Identificación de genes asociados a la producción de withanólidos en Physalideae

dc.contributor.advisorRoda Fornaguera, Federicospa
dc.contributor.authorPerez Moreno, Santiagospa
dc.contributor.researchgroupGenómica Evolutiva del Metabolismo Secundario (GEME)spa
dc.date.accessioned2024-07-16T18:26:49Z
dc.date.available2024-07-16T18:26:49Z
dc.date.issued2024
dc.descriptionilustraciones, diagramasspa
dc.description.abstractEsta tesis explora la biosíntesis y regulación de los withanolidos en la familia Solanaceae, específicamente en la tribu Physalideae, arrojando luz sobre los complejos procesos bioquímicos y genéticos que conforman su diversidad y evolución. El estudio analiza cómo se sintetizan los withanolidos, destacando la importancia de procesos bioquímicos específicos y la interacción de rutas metabólicas clave. Se enfatiza el papel crucial de ciertos procesos biológicos y genes en la modulación de la síntesis de estos compuestos, resaltando la significativa coexpresión de genes vinculados a funciones esenciales en la planta. El papel de las enzimas citocromo P450, genes específicos y clústeres biosintéticos como el propuesto WBC se examinan en profundidad, proporcionando una comprensión más profunda de la regulación genética en la producción de withanolidos. La investigación también revela interesantes interacciones entre diferentes vías metabólicas y muestra cómo la variación genética podría influir en la presencia o ausencia de ciertos withanolidos entre las especies de Solanaceae. Finalmente, la tesis ofrece una mirada a la regulación y los factores de transcripción involucrados en la producción de withanolidos, subrayando el descubrimiento de patrones de expresión genética que podrían ser fundamentales para futuras investigaciones en biotecnología vegetal y desarrollo farmacológico. Este trabajo representa un avance significativo en el conocimiento de la fitoquímica y la biología evolutiva de las plantas, destacando la complejidad y el dinamismo del mundo vegetal. (Texto tomado de la fuente).spa
dc.description.abstractThis thesis explores the biosynthesis and regulation of withanolidos in the Solanaceae family, specifically in the Physalideae tribe, shedding light on the complex biochemicaland genetic processes that shape their diversity and evolution. The study examines howwithanolidos are synthesized, highlighting the importance of specific biochemical processes and the interaction of key metabolic pathways. The crucial role of biologicalprocesses and genes, particularly cytochrome P450 enzymes, specific genes, and proposed biosynthetic clusters like WBC, is examined in depth, providing a deeper understanding of genetic regulation in withanolide production. The research also revealsintriguing interactions between different metabolic pathways and shows how genetic variation might influence the presence or absence of certain withanolidos among Solanaceae species. Finally, the thesis offers insights into the regulation and transcription factors involved in withanolide production, emphasizing the discovery of gene expression patterns that could be key for future research in plant biotechnology and pharmacological development. This work represents a significant advancement in the understanding of plant phytochemistry and evolutionary biology, highlighting the complexity and dynamism of the plant world.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Biologíaspa
dc.description.researchareaGenómica evolutivaspa
dc.description.sponsorshipEl proyecto "Identificación de genes asociados a la producción de withanólidos en Physalideae" recibió apoyo financiero y de recursos del Grupo de investigación de Genómica y fue patrocinado por el Tandem de Max Planck del Metabolismo Especializado (GEME). Este apoyo incluyó financiamiento y recursos necesarios para la investigaciónspa
dc.format.extent132 páginas + 1 anexospa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86466
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Biologíaspa
dc.relation.indexedAgrosaviaspa
dc.relation.indexedAgrovocspa
dc.relation.referencesAgarwal, A. V. et al. Comprehensive assessment of the genes involved in withanolide biosynthesis from Withania somnifera: chemotype-specific and elicitor- responsive expression. Funct. Integr. Genomics 17, 477–490 (2017).spa
dc.relation.referencesAlfonso, D., & Kapetanidis, I. (1994). Withanolidos from Iochroma gesnerioides. Phytochemistry, 36(1), 179-183.spa
dc.relation.referencesAlharbi, A., & Stevenson, M. (2020). Refining Boolean queries to identify relevant studies for systematic review updates. Journal of the American Medical Informatics Association, 27(11), 1658-1666.spa
dc.relation.referencesAltenhoff, A. M., Levy, J., Zarowiecki, M., Tomiczek, B., Vesztrocy, A. W., Dalquen, D. A., ... & Dessimoz, C. (2019). OMA standalone: orthology inference among public and custom genomes and transcriptomes. Genome research, 29(7), 1152-1163.spa
dc.relation.referencesBharadwaj, R., Kumar, S. R., Sharma, A. & Sathishkumar, R. Plant metabolic gene clusters: evolution, organization, and their applications in synthetic biology. Front. Plant Sci. 12, 697318 (2021).spa
dc.relation.referencesBLAST: Basic Local Alignment Search Tool. (n.d.). https://blast.ncbi.nlm.nih.gov/spa
dc.relation.referencesBolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).spa
dc.relation.referencesBabraham Bioinformatics - FastQC A Quality Control tool for High Throughput Sequence Data. (n.d.). http://www.bioinformatics.babraham.ac.uk/projects/fastqc/spa
dc.relation.referencesBuchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).spa
dc.relation.referencesChaurasiya, N. D., Sangwan, N. S., Sabir, F., Misra, L., & Sangwan, R. S. (2012). Withanolide biosynthesis recruits both mevalonate and DOXP pathways of isoprenogenesis in Ashwagandha Withania somnifera L.(Dunal). Plant cell reports, 31, 1889-1897.spa
dc.relation.referencesConesa, A., Madrigal, P., Tarazona, S. et al. A survey of best practices for RNA-seq data analysis. Genome Biol 17, 13 (2016). https://doi.org/10.1186/s13059-016- 0881-8.spa
dc.relation.referencesChen, Y., & Guo, D. (2016). Molecular mechanisms of coronavirus RNA capping and methylation. Virologica Sinica, 31, 3-11.spa
dc.relation.referencesChow, K. S., Ghazali, A. K., Hoh, C. C., & Mohd-Zainuddin, Z. (2014). RNA sequencing read depth requirement for optimal transcriptome coverage in Hevea brasiliensis. BMC research notes, 7, 1-13.spa
dc.relation.referencesDas, S., & Bansal, M. (2019). Variation of gene expression in plants is influenced by gene architecture and structural properties of promoters. PLoS One, 14(3), e0212678.spa
dc.relation.referencesDhar, N. et al. A decade of molecular understanding of withanolide biosynthesis and in vitro studies in Withania somnifera (L.) Dunal: prospects and perspectives for pathway engineering. Front. Plant Sci. 6, 1031 (2015).spa
dc.relation.referencesDeanna, R., Larter, M. D., Barboza, G. E. & Smith, S. D. Repeated evolution of a morphological novelty: a phylogenetic analysis of the inflated fruiting calyx in the Physalideae tribe (Solanaceae). Am. J. Bot. 106, 270–279 (2019).spa
dc.relation.referencesDunn, W. B., Broadhurst, D., Begley, P., Zelena, E., Francis-McIntyre, S., Anderson, N., ... & Human Serum Metabolome (HUSERMET) Consortium. (2011). Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nature protocols, 6(7), 1060-1083.spa
dc.relation.referencesEmms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 1–14 (2019).spa
dc.relation.referencesEllegren, H., & Galtier, N. (2016). Determinants of genetic diversity. Nature Reviews Genetics, 17(7), 422-433.spa
dc.relation.referencesEdgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–7 (2004).spa
dc.relation.referencesErazo, S., Rocco, G., Zaldivar, M., Delporte, C., Backhouse, N., Castro, C., ... & Garcıía, R. (2008). Active metabolites from Dunalia spinosa resinous exudates. Zeitschrift für Naturforschung C, 63(7-8), 492-496.spa
dc.relation.referencesEspinoza, J., Echeverría, J., Urzua, A., & Niemeyer, H. M. (2012). Withanolid amine and nicotine from Dunalia spinosa (Solanaceae). Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas, 11(3), 278-284.spa
dc.relation.referencesFan, P. et al. Evolution of a plant gene cluster in Solanaceae and emergence of metabolic diversity. Elife 9, 1–26 (2020).spa
dc.relation.referencesFang, S. T., Li, B., & Liu, J. K. (2009). Two new withanolidos from Physalis peruviana. Helvetica Chimica Acta, 92(7), 1304-1308.spa
dc.relation.referencesFu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152 (2012).spa
dc.relation.referencesGarzón-Martínez, G. A., Zhu, Z. I., Landsman, D., Barrero, L. S., & Mariño- Ramírez, L. (2012). The Physalis peruviana leaf transcriptome: assembly, annotation and gene model prediction. BMC genomics, 13, 1-12.spa
dc.relation.referencesGao, X., Dong, J., Rasouli, F., Pouya, A. K., Tahir, A. T., & Kang, J. (2022). Transcriptome analysis provides new insights into plants responses under phosphate starvation in association with chilling stress. BMC plant biology, 22(1), 1-14.spa
dc.relation.referencesGupta, P. et al. Comparative transcriptome analysis of different chemotypes elucidates withanolide biosynthesis pathway from medicinal plant Withania somnifera. Sci. Rep. 5, 18611 (2015).spa
dc.relation.referencesGupta, P. et al. De Novo Assembly, Functional Annotation and Comparative Analysis of Withania somnifera Leaf and Root Transcriptomes to Identify Putative Genes Involved in the Withanolidos Biosynthesis. PLoS One 8, (2013).spa
dc.relation.referencesHaas, B. J. et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494–1512 (2013).spa
dc.relation.referencesHansen, C. C., Nelson, D. R., Møller, B. L. & Werck-Reichhart, D. Plant cytochrome P450 plasticity and evolution. Mol. Plant 14, 1244–1265 (2021).spa
dc.relation.referencesHe, Q. P., Ma, L., Luo, J. Y., He, F. Y., Lou, L. G., & Hu, L. H. (2007). Cytotoxic withanolidos from Physalis angulata L. Chemistry & Biodiversity, 4(3), 443-449.spa
dc.relation.referencesHuang, M. et al. Withanolidos from the genus Physalis: a review on their phytochemical and pharmacological aspects. J. Pharm. Pharmacol. 72, 649–669 (2020).spa
dc.relation.referencesHuang, D. W., Sherman, B. T., & Lempicki, R. A. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature protocols, 4(1), 44-57.spa
dc.relation.referencesHuerta-Cepas, J., Szklarczyk, D., Heller, D., Hernández-Plaza, A., Forslund, S. K., Cook, H., ... & Bork, P. (2019). eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic acids research, 47(D1), D309-D314spa
dc.relation.referencesItkin, M. et al. Biosynthesis of antinutritional alkaloids in solanaceous crops is mediated by clustered genes. Science (80-. ). 341, 175–179 (2013).spa
dc.relation.referencesKnoch, E. et al. Third DWF1 paralog in Solanaceae, sterol Δ 24 -isomerase, branches withanolide biosynthesis from the general phytosterol pathway. Proc. Natl. Acad. Sci. 115, E8096–E8103 (2018).spa
dc.relation.referencesKriventseva, E. V., Kuznetsov, D., Tegenfeldt, F., Manni, M., Dias, R., Simão, F. A., & Zdobnov, E. M. (2019). OrthoDB v10: sampling the diversity of animal, plant, fungal, protist, bacterial and viral genomes for evolutionary and functional annotations of orthologs. Nucleic acids research, 47(D1), D807-D811.spa
dc.relation.referencesLan, Y. H., Chang, F. R., Pan, M. J., Wu, C. C., Wu, S. J., Chen, S. L., ... & Wu, Y. C. (2009). New cytotoxic withanolidos from Physalis peruviana. Food Chemistry, 116(2), 462-469.spa
dc.relation.referencesLangfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9, 559 (2008).spa
dc.relation.referencesLi, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006).spa
dc.relation.referencesLibGuides: Literature Searching: Searching techniques: using Boolean. (n.d.). https://libguides.dundee.ac.uk/literaturesearching/searchtechniquesbooleanspa
dc.relation.referencesLobatto VL, García ME, Nicotra VE, Orozco CI, Casero CN. Antibacterial activity of withanolidos and their structure-activity relationship. Steroids. 2023 Nov;199:109297. doi: 10.1016/j.steroids.2023.109297. Epub 2023 Aug 19. PMID: 37598738.spa
dc.relation.referencesMakarov, A., Denisov, E., & Lange, O. (2009). Performance evaluation of a high- field Orbitrap mass analyzer. Journal of the American Society for Mass Spectrometry, 20(8), 1391-1396.spa
dc.relation.referencesMehta, V., Chander, H., & Munshi, A. (2021). Mechanisms of anti-tumor activity of Withania somnifera (Ashwagandha). Nutrition and Cancer, 73(6), 914-926.spa
dc.relation.referencesMisico, R. I. et al. Withanolidos and related Steroids. in Fortschritte der Chemie organischer Naturstoffe. Progress in the chemistry of organic natural products. Progrès dans la chimie des substances organiques naturelles 94, 127–229 (2011).spa
dc.relation.referencesMisra, L. et al. Withanolidos from Withania somnifera roots. Phytochemistry 69, 1000–1004 (2008).spa
dc.relation.referencesMunro, C., Zapata, F., Howison, M., Siebert, S. & Dunn, C. W. Evolution of Gene Expression across Species and Specialized Zooids in Siphonophora. Mol. Biol. Evol. 39, 1–16 (2022).spa
dc.relation.referencesNützmann, H.-W., Scazzocchio, C. & Osbourn, A. Metabolic Gene Clusters in Eukaryotes. Annu. Rev. Genet. 52, annurev-genet-120417-031237 (2018).spa
dc.relation.referencesPabón-Mora, N., Suárez-Baron, H., Ambrose, B. A., & González, F. (2015). Flower development and perianth identity candidate genes in the basal angiosperm Aristolochia fimbriata (Piperales: Aristolochiaceae). Frontiers in Plant Science, 6, 1095.spa
dc.relation.referencesPatro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417– 419 (2017).spa
dc.relation.referencesPandey, S. S., Singh, S., Pandey, H., Srivastava, M., Ray, T., Soni, S., ... & Kalra, A. (2018). Endophytes of Withania somnifera modulate in planta content and the site of withanolide biosynthesis. Scientific reports, 8(1), 5450.spa
dc.relation.referencesPeng, Y., Wang, Z., Li, M., Wang, T., & Su, Y. (2024). Characterization and analysis of multi-organ full-length transcriptomes in Sphaeropteris brunoniana and Alsophila latebrosa highlight secondary metabolism and chloroplast RNA editing pattern of tree ferns. BMC Plant Biology, 24(1), 1-23.spa
dc.relation.referencesPrice, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2–approximately maximum- likelihood trees for large alignments. PLoS One 5, e9490 (2010).spa
dc.relation.referencesPubChem. (n.d.). Withanoside v. PubChem. https://pubchem.ncbi.nlm.nih.gov/compound/Withanoside-Vspa
dc.relation.referencesRana, S. et al. NADPH-Cytochrome P450 Reductase: Molecular Cloning and Functional Characterization of Two Paralogs from Withania somnifera (L.) Dunal. PLoS One 8, (2013).spa
dc.relation.referencesRazdan, S. et al. Molecular characterization of DWF1 from Withania somnifera (L.) Dunal: its implications in withanolide biosynthesis. J. Plant Biochem. Biotechnol. 26, 52–63 (2017).spa
dc.relation.referencesevell, L. J. & Harrison, A. S. PCCA: a program for phylogenetic canonical correlation analysis. Bioinformatics 24, 1018–1020 (2008).spa
dc.relation.referencesRobinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. bioinformatics 26, 139–140 (2010).spa
dc.relation.referencesSamadi, A. K. (2015). Potential anticancer properties and mechanisms of action of withanolidos. The enzymes, 37, 73-94.spa
dc.relation.references61. Sang-Ngern, M., Youn, U. J., Park, E. J., Kondratyuk, T. P., Simmons, C. J., Wall, M. M., ... & Chang, L. C. (2016). Withanolidos derived from Physalis peruviana (Poha) with potential anti-inflammatory activity. Bioorganic & Medicinal Chemistry Letters, 26(12), 2755-2759.spa
dc.relation.referencesSchirmer, M., Stražar, M., Ávila-Pacheco, J., Rojas‐Tapias, D. F., Brown, E., Temple, E. R., Deik, A., Bullock, K., Jeanfavre, S., Pierce, K. A., Jin, S., Invernizzi, R., Pust, M., Costliow, Z., Mack, D. R., Griffiths, A. M., Walters, T. D., Boyle, B. M., Kugathasan, S., . . . Xavier, R. J. (2024). Linking microbial genes to plasma and stool metabolites uncovers host-microbial interactions underlying ulcerative colitis disease course. Cell Host & Microbe. https://doi.org/10.1016/j.chom.2023.12.013spa
dc.relation.referencesSchwander, T., Libbrecht, R. & Keller, L. Supergenes and complex phenotypes. Curr. Biol. 24, R288–R294 (2014).spa
dc.relation.referencesSharma, A. et al. Characterization and overexpression of sterol Δ22-desaturase, a key enzyme modulates the biosyntheses of stigmasterol and withanolidos in Withania somnifera (L.) Dunal. Plant Sci. 301, 110642 (2020).spa
dc.relation.referencesSharma, A., Rather, G. A., Misra, P., Dhar, M. K. & Lattoo, S. K. Jasmonate responsive transcription factor WsMYC2 regulates the biosynthesis of triterpenoid withanolidos and phytosterol via key pathway genes in Withania somnifera (L.) Dunal. Plant Mol. Biol. 100, 543–560 (2019).spa
dc.relation.referencesShilpashree, H. B., Sudharshan, S. J., Shasany, A. K. & Nagegowda, D. A. Molecular characterization of three CYP450 genes reveals their role in withanolidos formation and defense in Withania somnifera, the Indian Ginseng. Sci. Rep. 12, 1– 12 (2022).spa
dc.relation.referencesSingh, A., Raza, A., Amin, S., Damodaran, C. & Sharma, A. K. Recent advances in the chemistry and therapeutic evaluation of naturally occurring and synthetic withanolidos. Molecules 27, 886 (2022).spa
dc.relation.referencesSmit, S. J. & Lichman, B. R. Plant biosynthetic gene clusters in the context of metabolic evolution. Nat. Prod. Rep. 39, 1465–1482 (2022).spa
dc.relation.referencesStein, A. Withanolidos: Elucidating steroidal lactone biosynthesis in Nightshades. (2022).spa
dc.relation.referencesSukanya, D. H., Lokesha, A. N., Datta, G., & Himabindu, K. (2010). Phytochemical diversity in ashwagandha (Withania somnifera). Open Access Journal of Medicinal and Aromatic Plants, 1(2).spa
dc.relation.referencesThe cytochrome P450 enzyme WsCYP71B35 from Withania somnifera has a role in withanolidos biosynthesis and defense against bacteria. (2023).spa
dc.relation.referencesTong, X., Zhang, H., & Timmermann, B. N. (2011). Chlorinated withanolidos from Withania somnifera. Phytochemistry Letters, 4(4), 411– 414. https://doi.org/10.1016/j.phytol.2011.04.016spa
dc.relation.references73. Villas-Bas, S. G., Roessner, U., Hansen, M. A. E., Smedsgaard, J., & Nielsen, J. (2007). Metabolome Analysis. doi:10.1002/0470105518spa
dc.relation.referencesXia, G., Cao, S., Chen, L. & Qiu, F. Natural withanolidos, an update. Nat. Prod. Rep. 39, 784–813 (2022).spa
dc.relation.referencesXu, Z., Chang, L. (2017). Solanaceae. In: Identification and Control of Common Weeds: Volume 3. Springer, Singapore. https://doi.org/10.1007/978-981-10-5403- 7_9spa
dc.relation.referencesYang, Y., Xiang, K., Sun, D., Zheng, M., Song, Z., Li, M., ... & Chen, L. (2021). Withanolidos from dietary tomatillo suppress HT1080 cancer cell growth by targeting mutant IDH1. Bioorganic & Medicinal Chemistry, 36, 116095spa
dc.relation.referencesZhang, C. & Mirarab, S. ASTRAL-Pro 2: ultrafast species tree reconstruction from multi-copy gene family trees. Bioinformatics 38, 4949–4950 (2022).spa
dc.relation.referencesZhan, C. et al. Plant metabolic gene clusters in the multi-omics era. Trends Plant Sci. (2022).spa
dc.relation.referencesZhao, Y., Li, M. C., Konaté, M. M., Chen, L., Das, B., Karlovich, C., ... & McShane, L. M. (2021). TPM, FPKM, or normalized counts? A comparative study of quantification measures for the analysis of RNA-seq data from the NCI patient- derived models repository. Journal of translational medicine, 19(1), 1-15.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.agrovocLactonaspa
dc.subject.agrovoclactoneseng
dc.subject.agrovocPhysalisspa
dc.subject.agrovocPhysaliseng
dc.subject.agrovocgenómicaspa
dc.subject.agrovocgenomicseng
dc.subject.ddc570 - Biología::576 - Genética y evoluciónspa
dc.subject.ddc570 - Biología::572 - Bioquímicaspa
dc.subject.proposalWithanolidosspa
dc.subject.proposalBiosíntesis de withanolidosspa
dc.subject.proposalGenómica vegetalspa
dc.subject.proposalSolanaceaeother
dc.subject.proposalMetabolitos secundariosspa
dc.subject.proposalEvolución metabólicaspa
dc.subject.proposalWithanolideseng
dc.subject.proposalPlant genomicsfra
dc.subject.proposalSecondary metaboliteseng
dc.subject.proposalMetabolic evolutioneng
dc.subject.proposalWithanolide biosynthesiseng
dc.titleIdentificación de genes asociados a la producción de withanólidos en Physalideaespa
dc.title.translatedIdentification of Genes Associated with the Production of Withanolides in Physalideaeeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameGrupo Genómica Evolutiva del Metabolismo Especializadospa

Archivos

Bloque original

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
1032465939.2024.pdf
Tamaño:
2.93 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Mestría en Ciencias - Biología
No hay miniatura disponible
Nombre:
Anexo3.txt
Tamaño:
18.25 MB
Formato:
Plain Text
Descripción:
Anexo

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: