Indentificación de regiones de unión de proteínas de Babesia bovis a eritrocitos bovinos

dc.contributor.advisorPatarroyo Gutiérrez, Manuel Alfonsospa
dc.contributor.advisorMoreno Pérez, Darwin Andrésspa
dc.contributor.authorCuy Chaparro, Laura Esperanzaspa
dc.contributor.orcid0000-0002-2016-2117spa
dc.date.accessioned2024-01-29T20:07:37Z
dc.date.available2024-01-29T20:07:37Z
dc.date.issued2023-12
dc.description.abstractRESUMEN La babesiosis es una de las enfermedades veterinarias más importantes transmitidas por garrapatas que afecta principalmente a animales salvajes y domésticos, y recientemente es considerada como una zoonosis emergente que se distribuye en regiones tropicales y subtropicales alrededor del mundo. Babesia bovis, uno de los hemoprotozoarios responsable de la babesiosis bovina, es el agente más patógeno del género Babesia que causa un impacto negativo en la industria ganadera dada las altas tasas de morbimortalidad que genera. Las principales estrategias de control y tratamiento de la babesiosis se han centrado en el uso de quimioterapéuticos dirigidos contra el parásito o de acaricidas contra el vector. Sin embargo, ante la aparición de resistencia a esta clase de productos químicos, la vacunación con organismos vivos atenuados de B. bovis se ha convertido en el principal método de control de la infección. Aunque el uso de este tipo de vacunas ha estado asociado con niveles parciales de protección, éstas tienen importantes limitaciones como una vida útil corta, riesgo de reversión de la virulencia, contaminación con otros patógenos transmitidos por sangre, falla en la inducción de inmunidad protectiva contra diferentes cepas y la pérdida de inmunogenicidad, lo que ha limitado la comercialización de la vacuna. Por lo tanto, se requieren otras estrategias alternas para mejorar las condiciones de sanidad animal bovina. El conocimiento de la biología básica del parásito en relación con la caracterización de las moléculas que éste usa para invadir a sus células diana es esencial para diseñar una medida de control eficaz contra la enfermedad, como es el caso de las vacunas. Por ende, este proyecto se encaminó a identificar proteínas de B. bovis o regiones derivadas de ellas que tengan capacidad de unirse a los eritrocitos bovinos como alternativa para contribuir al conocimiento de su biología en relación con la interacción parásito-célula. Para ello, se realizó la predicción de proteínas importantes para la invasión del parásito a sus células diana mediante la exploración in silico de los datos de transcriptoma y proteoma de B. bovis, obteniendo como resultado las proteínas BbMSA-1, BbAMA-1 y BbRON2. Posteriormente, varias regiones bajo restricción funcional y con presencia de codones seleccionados negativamente en BbMSA-1, BbAMA-1 y BbRON2 fueron inferidas a través de análisis de selección natural, con el objetivo de elegir fragmentos idóneos (regiones o péptidos de 20 residuos) y evaluar así su capacidad para unirse a los eritrocitos bovinos. Los ensayos altamente sensibles de interacción proteína-célula y péptido-célula permitieron identificar varias regiones con capacidad de unión a eritrocitos bovinos y diferentes péptidos con alta capacidad de unión (HABP, del inglés High Activity Binding Peptide) a sus células diana para BbMSA-1: 42422 (39PEGSFYDDMSKFYGAVGSFD58), 42424 (91NALIKNNPMIRPDLFNATIV110) y 42426 (150TDIVEEDREKAVEYFKKHVY169); BbAMA-1: 42437 (100YMQKFDIPRNHGSGIYVDLG119), 42438 (120GYESVGSKSYRMPVGKSPVV139) y 42443 (302SPMHPVRDAIFGKWSGGSSV321); y BbRON2: 42918 (1218SFIMVKPPALHCVLKPVETL1237). Además, los análisis de predicción de la estructura terciaria y secundaria de las moléculas permitieron evidenciar que los HABPs 42422 y 42426 de MSA-1, así como 42437 y 42438 de AMA-1, son altamente helicoidales y contienen epítopes de células B y T, mientras que los HABPs 42424 de MSA-1 y 42918 de RON2 son no estructurados estando este último, localizado en una región intrínsecamente desordenada flanqueada por dos regiones helicoidales. Este es el primer estudio que analiza y describe las regiones mínimas (definidas en este estudio por componerse de 20 aminoácidos) implicadas en la unión de las proteínas MSA-1, AMA-1 y RON2 de B. bovis a su célula diana. En estudios futuros, se explorará el potencial antigénico de dichos péptidos durante la inmunización in vivo, y se evaluará su eficacia como potenciales candidatos a vacuna. (Texto tomado de la fuente)spa
dc.description.abstractBabesiosis is one of the most important tick-borne veterinary diseases affecting both wild and domestic animals. Recently, it has been considered also as an emerging zoonosis distributed in tropical and subtropical regions around the world. Babesia bovis, the hemoprotozoa responsible for bovine babesiosis, is the most pathogenic agent in the Babesia genus causing a negative impact on the livestock industry related to the high morbidity and mortality rates it generates. The main control and treatment strategies for babesiosis have been focused on chemotherapeutics against the parasite or acaricides against the vector. However, the emergence of resistance against these chemicals have made vaccination with live atenuated B. bovis organisms the main infection control method. Although this type of vaccines has been associated with significant levels of protection, there are limitations such as a short shelf life, risk of virulence reversal, contamination with other blood-borne pathogens, failure to induce protective immunity against different strains and immunogenicity loss. Those restrictions have limited the vaccine commercialization making alternative strategies needed to improve bovine animal welfare. Knowledge of the parasite’s basic biology and the characterization of the molecules used to invade its target cells is essential to design an effective control measure against the disease. This project was thus aimed at identifying B. bovis proteins or protein-regions with the ability to bind to bovine erythrocytes (its target cell) to elucidate the parasite-cell interaction. For this, the prediction of parasite’s important proteins for the invasion to its target cells was carried out in silico by transcriptome and proteome data exploration, which led to selecting BbMSA-1, BbAMA-1 and BbRON2 proteins. Subsequently, several regions under functional restriction and presenting negatively selected codons in BbMSA-1, BbAMA-1 and BbRON2 were inferred through natural selection analysis to choose suitable fragments (20-mer peptide regions) to evaluate their ability to bind to bovine erythrocytes. Highly sensitive protein-cell and peptide-cell interaction assays allowed the identification of several binding regions to bovine erythrocytes and different High Activity Binding Peptides (HABPs) to their target cells; for BbMSA1: peptides 42422 (39PEGSFYDDMSKFYGAVGSFD58), 42424 (91NALIKNNPMIRPDLFNATIV110 ) and 42426 (150TDIVEEDREKAVEYFKKHVY169); for BbAMA-1: peptides 42437 (100YMQKFDIPRNHGSGIYVDLG119), 42438 (120GYESVGSKSYRMPVGKSPVV139) and 42443 (302SPMHPVRDAIFGKWSGGSSV321), and for BbRON2: peptide 42918 (1218SFIMVKPPALHCVLKPVETL1237). Tertiary and secondary structure prediction analysis showed that HABPs 42422 and 42426 of MSA-1, together with 42437 and 42438 of AMA-1 are highly helical and can contain epitopes for B and T cells. MSA-1 HABP 42424 is unstructured, while RON2 HABP 42918 is in an intrinsically disordered region flanked by two helical regions. This is the first study describing the minimal regions (defined here as being 20 aa long) involved in the binding of the B. bovis MSA1, AMA-1 and RON2 proteins to their target cell. Further studies should follow to explore the antigenic potential of these peptides by in vivo immunization, to assess their efficacy as potential anti-B. bovis vaccine candidates.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctora en Biotecnologíaspa
dc.format.extent[v], 36 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.cospa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85498
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Biotecnologíaspa
dc.relation.referencesSingh B, Varikuti S, Halsey G, Volpedo G, Hamza OM, Satoskar AR. Host-directed therapies for parasitic diseases. Future Med Chem. 2019;11(15):1999-2018.spa
dc.relation.referencesHunfeld K, Hildebrandt A, Gray J. Babesiosis: Recent insights into an ancient disease. Int J Parasitol. 2008;38(11):1219-37.spa
dc.relation.referencesBock R, Jackson L, De Vos A, Jorgensen W. Babesiosis of catle. Parasitology. 2004;129(S1):S247-69.spa
dc.relation.referencesGray JS. Identity of the causal agents of human babesiosis in Europe. Int J Med Microbiol. 2006;296:131-6.spa
dc.relation.referencesSuarez CE, Noh S. Emerging perspectives in the research of bovine babesiosis and anaplasmosis. Vet Parasitol. 2011;180(1-2):109-25.spa
dc.relation.referencesRittpornlertrak A, Nambooppha B, Simking P, Punyapornwithaya V, Tiwananthagorn S, Jitapalapong S, et al. Low levels of genetic diversity associated with evidence of negative selection on the Babesia bovis apical membrane antigen 1 from parasite populations in Thailand. Infect Genet Evol. 2017;54:447-54.spa
dc.relation.referencesBram RA, George JE, Reichard RE, Tabachnick WJ. Threat of Foreign Arthropod-Borne Pathogens to Livestock in the United States. J Med Entomol. 2002;39(3):405-16.spa
dc.relation.referencesGray JS, Estrada-Peña A, Zintl A. Vectors of Babesiosis. Annu Rev Entomol. 2019;64(1):149-65.spa
dc.relation.referencesHe L, Bastos RG, Sun Y, Hua G, Guan G, Zhao J, et al. Babesiosis as a potential threat for bovine production in China. Parasit Vectors. 2021;14(1):460.spa
dc.relation.referencesSatti RA, Awadelkareem EA, Suganuma K, Salim B, Inoue N, Xuan X, et al. Catle anaplasmosis and babesiosis: Major tick-borne diseases affecting the catle industry in Khartoum State, Sudan. Vet Parasitol Reg Stud Rep. 2021;26:100632.spa
dc.relation.referencesSuarez CE, Alzan HF, Silva MG, Rathinasamy V, Poole WA, Cooke BM. Unravelling the cellular and molecular pathogenesis of bovine babesiosis: is the sky the limit? Int J Parasitol. 2019;49(2):183-97.spa
dc.relation.referencesVial HJ, Gorenflot A. Chemotherapy against babesiosis. Vet Parasitol. 2006;138(1- 2):147-60.spa
dc.relation.referencesNari A. Strategies for the control of one-host ticks and relationship with tick-borne diseases in South America. Vet Parasitol. marzo de 1995;57(1-3):153-65.spa
dc.relation.referencesAndreotti R, Guerrero FD, Soares MA, Barros JC, Miller RJ, Léon AP de. Acaricide resistance of Rhipicephalus (Boophilus) microplus in State of Mato Grosso do Sul, Brazil. Rev Bras Parasitol Veterinária. 2011;20(2):127-33.spa
dc.relation.referencesFlorin-Christensen M, Suarez CE, Rodriguez AE, Flores DA, Schnitger L. Vaccines against bovine babesiosis: where we are now and possible roads ahead. Parasitology. 2014;141(12):1563-92.spa
dc.relation.referencesde Waal DT, Combrink MP. Live vaccines against bovine babesiosis. Vet Parasitol. 2006;138(1-2):88-96.spa
dc.relation.referencesGimenez AM, Françoso KS, Ersching J, Icimoto MY, Oliveira V, Rodriguez AE, et al. A recombinant multi-antigen vaccine formulation containing Babesia bovis merozoite surface antigens MSA-2a1, MSA-2b and MSA-2c elicits invasion-inhibitory antibodies and IFN-γ producing cells. Parasit Vectors. 2016;9(1):577.spa
dc.relation.referencesPatarroyo ME, Bermúdez A, Patarroyo MA. Structural and Immunological Principles Leading to Chemically Synthesized, Multiantigenic, Multistage, Minimal Subunit- Based Vaccine Development. Chem Rev. 2011;111(5):3459-507.spa
dc.relation.referencesLópez C, Yepes-Pérez Y, Hincapié-Escobar N, Díaz-Arévalo D, Patarroyo MA. What Is Known about the Immune Response Induced by Plasmodium vivax Malaria Vaccine Candidates? Front Immunol. 2017;8.spa
dc.relation.referencesPatarroyo ME, Alba MP, Rojas-Luna R, Bermudez A, Aza-Conde J. Functionally relevant proteins in Plasmodium falciparum host cell invasion. Immunotherapy. 2017;9(2):131-55.spa
dc.relation.referencesOIE. World Organization for Animal Health. 2019spa
dc.relation.referencesICA. Enfermedades de declaración obligatoria en Colombia. 2019.spa
dc.relation.referencesOIE. World Organization for Animal Health. 2022.spa
dc.relation.referencesICA. Censo pecuario. 2018.spa
dc.relation.referencesCalderon Alfonso, Maryinez Nicolás, Iguarán Haydée. Bovine hemoparasites frequency from colombian caribbean region. Revista UDCA Actualidad & Divulgación Cienyifica. 2016;19(1):131-8.spa
dc.relation.referencesInstituto Colombiano Agropecuario - ICA. Boletin Sanidad Animal. 2016.spa
dc.relation.referencesVecino JAC, Echeverri JAB, Cárdenas JA, Herrera LAP. Distribución de garrapatas Rhipicephalus (Boophilus) microplus en bovinos y fincas del Altiplano cundiboyacense (Colombia). Cienc Tecnol Agropecu. 2010;11(1):73-84.spa
dc.relation.referencesChauvin A, Moreau E, Bonnet S, Plantard O, Malandrin L. Babesia and its hosts: adaptation to long-lasting interactions as a way to achieve efficient transmission. Vet Res. 2009;40(2):37.spa
dc.relation.referencesVannier EG, Diuk-Wasser MA, Ben Mamoun C, Krause PJ. Babesiosis. Infect Dis Clin North Am. 2015;29(2):357-70.spa
dc.relation.referencesKivaria FM. Estimated direct economic costs associated with tick-borne diseases on catle in Tanzania. Trop Anim Health Prod. 2006;38(4):291-9.spa
dc.relation.referencesHomer MJ, Aguilar-Delfin I, Telford SR, Krause PJ, Persing DH. Babesiosis. Clin Microbiol Rev. 2000;13(3):451-69.spa
dc.relation.referencesJalovecka M, Sojka D, Ascencio M, Schnitger L. Babesia Life Cycle – When Phylogeny Meets Biology. Trends Parasitol. 2019;35(5):356-68.spa
dc.relation.referencesUeti MW, Johnson WC, Kappmeyer LS, Herndon DR, Mousel MR, Reif KE, et al. Comparative analysis of gene expression between Babesia bovis blood stages and kinetes allowed by improved genome annotation. Int J Parasitol. 2021;51(2-3):123- 36.spa
dc.relation.referencesHutchings CL, Li A, Fernandez KM, Fletcher T, Jackson LA, Molloy JB, et al. New insights into the altered adhesive and mechanical properties of red blood cells parasitized by Babesia bovis. Mol Microbiol. 2007;65(4):1092-105.spa
dc.relation.referencesLobo CA, Rodriguez M, Cursino-Santos JR. Babesia and red cell invasion: Curr Opin Hematol. 2012;19(3):170-5.spa
dc.relation.referencesJalovecka M, Bonsergent C, Hajdusek O, Kopacek P, Malandrin L. Stimulation and quantification of Babesia divergens gametocytogenesis. Parasit Vectors. 2016;9(1):439.spa
dc.relation.referencesJalovecka M, Hajdusek O, Sojka D, Kopacek P, Malandrin L. The Complexity of Piroplasms Life Cycles. Front Cell Infect Microbiol. 2018;8:248.spa
dc.relation.referencesMehlhorn H, Schein E. The Piroplasms: Life Cycle and Sexual Stages. En: Advances in Parasitology [Internet]. Elsevier; 1985: 37-103.spa
dc.relation.referencesHowell JM, Ueti MW, Palmer GH, Scoles GA, Knowles DP. Transovarial Transmission Efficiency of Babesia bovis Tick Stages Acquired by Rhipicephalus ( Boophilus ) microplus during Acute Infection. J Clin Microbiol. 2007;45(2):426-31.spa
dc.relation.referencesBargieri D, Lagal V, Andenmaten N, Tardieux I, Meissner M, Ménard R. Host Cell Invasion by Apicomplexan Parasites: The Junction Conundrum. PLoS Pathog. 2014;10(9):e1004273.spa
dc.relation.referencesYokoyama N, Okamura M, Igarashi I. Erythrocyte invasion by Babesia parasites: Current advances in the elucidation of the molecular interactions between the protozoan ligands and host receptors in the invasion stage. Vet Parasitol. 2006;138(1- 2):22-32.spa
dc.relation.referencesDubremetz JF, Garcia-Réguet N, Conseil V, Fourmaux MN. Invited review Apical organelles and host-cell invasion by Apicomplexa. Int J Parasitol.1998;28(7):1007-13.spa
dc.relation.referencesHines S, Mcelwain T, Buening G, Palmer G. Molecular characterization of Babesia bovis merozoite surface proteins bearing epitopes immunodominant in protected catle. Mol Biochem Parasitol.1989;37(1):1-9.spa
dc.relation.referencesGoff WL, Davis WC, Palmer GH, McElwain TF, Johnson WC, Bailey JF, etal. Identification of Babesia bovis merozoite surface antigens by using immune bovine sera and monoclonal antibodies. Infect Immun.1988;56(9):2363-8.spa
dc.relation.referencesHines SA, Palmer GH, Jasmer DP, Goff WL, McElwain TF. Immunization of catle with recombinant Babesia bovis merozoite surface antigen-1. Infect Immun. 1995;63(1):349-52.spa
dc.relation.referencesHines SA, Palmer GH, Jasmer DP, McGuire TC, McElwain TF. Neutralization-sensitive merozoite surface antigens of Babesia bovis encoded by members of a polymorphic gene family. Mol Biochem Parasitol. 1992;55(1-2):85-94.spa
dc.relation.referencesGenis AD, Mosqueda JJ, Borgonio VM, Falcón A, Alvarez A, Camacho M, et al. Phylogenetic Analysis of Mexican Babesia bovis Isolates Using msa and ssrRNA Gene Sequences. Ann N Y Acad Sci. 2008;1149(1):121-5.spa
dc.relation.referencesDeitsch KW, Lukehart SA, Stringer JR. Common strategies for antigenic variation by bacterial, fungal and protozoan pathogens. Nat Rev Microbiol. 2009;7(7):493-503.spa
dc.relation.referencesHines SA, Palmer GH, Jasmer DP, McGuire TC, McElwain TF. Neutralization-sensitive merozoite surface antigens of Babesia bovis encoded by members of a polymorphic gene family. Mol Biochem Parasitol.1992;55(1-2):85-94.spa
dc.relation.referencesSuarez CE, Florin-Christensen M, Hines SA, Palmer GH, Brown WC, McElwain TF. Characterization of Allelic Variation in the Babesia bovis Merozoite Surface Antigen 1 (MSA-1) Locus and Identification of a Cross-Reactive Inhibition-Sensitive MSA-1 Epitope. Petri WA, editor. Infect Immun. 2000;68(12):6865-70.spa
dc.relation.referencesMosqueda J, McElwain TF, Stiller D, Palmer GH. Babesia bovis Merozoite Surface Antigen 1 and Rhoptry-Associated Protein 1 Are Expressed in Sporozoites, and Specific Antibodies Inhibit Sporozoite Atachment to Erythrocytes. Infect Immun. 2002;70(3):1599-603.spa
dc.relation.referencesLamarque M, Besteiro S, Papoin J, Roques M, Vulliez-Le Normand B, Morlon-Guyot J, et al. The RON2-AMA1 Interaction is a Critical Step in Moving Junction-Dependent Invasion by Apicomplexan Parasites. PLoS Pathog. 2011;7(2):e1001276.spa
dc.relation.referencesMital J, Meissner M, Soldati D, Ward GE. Conditional Expression of Toxoplasma gondii Apical Membrane Antigen-1 (TgAMA1) Demonstrates That TgAMA1 Plays a Critical Role in Host Cell Invasion. Mol Biol Cell. 2005;16(9):4341-9.spa
dc.relation.referencesYap A, Azevedo MF, Gilson PR, Weiss GE, O’Neill MT, Wilson DW, et al. Conditional expression of apical membrane antigen 1 in P lasmodium falciparum shows it is required for erythrocyte invasion by merozoites. Cell Microbiol. 2014;16(5):642-56.spa
dc.relation.referencesBilgic HB, Hacilarlioglu S, Bakirci S, Kose O, Unlu AH, Aksulu A, et al. Comparison of protectiveness of recombinant Babesia ovis apical membrane antigen 1 and B. ovis- infected cell line as vaccines against ovine babesiosis. Ticks Tick-Borne Dis. 2020;11(1):101280.spa
dc.relation.referencesTyler JS, Boothroyd JC. The C-Terminus of Toxoplasma RON2 Provides the Crucial Link between AMA1 and the Host-Associated Invasion Complex. PLoS Pathog. 2011;7(2):e1001282.spa
dc.relation.referencesDelgadillo RF, Parker ML, Lebrun M, Boulanger MJ, Douguet D. Stability of the Plasmodium falciparum AMA1-RON2 Complex Is Governed by the Domain II (DII) Loop. PLOS ONE. 2016;11(1):e0144764.spa
dc.relation.referencesHidalgo-Ruiz M, Suarez CE, Mercado-Uriostegui MA, Hernandez-Ortiz R, Ramos JA, Galindo-Velasco E, et al. Babesia bovis RON2 contains conserved B-cell epitopes that induce an invasion-blocking humoral immune response in immunized catle. Parasit Vectors. 2018;11(1):575.spa
dc.relation.referencesGardiner DL, Spielmann T, Dixon MWA, Hawthorne PL, Ortega MR, Anderson KL, et al. CLAG-9 is located in the rhoptries of Plasmodium falciparum. Parasitol Res. 2004;93(1):64-7.spa
dc.relation.referencesShen B, Sibley LD. The moving junction, a key portal to host cell invasion by apicomplexan parasites. Curr Opin Microbiol. 2012;15(4):449-55.spa
dc.relation.referencesBrown WC, Norimine J, Knowles DP, Goff WL. Immune control of Babesia bovis infection. Vet Parasitol. 2006;138(1-2):75-87.spa
dc.relation.referencesGoff WL, Johnson WC, Parish SM, Barrington GM, Tuo W, Valdez RA. The age-related immunity in catle to Babesia bovis infection involves the rapid induction of interleukin-12, interferon-γ and inducible nitric oxide synthase mRNA expression in the spleen: Type-1 atributes of innate immunity in calves to B. bovis. Parasite Immunol. 2001;23(9):463-71.spa
dc.relation.referencesGoff WL, Johnson WC, Horn RH, Barrington GM, Knowles DP. The innate immune response in calves to Boophilus microplus tick transmited Babesia bovis involves type-1 cytokine induction and NK-like cells in the spleen. Parasite Immunol. 2003;25(4):185-8.spa
dc.relation.referencesTorina A, Blanda V, Villari S, Piazza A, La Russa F, Grippi F, et al. Immune Response to Tick-Borne Hemoparasites: Host Adaptive Immune Response Mechanisms as Potential Targets for Therapies and Vaccines. Int J Mol Sci. 2020;21(22).spa
dc.relation.referencesBrown WC, Zhao S, Woods VM, Dobbelaere DAE, Rice Ficht AC. Des clones de cellules T CD4+ spécifiques pour Babesia bovis, de bovins immunisés, expriment le profil de cytokines des cellules Th0 ou des Th1. Rev D’élevage Médecine Vét Pays Trop. 1993;46(1-2):65-9.spa
dc.relation.referencesShkap Varda, de Vos Albertus J, Zweygarth Erich, Jongejan Frans. Atenuated vaccines for tropical theileriosis, babesiosis and heartwater: the continuing necessity. Trends in Parasitology. 2007;23(9):420-6.spa
dc.relation.referencesAlvarez JA, Rojas C, Figueroa JV. An Overview of Current Knowledge on in vitro Babesia Cultivation for Production of Live Atenuated Vaccines for Bovine Babesiosis in Mexico. Front Vet Sci. 2020;7:364.spa
dc.relation.referencesJorge S, Dellagostin OA. The development of veterinary vaccines: a review of traditional methods and modern biotechnology approaches. Biotechnol Res Innov. 2017;1(1):6-13.spa
dc.relation.referencesBagnoli F, Baudner B, Mishra RPN, Bartolini E, Fiaschi L, Mariotti P, et al. Designing the Next Generation of Vaccines for Global Public Health. OMICS J Integr Biol. 2011;15(9):545-66.spa
dc.relation.referencesRappuoli R. Reverse Vaccinology and Genomics. Science. 2003;302(5645):602-602.spa
dc.relation.referencesRappuoli R. Reverse vaccinology, a genome-based approach to vaccine development. Vaccine. 2001;19(17-19):2688-91.spa
dc.relation.referencesBambini S, Rappuoli R. The use of genomics in microbial vaccine development. Drug Discov Today. 2009;14(5-6):252-60.spa
dc.relation.referencesRappuoli R, Pizza M, Del Giudice G, De Gregorio E. Vaccines, new opportunities for a new society. Proc Natl Acad Sci. 2014;111(34):12288-93.spa
dc.relation.referencesPatarroyo MA, Arévalo-Pinzón G, Moreno-Pérez DA. From a basic to a functional approach for developing a blood stage vaccine against Plasmodium vivax. Expert Rev Vaccines. 2020;19(2):195-207.spa
dc.relation.referencesPatarroyo ME, Arevalo-Pinzon G, Reyes C, Moreno-Vranich A, Patarroyo MA. Malaria Parasite Survival Depends on Conserved Binding Peptides’ Critical Biological Functions. Curr Issues Mol Biol. 2016;18:57-78.spa
dc.relation.referencesVera-Bravo R, Torres E, Valbuena JJ, Ocampo M, Rodríguez LE, Puentes Á, et al. Characterising Mycobacterium tuberculosis Rv1510c protein and determining its sequences that specifically bind to two target cell lines. Biochem Biophys Res Commun. 2005;332(3):771-81.spa
dc.relation.referencesPatarroyo ME, Alba MP, Reyes C, Rojas-Luna R, Patarroyo MA. The Malaria Parasite’s Achilles’ Heel: Functionally-relevant Invasion Structures. Curr Issues Mol Biol. 2016;18:11-9.spa
dc.relation.referencesCubillos M, Salazar LM, Torres L, Patarroyo ME. Protection against experimental P falciparum malaria is associated with short AMA-1 peptide analogue alpha-helical structures. Biochimie. 2002;84(12):1181-8.spa
dc.relation.referencesBerens SJ, Brayton KA, Molloy JB, Bock RE, Lew AE, McElwain TF. Merozoite Surface Antigen 2 Proteins of Babesia bovis Vaccine Breakthrough Isolates Contain a Unique Hypervariable Region Composed of Degenerate Repeats. Infect Immun. 2005;73(11):7180-9.spa
dc.relation.referencesSuarez CE, Laughery JM, Bastos RG, Johnson WC, Norimine J, Asenzo G, et al. A novel neutralization sensitive and subdominant RAP-1-related antigen (RRA) is expressed by Babesia bovis merozoites. Parasitology. 2011;138(7):809-18.spa
dc.relation.referencesYokoyama N, Suthisak B, Hirata H, Matsuo T, Inoue N, Sugimoto C, et al. Cellular Localization of Babesia bovis Merozoite Rhoptry-Associated Protein 1 and Its Erythrocyte-Binding Activity. Infect Immun. 2002;70(10):5822-6.spa
dc.relation.referencesTerkawi MA, Rathanophart J, Salama A, AbouLaila M, Asada M, Ueno A, et al. Molecular Characterization of a New Babesia bovis Thrombospondin-Related Anonymous Protein (BbTRAP2). PLoS ONE. 2013;8(12):e83305.spa
dc.relation.referencesFlores DA, Rodriguez AE, Tomazic ML, Torioni de Echaide S, Echaide I, Zamorano P, et al. Characterization of GASA-1, a new vaccine candidate antigen of Babesia bovis. Vet Parasitol. 2020;287:109275.spa
dc.relation.referencesGaffar FR, Yatsuda AP, Franssen FFJ, de Vries E. Erythrocyte Invasion by Babesia bovis Merozoites Is Inhibited by Polyclonal Antisera Directed against Peptides Derived from a Homologue of Plasmodium falciparum Apical Membrane Antigen 1. Infect Immun. 2004;72(5):2947-55.spa
dc.relation.referencesAntonio Alvarez J, Lopez U, Rojas C, Borgonio VM, Sanchez V, Castañeda R, et al. Immunization of Bos taurus Steers with Babesia bovis Recombinant Antigens MSA-1, MSA-2c and 12D3: Recombinant Proteins Immunization and Babesia bovis. Transbound Emerg Dis. 2010;57(1-2):87-90.spa
dc.relation.referencesFish L, Leibovich B, Krigel Y, McElwain T, Shkap V. Vaccination of catle against B. bovis infection with live atenuated parasites and non-viable immunogens. Vaccine. 2008;26:G29-33.spa
dc.relation.referencesNorimine J, Suarez CE, McElwain TF, Florin-Christensen M, Brown WC. Immunodominant Epitopes in Babesia bovis Rhoptry-Associated Protein 1 That Elicit Memory CD4+-T-Lymphocyte Responses in B. bovis-Immune Individuals Are Located in the Amino-Terminal Domain. Infect Immun. 2002;70(4):2039-48.spa
dc.relation.referencesLanzavecchia A, Frühwirth A, Perez L, Corti D. Antibody-guided vaccine design: identification of protective epitopes. Curr Opin Immunol. 2016;41:62-7.spa
dc.relation.referencesFood and Agriculture Organization of the United Nations.spa
dc.relation.referencesYusuf JJ. Review on Bovine Babesiosis and its Economical Importance. J Vet Med Res. 2017;4 (5):1090.spa
dc.relation.referencesTonkin ML, Roques M, Lamarque MH, Pugnière M, Douguet D, Crawford J, et al. Host cell invasion by apicomplexan parasites: insights from the co-structure of AMA1 with a RON2 peptide. Science. 2011;333(6041):463-7.spa
dc.relation.referencesNielsen R. Molecular Signatures of Natural Selection. Annu Rev Genet. 2005;39(1):197-218.spa
dc.relation.referencesCamargo-Ayala PA, Garzón-Ospina D, Moreno-Pérez DA, Ricaurte-Contreras LA, Noya O, Patarroyo MA. On the Evolution and Function of Plasmodium vivax Reticulocyte Binding Surface Antigen (pvrbsa). Front Genet. 2018;9:372.spa
dc.relation.referencesBaquero LA, Moreno-Pérez DA, Garzón-Ospina D, Forero-Rodríguez J, Ortiz-Suárez HD, Patarroyo MA. PvGAMA reticulocyte binding activity: predicting conserved functional regions by natural selection analysis. Parasit Vectors. 2017;10(1):251.spa
dc.relation.referencesTreeck M, Zacherl S, Herrmann S, Cabrera A, Kono M, Struck NS, et al. Functional Analysis of the Leading Malaria Vaccine Candidate AMA-1 Reveals an Essential Role for the Cytoplasmic Domain in the Invasion Process. PLoS Pathog. 2009;5(3):e1000322.spa
dc.relation.referencesBrown WC, Norimine J, Goff WL, Suarez CE, Mcelwain TF. Prospects for recombinant vaccines against Babesia bovis and related parasites. Parasite Immunol. 2006;28(7):315-27.spa
dc.relation.referencesTonkin ML, Boulanger MJ. The shear stress of host cell invasion: exploring the role of biomolecular complexes. PLoS Pathog. 2015;11(1):e1004539.spa
dc.relation.referencesBaldwin MR, Li X, Hanada T, Liu SC, Chishti AH. Merozoite surface protein 1 recognition of host glycophorin A mediates malaria parasite invasion of red blood cells. Blood. 2015;125(17):2704-11.spa
dc.relation.referencesLi X, Chen H, Oo TH, Daly TM, Bergman LW, Liu SC, et al. A Co-ligand Complex Anchors Plasmodium falciparum Merozoites to the Erythrocyte Invasion Receptor Band 3. J Biol Chem. 2004;279(7):5765-71.spa
dc.relation.referencesCrosnier C, Bustamante LY, Bartholdson SJ, Bei AK, Theron M, Uchikawa M, et al. Basigin is a receptor essential for erythrocyte invasion by Plasmodium falciparum. Nature. 2011;480(7378):534-7.spa
dc.relation.referencesChitnis CE, Chaudhuri A, Horuk R, Pogo AO, Miller LH. The domain on the Duffy blood group antigen for binding Plasmodium vivax and P. knowlesi malarial parasites to erythrocytes. J Exp Med. 1996;184(4):1531-6.spa
dc.relation.referencesGruszczyk J, Kanjee U, Chan LJ, Menant S, Malleret B, Lim NTY, et al. Transferrin receptor 1 is a reticulocyte-specific receptor for Plasmodium vivax. Science. 2018;359(6371):48-55.spa
dc.relation.referencesGaffar FR, Franssen FFJ, de Vries E. Babesia bovis merozoites invade human, ovine, equine, porcine and caprine erythrocytes by a sialic acid-dependent mechanism followed by developmental arrest after a single round of cell fission. Int J Parasitol. 2003;33(14):1595-603.spa
dc.relation.referencesTakabatake N, Okamura M, Yokoyama N, Okubo K, Ikehara Y, Igarashi I. Involvement of a Host Erythrocyte Sialic Acid Content in Babesia bovis Infection. J Vet Med Sci. 2007;69(10):999-1004.spa
dc.relation.referencesPatarroyo MA, Molina-Franky J, Gómez M, Arévalo-Pinzón G, Patarroyo ME. Hotspots in Plasmodium and RBC Receptor-Ligand Interactions: Key Pieces for Inhibiting Malarial Parasite Invasion. Int J Mol Sci. 2020;21(13):4729.spa
dc.relation.referencesSilvie O, Franetich JF, Charrin S, Mueller MS, Siau A, Bodescot M, et al. A Role for Apical Membrane Antigen 1 during Invasion of Hepatocytes by Plasmodium falciparum Sporozoites. J Biol Chem. 2004;279(10):9490-6.spa
dc.relation.referencesBai T, Becker M, Gupta A, Strike P, Murphy VJ, Anders RF, et al. Structure of AMA1 from Plasmodium falciparum reveals a clustering of polymorphisms that surround a conserved hydrophobic pocket. Proc Natl Acad Sci. 2005;102(36):12736-41.spa
dc.relation.referencesArévalo-Pinzón G, Bermúdez M, Hernández D, Curtidor H, Patarroyo MA. Plasmodium vivax ligand-receptor interaction: PvAMA-1 domain I contains the minimal regions for specific interaction with CD71+ reticulocytes. Sci Rep. 2017;7(1):9616.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::636 - Producción animalspa
dc.subject.ddc610 - Medicina y salud::616 - Enfermedadesspa
dc.subject.decsTickseng
dc.subject.decsÁcaros y garrapatasspa
dc.subject.decsAcarispa
dc.subject.decsBabesiosisspa
dc.subject.decsÍndices de eritrocitosspa
dc.subject.decsErythrocyte indiceseng
dc.subject.decsInteracciones huésped-parásitosspa
dc.subject.decsHost-parasite interactionseng
dc.subject.decsInmunogenicidad vacunalspa
dc.subject.decsImmunogenicity, vaccineeng
dc.subject.decsBovinos -Inmunologíaspa
dc.subject.decsCattle-Immunologyeng
dc.subject.lembGarrapatasspa
dc.subject.proposalBabesia Bovisspa
dc.subject.proposalParasite adhesioneng
dc.subject.proposalHigh activity binding peptideseng
dc.subject.proposalBovine erythrocyteeng
dc.subject.proposalPéptidos con alta capacidad de uniónspa
dc.subject.proposalEritrocito bovinospa
dc.titleIndentificación de regiones de unión de proteínas de Babesia bovis a eritrocitos bovinosspa
dc.title.translatedIdentification of Babesia bovis' protein binding regions to bovine erythrocytes
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1057590849.2023.pdf
Tamaño:
4.13 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Biotecnología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: