Performance and energy efficiency in electric vehicles using an induction motor through active disturbance rejection and optimal control strategies

dc.contributor.advisorCortés Romero, John Alexander
dc.contributor.advisorNeira-García, Jorge Enrique
dc.contributor.authorQuecan Herrera, Juan Sebastian
dc.contributor.cvlacQuecan Herrera, Juan Sebastian [0001993729]spa
dc.contributor.orcidQuecan Herrera, Juan Sebastian [0009000823321487]spa
dc.contributor.researchgateQuecan Herrera, Juan Sebastian [Juan_Quecan_Herrera]spa
dc.contributor.researchgroupElectrical Machines and Drivesspa
dc.date.accessioned2024-07-02T21:04:28Z
dc.date.available2024-07-02T21:04:28Z
dc.date.issued2024
dc.descriptionilustraciones (principalmente a color), diagramas, fotografíasspa
dc.description.abstractCurrently, energy efficiency holds significant importance in society and its energetic transition proposals, including vehicular technology topics. Regarding electric vehicles, a critical challenge lies in addressing autonomy issues. To tackle this concern, it becomes imperative to optimize various components and associated strategies for these vehicles. A critical component is the electric motor, and induction motors are popular for their cost-effectiveness and well-established techniques. Despite its advantages, the induction motor also experiences intrinsic losses, demanding performance enhancement that can be accomplished with control strategies. This research adopts a modified active disturbance rejection control approach to address the uncertainties and complex dynamics, along with optimal control concepts for the efficiency requirements of the induction motor. The modification involves including a disturbance rejection weight, developing a weighted cost function, and tuning all the controller parameters with metaheuristic techniques. A comparative analysis of the optimization approaches, considering the disturbance rejection, and its weighted version is conducted. The modified ADRC effectively reduced the cost function value when compared to the classic ADRC approach. The study's findings are validated through experimentation with an induction motor and a DC generator simulating electric vehicle conditions. This suggests that the proposed control strategy, rooted in partial disturbance rejection within the ADRC scheme, can deliver superior performance based on a cost function, although increasing the complexity for the parameter tuning (Texto tomado de la fuente).eng
dc.description.abstractActualmente, la eficiencia energética cobra gran importancia en la sociedad y sus propuestas de transición energética, incluyendo los temas de tecnología vehicular. En cuanto a los vehículos eléctricos, un desafío crítico reside en abordar las cuestiones de autonomía. Para abordar esta preocupación, se vuelve imperativo optimizar varios componentes y estrategias asociadas para estos vehículos. Un componente crítico es el motor eléctrico, y los motores de inducción son ampliamente usados por su rentabilidad y sus técnicas bien establecidas. A pesar de sus ventajas, el motor de inducción también experimenta pérdidas intrínsecas, lo que exige una mejora del rendimiento que se puede lograr con estrategias de control. Esta investigación adopta un enfoque modificado de control basado en rechazo activo de perturbaciones para abordar las incertidumbres y la dinámica compleja, junto con conceptos de control óptimos para los requisitos de eficiencia del motor de inducción. La modificación implica incluir una ponderación en el rechazo de perturbaciones, desarrollar una función de costo ponderada y ajustar todos los parámetros del controlador considerando técnicas metaheurísticas. Se realiza un análisis comparativo de los enfoques de optimización considerando el rechazo de perturbaciones y su versión ponderada. El ADRC modificado redujo efectivamente el valor de la función de costos en comparación con el enfoque ADRC clásico. Los hallazgos del estudio se validan mediante la experimentación con un motor de inducción y un generador de DC que simula las condiciones de un vehículo eléctrico. Esto sugiere que la estrategia de control propuesta, basada en el rechazo parcial de perturbaciones dentro del esquema ADRC, puede ofrecer un rendimiento superior basado en una función de costos, aunque aumenta la complejidad para el ajuste de los parámetros (Texto tomado de la fuente).spa
dc.description.curricularareaIngeniería Mecánica y Mecatrónica.Sede Bogotáspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Automatización Industrialspa
dc.description.researchareaTeoría y aplicación de Controlspa
dc.format.extentxvi, 107 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86353
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Automatización Industrialspa
dc.relation.referencesD. Yu and X. He. A bibliometric study for DEA applied to energy efficiency: Trends and future challenges. Applied Energy, 268(March):115048, 2020spa
dc.relation.referencesC. Yu, N. Lahrichi, and A. Matta. Optimal budget allocation policy for tabu search in stochastic simulation optimization. Computers and Operations Research, 150(September 2022):106046, 2023.spa
dc.relation.referencesZ. Yin, C. Du, J. Liu, X. Sun, and Y. Zhong. Research on Autodisturbance-Rejection Control of Induction Motors Based on an Ant Colony Optimization Algorithm. IEEE Transactions on Industrial Electronics, 65(4):3077–3094, 2018.spa
dc.relation.referencesZ. Yang, F. Shang, I. P. Brown, and M. Krishnamurthy. Comparative study of interior permanent magnet, induction, and switched reluctance motor drives for EV and HEV applications. IEEE Transactions on Transportation Electrification, 1(3):245–254, 2015spa
dc.relation.referencesZ. Yan and Y. Zhou. Application to Optimal Control of Brushless DC Motor with ADRC Based on Genetic Algorithm. Proceedings of 2020 IEEE International Conference on Advances in Electrical Engineering and Computer Applications, AEECA 2020, pages 1032–1035, 2020.spa
dc.relation.referencesY. Xu, S. Huang, Z. Wang, Y. Ren, Z. Xie, J. Guo, and Z. Zhu. Optimization based on tabu search algorithm for optimal sizing of hybrid PV/energy storage system: Ef fects of tabu search parameters. Sustainable Energy Technologies and Assessments, 53(PC):102662, 2022.spa
dc.relation.referencesM. V. Wyk and J. Bekker. Application of metaheuristics in multi-product polymer production scheduling : A case study. Systems and Soft Computing, 5(October):200063, 2023.spa
dc.relation.referencesA. Vasile, I. C. Coropet,chi, D. M. Constantinescu, Sorohan, and C. R. Picu. Simulated Annealing Algorithms Used for Microstructural Design of Composites. 38th DanubiaAdria Symposium on Advances in Experimental Mechanics, DAS 2022, (xxxx), 2022.spa
dc.relation.referencesM. Swargiary, J. Dey, and T. K. Saha. Optimal speed control of induction motor based on Linear Quadratic Regulator theory. 12th IEEE International Conference Electronics, Energy, Environment, Communication, Computer, Control: (E3-C3), INDICON 2015, 4(2):1–6, 2016spa
dc.relation.referencesM. Srinivas and L. M. Patnaik. Adaptive Probabilities of Crossover and Mutation in Genetic Algorithms. IEEE Transactions on Systems, Man and Cybernetics, 24(4):656– 667, 1994spa
dc.relation.referencesS. Siva Sathya and M. V. Radhika. Convergence of nomadic genetic algorithm on benchmark mathematical functions. Applied Soft Computing Journal, 13(5):2759–2766, 2013.spa
dc.relation.references. Sira-Ramirez, Hebertt Luviano-Juárez, M. Ramírez-Neria, and E. W. Zurita Bustamante. Active Disturbance Rejection Control of Dynamic Systems, volume 1. Mexico City, 1 edition, 2017.spa
dc.relation.referencesH. Sira-Ramirez, F. Gonzalez-Montanez, J. A. Cortes-Romero, and A. Luviano-Juarez. A robust linear field-oriented voltage control for the induction motor: Experimental results. IEEE Transactions on Industrial Electronics, 60(8):3025–3033, 2013.spa
dc.relation.referencesH. Sira-Ramírez and S. K. Agrawal. Differentially Flat Systems. Marcel Dekker, Inc., New York, 1 edition, 2004.spa
dc.relation.referencesH. Sira-Ramírez. Differentially Flat Systems. Marcel Dekker, Inc., 1 edition, 2004.spa
dc.relation.referencesY. Shi and R. C. Eberhart. Empirical study of particle swarm optimization. Proceedings of the 1999 Congress on Evolutionary Computation, CEC 1999, 3:1945–1950, 1999.spa
dc.relation.referencesD . P. C. SEN. PRINCIPLES OF ELECTRIC MACHINES AND POWER ELEC TRONICS. John Wiley & Sons, Inc., 3 edition, 2013.spa
dc.relation.referencesL. Sean. Essentials of Metaheuristics: A Set of Undergraduate Lecture Notes. 2010.spa
dc.relation.referencesM. Sayed, S. M. Gharghory, and H. A. Kamal. Gain tuning PI controllers for boiler turbine unit using a new hybrid jump PSO. Journal of Electrical Systems and Information Technology, 2(1):99–110, 2015.spa
dc.relation.referencesR. Saidur. A review on electrical motors energy use and energy savings. Renewable and Sustainable Energy Reviews, 14(3):877–898, apr 2010.spa
dc.relation.referencesA. K. Sahoo and D. R. Mishra. Parametric optimization of response parameter of Nd YAG laser drilling for basalt-PTFE coated glass fibre using genetic algorithm. Journal of Engineering Research, (April), 2023.spa
dc.relation.referencesC. Rao and B. Yan. Study on the interactive influence between economic growth and environmental pollution. Environmental Science and Pollution Research, 27(31):39442– 39465, 2020.spa
dc.relation.referencesN. Patel and N. Padhiyar. Modified genetic algorithm using Box Complex method: Application to optimal control problems. Journal of Process Control, 26:35–50, 2015.spa
dc.relation.referencesG. Park, S. Lee, S. Jin, and S. Kwak. Integrated modeling and analysis of dynamics for electric vehicle powertrains. Expert Systems with Applications, 41(5):2595–2607, 2014.spa
dc.relation.referencesM. Nssibi, G. Manita, and O. Korbaa. Advances in nature-inspired metaheuristic optimization for feature selection problem: A comprehensive survey. Computer Science Review, 49:100559, 2023.spa
dc.relation.referencesJ. E. Neira García. Control de un motor de inducción sin sensores de velocidad con rechazo activo de perturbaciones para aplicaciones en vehículos eléctricos. PhD thesis, Universidad Nacional de Colombia, 2022.spa
dc.relation.referencesJ. Morris, W. Wang, T. Plaisted, C. J. Hansen, and A. V. Amirkhizi. Optimizing graded metamaterials via genetic algorithm to control energy transmission. International Journal of Mechanical Sciences, (June):108775, 2023spa
dc.relation.referencesE. Mojica-nava. Optimización y Control en Grafos. 2020.spa
dc.relation.referencesmohamed Ismail, basem Elhady, and ahmed Bendary. Variable Voltage Control of Three-Phase Induction Motor for Energy Saving. ERJ. Engineering Research Journal, 44(4):377–383, 2021.spa
dc.relation.referencesZ. Lu, A. Martínez-Gavara, J. K. Hao, and X. Lai. Solution-based tabu search for the capacitated dispersion problem. Expert Systems with Applications, 223(March), 2023.spa
dc.relation.referencesC. Liu, F. Zhang, H. Zhang, Z. Shi, and H. Zhu. Optimization of assembly sequence of building components based on simulated annealing genetic algorithm. Alexandria Engineering Journal, 62:257–268, 2023.spa
dc.relation.referencesC. Liu, K. T. Chau, C. H. Lee, and Z. Song. A Critical Review of Advanced Elec tric Machines and Control Strategies for Electric Vehicles. Proceedings of the IEEE, 109(6):1004–1028, 2021.spa
dc.relation.referencesE. E. Kuruoglu, C. L. Kuo, and W. K. V. Chan. Sparse neural network optimization by Simulated Annealing. Franklin Open, 4(August):100037, 2023.spa
dc.relation.referencesM. Kohler, M. M. Vellasco, and R. Tanscheit. PSO+: A new particle swarm optimization algorithm for constrained problems. Applied Soft Computing, 85:105865, 2019.spa
dc.relation.referencesD. E. Kirk. Optimal Control Theory. An Introduction, 2004.spa
dc.relation.referencesA. Khatir, R. Capozucca, S. Khatir, E. Magagnini, B. Benaissa, C. Le Thanh, and M. Abdel Wahab. A new hybrid PSO-YUKI for double cracks identification in CFRP cantilever beam. Composite Structures, 311(March 2022):116803, 2023.spa
dc.relation.referencesY. Jiang, H. Qian, Y. Chu, J. Liu, Z. Jiang, F. Dong, and L. Jia. Convergence analysis of ABC algorithm based on difference model. Applied Soft Computing, 146:110627, 2023.spa
dc.relation.referencesS. Janous, J. Talla, V. Smidl, and Z. Peroutka. Constrained LQR Control of Dual Induction Motor Single Inverter Drive. IEEE Transactions on Industrial Electronics, 68(7):5548–5558, 2021.spa
dc.relation.referencesM. A. Hannan, M. M. Hoque, A. Hussain, Y. Yusof, and P. J. Ker. State-of-the-Art and Energy Management System of Lithium-Ion Batteries in Electric Vehicle Applications: Issues and Recommendations. IEEE Access, 6:19362–19378, 2018.spa
dc.relation.referencesJ. Han. From PID to active disturbance rejection control. IEEE Transactions on Industrial Electronics, 56(3):900–906, 2009.spa
dc.relation.referencesA. Haddoun, M. E. H. Benbouzid, D. Diallo, R. Abdessemed, J. Ghouili, and K. Srairi. A loss-minimization DTC scheme for EV induction motors. IEEE Transactions on Vehicular Technology, 56(1):81–88, 2007.spa
dc.relation.referencesC. Guo, C. Fu, R. Luo, and G. Yang. Energy-oriented car-following control for a front and rear-independent-drive electric vehicle platoon. Energy, 257:124732, 2022.spa
dc.relation.referencesY. Gao. PID-based search algorithm: A novel metaheuristic algorithm based on PID algorithm. Expert Systems with Applications, 232(December 2022):120886, 2023.spa
dc.relation.referencesD. Fredette, C. Pavlich, and U. Ozguner. Development of a UDDS-comparable frame work for the assessment of connected and automated vehicle fuel saving techniques. IFAC-PapersOnLine, 28(15):306–312, 2015.spa
dc.relation.referencesF. J. Ferreira, G. Baoming, and A. T. De Almeida. Reliability and Operation of High Efficiency Induction Motors. IEEE Transactions on Industry Applications, 52(6):4628– 4637, 2016.spa
dc.relation.referencesR. C. Eberhart and Y. Shi. Particle swarm optimization: Developments, applications and resources. Proceedings of the IEEE Conference on Evolutionary Computation, ICEC, 1:81–86, 2001.spa
dc.relation.referencesC. Du, Z. Yin, Y. Zhang, J. Liu, X. Sun, and Y. Zhong. Research on Active Disturbance Rejection Control With Parameter Autotune Mechanism for Induction Motors Based on Adaptive Particle Swarm Optimization Algorithm With Dynamic Inertia Weight. IEEE Transactions on Power Electronics, 34(3):2841–2855, 2019.spa
dc.relation.referencesN. Di Cesare, D. Chamoret, and M. Domaszewski. A new hybrid PSO algorithm based on a stochastic Markov chain model. Advances in Engineering Software, 90:127–137, 2015.spa
dc.relation.referencesA. Demirören, S. Ekinci, B. Hekimoğlu, and D. Izci. Opposition-based artificial electric field algorithm and its application to FOPID controller design for unstable magnetic ball suspension system. Engineering Science and Technology, an International Journal, 24(2):469–479, 2021.spa
dc.relation.referencesJ. Chiasson. Modeling and High-Performance Control of Electric Machines. John Wiley & Sons. Inc, New York, 2005.spa
dc.relation.referencesC. L. Chan and C. L. Chen. A cautious PSO with conditional random. Expert Systems with Applications, 42(8):4120–4125, 2015.spa
dc.relation.referencesC. C. Chan. The state of the art of electric, hybrid, and fuel cell vehicles. Proceedings of the IEEE, 95(4):704–718, 2007.spa
dc.relation.referencesS. Chakrabarty, R. S. Vishwakarma, and T. P. Selvam. A Simulated Annealing optimization technique to obtain uniform dose distribution in gamma irradiators. Radiation Physics and Chemistry, 209(March):110959, 2023.spa
dc.relation.referencesC. Cattaneo. Internal and external barriers to energy efficiency: which role for policy interventions? Energy Efficiency, 12(5):1293–1311, 2019.spa
dc.relation.referencesR. Carter, A. Cruden, and P. J. Hall. Optimizing for efficiency or battery life in a battery/supercapacitor electric vehicle. IEEE Transactions on Vehicular Technology, 61(4):1526–1533, 2012.spa
dc.relation.referencesJ.-F. Camacho-Vallejo, C. Corpus, and J. G. Villegas. Metaheuristics for bilevel opti mization: A comprehensive review. Computers & Operations Research, (June):106410, 2023.spa
dc.relation.referencesS. L. Brunton, B. W. Brunton, J. L. Proctor, and J. N. Kutz. Koopman invariant subspaces and finite linear representations of nonlinear dynamical systems for control. PLoS ONE, 11(2), 2016.spa
dc.relation.referencesS. Boyd and L. Vandenberghe. Convex Optimization, volume 3. 2006.spa
dc.relation.referencesA. G. Boulanger, A. C. Chu, S. Maxx, and D. L. Waltz. Vehicle electrification: Status and issues. Proceedings of the IEEE, 99(6):1116–1138, 2011.spa
dc.relation.referencesJ. Bertsimas, Dimitris; N. Tsitsiklis. Introduction to Linear Optimization. Number 1. 1997.spa
dc.relation.referencesI. Baboselac, T. Benšić, and Ž. Hederić. MatLab simulation model for dynamic mode of the Lithium-Ion batteries to power the EV. Tehnički glasnik, 11(1-2):7–13, 2017.spa
dc.relation.referencesJ. A.Pétrowski and P. E.Taillard. Metaheuristics for Hard Optimization. 2006.spa
dc.relation.referencesR. Antonello, F. Tinazzi, and M. Zigliotto. Energy efficiency measurements in IM: The non-trivial application of the norm IEC 60034-2-3:2013. Proceedings - 2015 IEEE Workshop on Electrical Machines Design, Control and Diagnosis, WEMDCD 2015, pages 248–253, 2015.spa
dc.relation.referencesS. Aguilar. Metodología de control óptimo para sistemas no lineales diferencialmente planos basado en control por rechazo activo de perturbaciones (ADRC) y control predictivo basado en modelo (MPC). PhD thesis, Universidad Nacional de Colombia, 2022.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.lembVehículos electrícosspa
dc.subject.lembElectric vehicleseng
dc.subject.lembMotores eléctricos de inducciónspa
dc.subject.lembElectric motors, inductioneng
dc.subject.lembControl automáticospa
dc.subject.lembAutomatic controleng
dc.subject.lembMáquinas eléctricasspa
dc.subject.lembElectric machineseng
dc.subject.proposalExtended state observereng
dc.subject.proposalInduction motoreng
dc.subject.proposalActive Disturbance Rejection Controleng
dc.subject.proposalMetaheuristic techniqueseng
dc.subject.proposalElectric vehicleseng
dc.subject.proposalOptimizationeng
dc.subject.proposalMotor de inducciónspa
dc.subject.proposalControl por rechazo activo de perturbacionesspa
dc.subject.proposalOptimizaciónspa
dc.subject.proposalTécnicas Metaheuristicasspa
dc.subject.proposalVehículos Eléctricosspa
dc.subject.proposalObservador de estado extendidospa
dc.titlePerformance and energy efficiency in electric vehicles using an induction motor through active disturbance rejection and optimal control strategieseng
dc.title.translatedDesempeño y eficiencia energética en vehículos eléctricos utilizando un motor de inducción a través de estrategias de rechazo activo de perturbaciones y control óptimospa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentProveedores de ayuda financiera para estudiantesspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1072715942.2024.pdf
Tamaño:
3.52 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería-Automatización Industrial - Performance and energy efficiency

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: