references | 221. N. Rauniyar, Parallel Reaction Monitoring: A Targeted Experiment Performed Using High Resolution and High Mass Accuracy Mass Spectrometry. Int J Mol Sci 16, 28566–28581 (2015). | spa |
| dc.relation.references | 222. L. K. Pino, et al., The Skyline ecosystem: Informatics for quantitative mass spectrometry proteomics. Mass Spectrometry Reviews 39, 229–244 (2020). | spa |
| dc.relation.references | 223. C. R. Kanzler, M. Donohue, M. E. Dowdle, M. D. Sheets, TurboID functions as an efficient biotin ligase for BioID applications in Xenopus embryos. Developmental Biology 492, 133–138 (2022). | spa |
| dc.relation.references | 224. S. M. Rosenthal, et al., A Toolbox for Efficient Proximity-Dependent Biotinylation in Zebrafish Embryos. Molecular & Cellular Proteomics 20, 100128 (2021). | spa |
| dc.relation.references | 225. T. A. Delli-Bovi, M. D. Spalding, S. T. Prigge, Overexpression of biotin synthase and biotin ligase is required for efficient generation of sulfur-35 labeled biotin in E. coli. BMC Biotechnol 10, 73 (2010). | spa |
| dc.relation.references | 226. C. Sirithanakorn, J. E. Cronan, Biotin, a universal and essential cofactor: synthesis, ligation and regulation. FEMS Microbiology Reviews fuab003 (2021). https://doi.org/10.1093/femsre/fuab003. | spa |
| dc.relation.references | 227. C. M. Lawrence, et al., Crystal Structure of the Ectodomain of Human Transferrin Receptor. Science 286, 779–782 (1999). | spa |
| dc.relation.references | 228. B. Jennifer, et al., Transferrin receptor 1 is a cellular receptor for human heme-albumin. Commun Biol 3, 621 (2020). | spa |
| dc.relation.references | 229. C. C. Trenor, D. R. Campagna, V. M. Sellers, N. C. Andrews, M. D. Fleming, The molecular defect in hypotransferrinemic mice. Blood 96, 1113–1118 (2000). | spa |
| dc.relation.references | 230. H. H. Jabara, et al., A missense mutation in TFRC, encoding transferrin receptor 1, causes combined immunodeficiency. Nat Genet 48, 74–78 (2016). | spa |
| dc.relation.references | 231. J. Gruszczyk, et al., Cryo-EM structure of an essential Plasmodium vivax invasion complex. Nature 559, 135–139 (2018). | spa |
| dc.relation.references | 232. L.-J. Chan, et al., Naturally acquired blocking human monoclonal antibodies to Plasmodium vivax reticulocyte binding protein 2b. Nat Commun 12, 1538 (2021). | spa |
| dc.relation.references | 233. S. R. Radoshitzky, et al., Receptor determinants of zoonotic transmission of New World hemorrhagic fever arenaviruses. Proc. Natl. Acad. Sci. U.S.A. 105, 2664–2669 (2008). | spa |
| dc.relation.references | 234. S. R. Radoshitzky, et al., Transferrin receptor 1 is a cellular receptor for New World haemorrhagic fever arenaviruses. Nature 446, 92–96 (2007). | spa |
| dc.relation.references | 235. X.-L. Yu, et al., Crystal Structure of HAb18G/CD147. Journal of Biological Chemistry 283, 18056–18065 (2008). | spa |
| dc.relation.references | 236. J. Landskron, K. Taskén, CD147 in regulatory T cells. Cellular Immunology 282, 17–20 (2013). | spa |
| dc.relation.references | 237. L. Chen, et al., Crystal structure of PfRh5, an essential Plasmodium falciparum ligand for invasion of human erythrocytes. eLife 3, e04187 (2014). | spa |
| dc.relation.references | 238. J. C. Rayner, M. R. Galinski, P. Ingravallo, J. W. Barnwell, Two Plasmodium falciparum genes express merozoite proteins that are related to Plasmodium vivax and Plasmodium yoelii adhesive proteins involved in host cell selection and invasion. Proceedings of the National Academy of Sciences 97, 9648–9653 (2000). | spa |
| dc.relation.references | 239. T. Triglia, et al., Identification of Proteins from Plasmodium falciparum That Are Homologous to Reticulocyte Binding Proteins in Plasmodium vivax. Infect Immun 69, 1084–1092 (2001). | spa |
| dc.relation.references | 240. D. Gaur, et al., Recombinant Plasmodium falciparum reticulocyte homology protein 4 binds to erythrocytes and blocks invasion. Proceedings of the National Academy of Sciences 104, 17789–17794 (2007). | spa |
| dc.relation.references | 241. M. Rodriguez, S. Lustigman, E. Montero, Y. Oksov, C. A. Lobo, PfRH5: A Novel Reticulocyte-Binding Family Homolog of Plasmodium falciparum that Binds to the Erythrocyte, and an Investigation of Its Receptor. PLoS ONE 3, e3300 (2008). | spa |
| dc.relation.references | 242. J. Gruszczyk, et al., Structurally conserved erythrocyte-binding domain in Plasmodium provides a versatile scaffold for alternate receptor engagement. Proc. Natl. Acad. Sci. U.S.A. 113 (2016). | spa |
| dc.relation.references | 243. L. Y. Bustamante, et al., A full-length recombinant Plasmodium falciparum PfRH5 protein induces inhibitory antibodies that are effective across common PfRH5 genetic variants. Vaccine 31, 373–379 (2013). | spa |
| dc.relation.references | 244. G. E. Weiss, et al., Revealing the Sequence and Resulting Cellular Morphology of Receptor-Ligand Interactions during Plasmodium falciparum Invasion of Erythrocytes. PLoS Pathog 11, e1004670 (2015). | spa |
| dc.relation.references | 245. A. D. Douglas, et al., Neutralization of Plasmodium falciparum Merozoites by Antibodies against PfRH5. J.I. 192, 245–258 (2014). | spa |
| dc.relation.references | 246. Z. Chen, et al., Function of HAb18G/CD147 in invasion of host cells by severe acute respiratory syndrome coronavirus. J Infect Dis 191, 755–760 (2005). | spa |
| dc.relation.references | 247. H. Ulrich, M. M. Pillat, CD147 as a Target for COVID-19 Treatment: Suggested Effects of Azithromycin and Stem Cell Engagement. Stem Cell Rev and Rep 16, 434–440 (2020). | spa |
| dc.relation.references | 248. J. Shilts, T. W. M. Crozier, E. J. D. Greenwood, P. J. Lehner, G. J. Wright, No evidence for basigin/CD147 as a direct SARS-CoV-2 spike binding receptor. Sci Rep 11, 413 (2021). | spa |
| dc.relation.references | 249. T. Pushkarsky, et al., CD147 facilitates HIV-1 infection by interacting with virus-associated cyclophilin A. Proc. Natl. Acad. Sci. U.S.A. 98, 6360–6365 (2001). | spa |
| dc.relation.references | 250. A. Watanabe, et al., CD147/EMMPRIN Acts as a Functional Entry Receptor for Measles Virus on Epithelial Cells. J Virol 84, 4183–4193 (2010). | spa |
| dc.relation.references | 251. A. L. Vanarsdall, et al., CD147 Promotes Entry of Pentamer-Expressing Human Cytomegalovirus into Epithelial and Endothelial Cells. mBio 9, e00781-18 (2018). | spa |
| dc.relation.references | 252. A. Bavelloni, M. Piazzi, M. Raffini, I. Faenza, W. L. Blalock, Prohibitin 2: At a communications crossroads. IUBMB Life 67, 239–254 (2015). | spa |
| dc.relation.references | 253. S. Mishra, L. C. Murphy, B. L. G. Nyomba, L. J. Murphy, Prohibitin: a potential target for new therapeutics. Trends in Molecular Medicine 11, 192–197 (2005). | spa |
| dc.relation.references | 254. A. Signorile, G. Sgaramella, F. Bellomo, D. De Rasmo, Prohibitins: A Critical Role in Mitochondrial Functions and Implication in Diseases. Cells 8, 71 (2019). | spa |
| dc.relation.references | 255. V. Emerson, et al., Identification of the Cellular Prohibitin 1/Prohibitin 2 Heterodimer as an Interaction Partner of the C-Terminal Cytoplasmic Domain of the HIV-1 Glycoprotein. J Virol 84, 1355–1365 (2010). | spa |
| dc.relation.references | 256. C. T. Cornillez-Ty, L. Liao, J. R. Yates, P. Kuhn, M. J. Buchmeier, Severe acute respiratory syndrome coronavirus nonstructural protein 2 interacts with a host protein complex involved in mitochondrial biogenesis and intracellular signaling. J Virol 83, 10314–10318 (2009). | spa |
| dc.relation.references | 257. A. Kuadkitkan, N. Wikan, C. Fongsaran, D. R. Smith, Identification and characterization of prohibitin as a receptor protein mediating DENV-2 entry into insect cells. Virology 406, 149–161 (2010). | spa |
| dc.relation.references | 258. J. Jumper, et al., Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021). | spa |
| dc.relation.references | 259. C. J. Su, et al., Ligand-receptor promiscuity enables cellular addressing. Cell Systems 13, 408-425.e12 (2022). | spa |
| dc.relation.references | 260. B. G. Yipp, et al., Synergism of multiple adhesion molecules in mediating cytoadherence of Plasmodium falciparum–infected erythrocytes to microvascular endothelial cells under flow. Blood 96, 2292–2298 (2000). | spa |
| dc.relation.references | 261. A. M. Vogt, et al., Heparan sulfate on endothelial cells mediates the binding of Plasmodium falciparum–infected erythrocytes via the DBL1α domain of PfEMP1. Blood 101, 2405–2411 (2003). | spa |
| dc.relation.references | 262. I. Vigan-Womas, et al., Structural Basis for the ABO Blood-Group Dependence of Plasmodium falciparum Rosetting. PLoS Pathog 8, e1002781 (2012). | spa |
| dc.relation.references | 263. A. Kessler, et al., Linking EPCR-Binding PfEMP1 to Brain Swelling in Pediatric Cerebral Malaria. Cell Host & Microbe 22, 601-614.e5 (2017). | spa |
| dc.relation.references | 264. C. Esser, et al., Evidence of promiscuous endothelial binding by Plasmodium falciparum‐infected erythrocytes. Cell Microbiol 16, 701–708 (2014). | spa |
| dc.relation.references | 265. F.-L. Hsieh, et al., The structural basis for CD36 binding by the malaria parasite. Nature Communications 7 (2016). | spa |
| dc.relation.references | 266. C. Lamers, C. J. Plüss, D. Ricklin, The Promiscuous Profile of Complement Receptor 3 in Ligand Binding, Immune Modulation, and Pathophysiology. Front. Immunol. 12, 662164 (2021). | spa |
| dc.relation.references | 267. W. I. Weis, B. K. Kobilka, The Molecular Basis of G Protein–Coupled Receptor Activation. Annu. Rev. Biochem. 87, 897–919 (2018). | spa |
| dc.relation.references | 268. A. Cortés, Switching Plasmodium falciparum genes on and off for erythrocyte invasion. Trends in Parasitology 24, 517–524 (2008). | spa |
| dc.relation.references | 269. B. Ma, M. Shatsky, H. J. Wolfson, R. Nussinov, Multiple diverse ligands binding at a single protein site: A matter of pre‐existing populations. Protein Science 11, 184–197 (2002). | spa |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
| dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
| dc.subject.ddc | 570 - Biología::572 - Bioquímica | spa |
| dc.subject.decs | Malaria Vivax | spa |
| dc.subject.decs | Malaria, Vivax | eng |
| dc.subject.proposal | Plasmodium vivax | spa |
| dc.subject.proposal | Líneas celulares | spa |
| dc.subject.proposal | Eritroides | spa |
| dc.subject.proposal | Proteoma de membrana | spa |
| dc.subject.proposal | Interacciones receptor-ligando | spa |
| dc.subject.proposal | PvRBP1a | spa |
| dc.subject.proposal | TurboID | spa |
| dc.subject.proposal | Espectrometría de masas | spa |
| dc.subject.proposal | Plasmodium vivax | eng |
| dc.subject.proposal | Erythroid cell lines | eng |
| dc.subject.proposal | Membrane proteome | eng |
| dc.subject.proposal | Receptor-ligand interactions | eng |
| dc.subject.proposal | PvRBP1a | eng |
| dc.subject.proposal | TurboID | eng |
| dc.subject.proposal | Mass spectrometry | eng |
| dc.subject.wikidata | proteoma | spa |
| dc.subject.wikidata | proteome | eng |
| dc.subject.wikidata | Proteínas de la célula huésped | spa |
| dc.subject.wikidata | Host cell protein | eng |
| dc.title | Identificación de receptores para una proteína del merozoíto de Plasmodium vivax en células hospederas de malaria | spa |
| dc.title.translated | Identification of receptors for a Plasmodium vivax merozoite protein in malaria host cells | eng |
| dc.type | Trabajo de grado - Doctorado | spa |
| dc.type.coar | http://purl.org/coar/resource_type/c_db06 | spa |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
| dc.type.content | Text | spa |
| dc.type.driver | info:eu-repo/semantics/doctoralThesis | spa |
| dc.type.redcol | http://purl.org/redcol/resource_type/TD | spa |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
| dcterms.audience.professionaldevelopment | Estudiantes | spa |
| dcterms.audience.professionaldevelopment | Investigadores | spa |
| dcterms.audience.professionaldevelopment | Público general | spa |
| oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 5 de 7
Cargando...
- Nombre:
- 1049630397.2025.pdf
- Tamaño:
- 50.16 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Doctorado en Biotecnología
Cargando...
- Nombre:
- anexo_1_publicacion_articulo1.pdf
- Tamaño:
- 5.94 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Anexo 1
Cargando...
- Nombre:
- anexo_2_publicacion_articulo2.pdf
- Tamaño:
- 9.89 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Anexo 2
Cargando...
- Nombre:
- anexo_3_publicacion_articulo3.pdf
- Tamaño:
- 11.02 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Anexo 3
Cargando...
- Nombre:
- anexo_4_permiso_importacion_muestras_Pvivax.pdf
- Tamaño:
- 297.64 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Anexo 4
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:

