Modelo para predicción de siniestros viales basado en redes bayesianas para corredores de la red vial arterial de la ciudad de Bogotá

dc.contributor.advisorMangones Matos, Sonia Cecilia
dc.contributor.advisorLizarazo Jiménez, Cristhian Guillermo
dc.contributor.authorGarcía Muñoz, Jaime Alejandro
dc.contributor.researchgroupGrupo de Investigación en Logística para El Transporte Sostenible y la Seguridad Translogytspa
dc.date.accessioned2022-03-14T15:37:22Z
dc.date.available2022-03-14T15:37:22Z
dc.date.issued2021
dc.descriptiondiagramas, mapas, tablas, modelosspa
dc.description.abstractLos accidentes de tránsito se encuentran entre las principales causas de muerte y lesiones incapacitantes en carreteras en los países en desarrollo. Las instituciones académicas brindan de manera intensiva esfuerzos constituyentes para comprender y pronosticar la naturaleza de este problema con el fin de cumplir con los objetivos globales de seguridad vial. Además, en los últimos 20 años la literatura ha discutido una gran variedad de métodos utilizados para predecir la frecuencia de siniestros. De manera que, los modelos para la predicción de siniestros calibrados a las zonas de estudio son empleados como una herramienta útil en la gestión y estimación de los riesgos en seguridad vial en entornos urbanos. Teniendo en cuenta este panorama, la presente investigación tiene como objetivo analizar y estimar modelos para predecir las tasas de siniestralidad en la red arterial de la ciudad de Bogotá, en la red de vías troncales del Sistema Integrado de Transporte Público – SITP, y en sus carriles preferenciales. Este objeto se aborda desde la estimación de modelos lineales generalizados multivariados (GLM) y redes bayesianas de probabilidad (PBN), comparando el desempeño de estos modelos para la predicción de tasas de siniestralidad en la ciudad de Bogotá. Este objetivo permite determinar aquellos factores que afectan de manera significativa la ocurrencia de los siniestros en las principales carreteras de la ciudad y brinda funciones eficientes calibradas que pueden ser empleadas para estimación y predicción del número de accidentes en la infraestructura vial de Bogotá. (Texto tomado de la fuente)spa
dc.description.abstractRoad crashes are among the leading causes of death and incapacitating injuries in developing countries. Academic institutions intensively provide constituent efforts towards understanding and forecasting the nature of this problem in order to meet global traffic safety goals. Furthermore, extensive literature over the past 20 years has discussed a myriad of methods utilized in predicting the frequency of motor vehicle crashes. Safety performance functions calibrated to a specific region are used as an efficient tool to manage and estimate road safety risks in urban roads. The primary objective of this research project corresponds to analyze and estimate crash prediction models applied to (1), the arterial road network (2), Bus Rapid Transit corridors and (3) Of the Integrated Public Transport System (SITP) preferential lanes in Bogota, Colombia. This dissertation provides estimation of safety performance functions via multivariate generalized linear models (GLM) and Probability Bayesian Networks models (PBN). An extensive comparison is assessed on the performance of these models for the prediction of crash counts between 2015 to 2018 in Bogota, Colombia. This allows the understanding of the factors that affect the occurrence of accidents on arterial roads and provides calibrated safety performance functions (SPF) that can be used to estimate crash rates in the city.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Ingeniería - Transportespa
dc.description.researchareaMovilidad y Desarrollo Tecnológicospa
dc.format.extentxix, 200 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81200
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Ingeniería Civil y Agrícolaspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Transportespa
dc.relation.referencesAASHTO. (2010). Highway Safety Manual. 1057.spa
dc.relation.referencesAgresti, A. (2015). Foundations Linear Generalized Linear Models. En John Wiley & Sons, Inc.spa
dc.relation.referencesAlarifi, S. A., Abdel-Aty, M. A., Lee, J., y Park, J. (2017). Crash modeling for intersections and segments along corridors: A Bayesian multilevel joint model with random parameters. Analytic Methods in Accident Research, 16, 48–59. https://doi.org/10.1016/j.amar.2017.08.002spa
dc.relation.referencesAlberti, G. (2021). GmAMisc: “Gianmarco Alberti” Miscellaneous. https://cran.r-project.org/package=GmAMiscspa
dc.relation.referencesArévalo-Támara, A., Orozco-Fontalvo, M., y Cantillo, V. (2020). Factors influencing crash frequency on colombian rural roads. Promet - Traffic - Traffico, 32(4), 449–460. https://doi.org/10.7307/ptt.v32i4.3385spa
dc.relation.referencesAtoche, P. (2017). Modelos de regresión con datos de conteo: aplicación a competiciones deportivas. 5–11. https://idus.us.es/xmlui/handle/11441/63085spa
dc.relation.referencesBerrar, D. (2018). Cross-validation. Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics, 1–3(January 2018), 542–545. https://doi.org/10.1016/B978-0-12-809633-8.20349-Xspa
dc.relation.referencesBianchini, M., Maggini, M., y Jain, L. C. (2013). Handbook on Neural Information Processing. [electronic resource]. En Springer eBooks. Springer Berlin Heidelberg. http://ezproxy.unal.edu.co/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=cat02704a&AN=unc.000797003&lang=es&site=eds-livespa
dc.relation.referencesBurnham, K. P., y Anderson, D. R. (2004). Multimodel Inference: Understanding AIC and BIC in Model Selection. SOCIOLOGICAL METHODS AND RESEARCH VO - 33, 2, 261. http://ezproxy.unal.edu.co/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=edsbl&AN=RN157973137&lang=es&site=eds-livespa
dc.relation.referencesCameron, A. C., y Trivedi, P. K. (2013). Regression analysis of count data. (Second edi). Cambridge University Press. http://ezproxy.unal.edu.co/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=cat02704a&AN=unc.000837204&lang=es&site=eds-livespa
dc.relation.referencesCantillo, V., Garcés, P., y Márquez, L. (2016). Factors influencing the occurrence of traffic accidents in urban roads: A combined GIS-Empirical Bayesian approach. Dyna, 83(195), 21–28. https://doi.org/10.15446/dyna.v83n195.47229spa
dc.relation.referencesCatastro Bogotá. (2019). Mapa de Referencia para Bogotá D.C. Infraestructura de Datos Espaciales para el Distrito Capital IDECA. https://www.ideca.gov.co/recursos/mapas/mapa-de-referencia-para-bogota-dcspa
dc.relation.referencesCharles E. McCulloch, y Searle, S. R. (2003). Generalized Linear Mixed Models (7a ed.). %7Blibgen.li/file.php?md5=e06f7a61debbea173e9e52d835abb54e%7D,%0A%7Dspa
dc.relation.referencesChen, C. (2017). Analysis and Forecast of Traffic Accident Big Data 2 Data Preprocessing. 04029.spa
dc.relation.referencesCooper, G. F. (1990). The computational complexity of probabilistic inference using bayesian belief networks. Artificial Intelligence, 42(2–3), 393–405. https://doi.org/10.1016/0004-3702(90)90060-Dspa
dc.relation.referencesCousineau, D., y Chartier, S. (2010). Outliers detection and treatment: a review. International Journal of Psychological Research, 3(1), 58–67. https://doi.org/10.21500/20112084.844spa
dc.relation.referencesDagum, P., y Luby, M. (1993). Approximating probabilistic inference in Bayesian belief networks is NP-hard. Artificial Intelligence, 60(1), 141–153. https://doi.org/10.1016/0004-3702(93)90036-Bspa
dc.relation.referencesDash, R., Paramguru, R. L., y Dash, R. (2015). Comparative Analysis of Supervised and Unsupervised Discretization Techniques. April 2011.spa
dc.relation.referencesde Leeuw, J., y Meijer, E. (2008). Handbook of Multilevelanalyse. En Journal of Chemical Information and Modeling (Vol. 53, Número 9). https://psycnet.apa.org/record/2008-02337-000spa
dc.relation.referencesde Oliveira, E. C., de Faro Orlando, A., dos Santos Ferreira, A. L., y de Oliveira Chaves, C. E. (2016). Comparison of different approaches for detection and treatment of outliers in meter proving factors determination. Flow Measurement and Instrumentation, 48, 29–35. http://10.0.3.248/j.flowmeasinst.2016.02.002spa
dc.relation.referencesDeublein, M., Schubert, M., Adey, B. T., y de Soto, B. G. (2015). A Bayesian network model to predict accidents on Swiss highways. Infrastructure Asset Management, 2(4), 145–158. https://doi.org/10.1680/jinam.15.00008spa
dc.relation.referencesDeublein, M., Schubert, M., Adey, B. T., Köhler, J., y Faber, M. H. (2013). Prediction of road accidents: A Bayesian hierarchical approach. Accident Analysis and Prevention, 51, 274–291. https://doi.org/10.1016/j.aap.2012.11.019spa
dc.relation.referencesGallo, P. P., y Longford, N. T. (1995). Random Coefficient Models. Technometrics, 37(1), 120. https://doi.org/10.2307/1269168spa
dc.relation.referencesGoldstein, H. (1986). Generalized Least Squares. Generalized Least Squares, 1–296. https://doi.org/10.1002/0470866993spa
dc.relation.referencesGoldstein, H. (2010). Multilevel statistical models. (4th ed.). Wiley. http://ezproxy.unal.edu.co/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=cat01725a&AN=unc.000430724&lang=es&site=eds-livespa
dc.relation.referencesGoldstein, H., Bryk, A. S., y Raudenbush, S. W. (1993). Hierarchical Linear Models: Applications and Data Analysis Methods. Journal of the American Statistical Association, 88(421), 386. https://doi.org/10.2307/2290750spa
dc.relation.referencesGómez, F., y Bocarejo, J. P. (2015). Accident Prediction Models for Bus Rapid Transit Systems: Generalized Linear Models Compared with a Neural Network. Transportation Research Record, 2512(1), 38–45. https://doi.org/10.3141/2512-05spa
dc.relation.referencesGuerrero-Barbosa, T., Espinel-Bayona, Y., y Palacio-Sánchez, D. (2015). Efectos de los atributos asociados a geometría vial, volúmenes vehiculares y velocidades en la incidencia de accidentes en una ciudad intermedia. Ingenieria y Universidad, 19(2), 351–367. https://doi.org/10.11144/Javeriana.iyu19-2.eaarspa
dc.relation.referencesHall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., y Witten, I. H. (2009). The {WEKA} data mining software: an update. SIGKDD Explorations, 11(1), 10–18.spa
dc.relation.referencesHastie, T. J., Friedman, J., y Tibshirani, R. J. (2009). The elements of statistical learning : data mining, inference, and prediction. (Segunda ed). http://ezproxy.unal.edu.co/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=cat02704a&AN=unc.000660993&lang=es&site=eds-livespa
dc.relation.referencesHyndman, R., Athanasopoulos, G., Bergmeir, C., Caceres, G., Chhay, L., O’Hara-Wild, M., Petropoulos, F., Razbash, S., Wang, E., y Yasmeen, F. (2021). {forecast}: Forecasting functions for time series and linear models. https://pkg.robjhyndman.com/forecast/spa
dc.relation.referencesJensen, F. V., Lauritzen, S. L., y Olesen, K. G. (1990). Bayesian updating in causal probabilistic networks by local computations.spa
dc.relation.referencesKjærulff, U. B., y Madsen, A. L. (2013). Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis. [electronic resource]. En Springer eBooks (Second Edi). Springer New York. http://ezproxy.unal.edu.co/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=cat02704a&AN=unc.000783739&lang=es&site=eds-livespa
dc.relation.referencesKoski, T., y Noble, J. M. (2009). Bayesian networks : an introduction. John Wiley. http://ezproxy.unal.edu.co/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=cat02704a&AN=unc.000766023&lang=es&site=eds-livespa
dc.relation.referencesKratzer, G., y Furrer, R. (2018). varrank: an R package for variable ranking based on mutual information with applications to observed systemic datasets. arXiv preprint arXiv:1804.07134.spa
dc.relation.referencesLaird, N. M., y Ware, J. H. (1982). Random-effects models for longitudinal data. Biometrics, 38(4), 963–974.spa
dc.relation.referencesLambert, D. (1992). Zero-inflated poisson regression, with an application to defects in manufacturing. Technometrics, 34(1), 1–14. https://doi.org/10.1080/00401706.1992.10485228spa
dc.relation.referencesLauritzen, S. L., y Spiegelhalter, D. J. (1988). Local Computations with Probabilities on Graphical Structures and Their Application to Expert Systems. Journal of the Royal Statistical Society. Series B: Methodological, 50(2), 157–224.spa
dc.relation.referencesLord, D., y Mannering, F. (2010). The statistical analysis of crash-frequency data: A review and assessment of methodological alternatives. Transportation Research Part A: Policy and Practice, 44(5), 291–305. https://doi.org/10.1016/j.tra.2010.02.001spa
dc.relation.referencesLord, D., Washington, S., y Ivan, J. N. (2007). Further notes on the application of zero-inflated models in highway safety. Accident Analysis and Prevention, 39(1), 53–57. http://10.0.3.248/j.aap.2006.06.004spa
dc.relation.referencesMalyshkina, N. V. (2008). Markov switching models: an application to roadway safety. December, 122. http://arxiv.org/abs/0808.1448spa
dc.relation.referencesMannering, F. L., y Bhat, C. R. (2014). Analytic methods in accident research: Methodological frontier and future directions. Analytic Methods in Accident Research, 1, 1–22. http://10.0.3.248/j.amar.2013.09.001spa
dc.relation.referencesMarchionna, A., Perco, P., y Falconetti, N. (2012). Evaluation of the Applicability of IHSDM Crash Prediction Module on Italian Two-Lane Rural Roads. Procedia - Social and Behavioral Sciences, 53, 932–941. https://doi.org/10.1016/j.sbspro.2012.09.942spa
dc.relation.referencesMartínez Rodríguez, M. (2005). Errores frecuentes en la interpretación del coeficiente de determinación lineal. Anuario Juridico y Economico Escurialense, 38, 315–331.spa
dc.relation.referencesMeyer, D., Zeileis, A., y Hornik, K. (2020). vcd: Visualizing Categorical Data.spa
dc.relation.referencesMiaou, S. P. (1994). The relationship between truck accidents and geometric design of road sections: Poisson versus negative binomial regressions. Accident Analysis and Prevention, 26(4), 471–482. https://doi.org/10.1016/0001-4(94)9003-8spa
dc.relation.referencesMiller, J. N. (1993). Tutorial review—Outliers in experimental data and their treatment. The Analyst ; volume 118, issue 5, page 455-461 ; ISSN 0003-2654 1364-5528. https://doi.org/10.1039/an9931800455spa
dc.relation.referencesMinisterio de Transporte. (2012). Resolucion_0011268.spa
dc.relation.referencesNeapolitan, R. E. (2004). Learning Bayesian networks. Pearson Prentice Hall. http://ezproxy.unal.edu.co/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=cat02704a&AN=unc.000351209&lang=es&site=eds-livespa
dc.relation.referencesOlmsted, S. M. (1983). Reproduced with permission of the copyright owner . Further reproduction prohibited without [Stanford University, Stanford, CA.]. En PhD thesis. http://dx.doi.org/10.1016/j.jaci.2012.05.050spa
dc.relation.referencesP. Mc Cullagh, J. A. N. (1986). Generalized Linear Models (P. Mccullagh and J. A. Nelder). En SIAM Review (Vol. 28, Número 1). https://doi.org/10.1137/1028043spa
dc.relation.referencesPalaniappan, S., Jaya, P., y Hong, T. K. (2008). Discretization of Continuous Valued Dimensions in OLAP Data Cubes. International Journal of Computer Science and Network Security, 8(11), 116–126.spa
dc.relation.referencesR Core Team. (2019). R: A Language and Environment for Statistical Computing. https://www.r-project.org/spa
dc.relation.referencesRamírez, A. F., y Valencia, C. (2021). Spatiotemporal correlation study of traffic accidents with fatalities and injuries in Bogota (Colombia). Accident Analysis and Prevention, 149(November 2020), 1-18.https://doi.org/10.1016/j.aap.2020.105848spa
dc.relation.referencesRefaeilzadeh, P., Tang, L., y Liu, H. (2009). Cross-Validation BT - Encyclopedia of Database Systems (L. LIU & M. T. ÖZSU (eds.); pp. 532–538). Springer US. https://doi.org/10.1007/978-0-387-39940-9_565spa
dc.relation.referencesRegistro Unico Nacional de Tránsito. (2021). Registro Unico Nacional de Tránsito - RUNT. https://www.runt.com.co/runt-en-cifras/parque-automotorspa
dc.relation.referencesRevelle, W. (2018). psych: Procedures for Psychological, Psychometric, and Personality Research. https://cran.r-project.org/package=psychspa
dc.relation.referencesRivas, M. E., Suárez-Alemán, A., y Serebrisky, T. (2019). Hechos estilizados de transporte urbano en América Latina y el Caribe. Nota Técnica No. IDB-TN-1640, 1-14.https://publications.iadb.org/publications/spanish/document/Hechos_estilizados_de_transporte_urbano_en_América_Latina_y_el_Caribe_es_es.pdfspa
dc.relation.referencesRodríguez-polo, K. A. (2019). Funciones de desempeño de seguridad en carriles de uso exclusivos del BRT sobre el corredor de la Avenida Caracas en la ciudad de Bogotá. 15(2), 66–77.spa
dc.relation.referencesSalgado, C. M., Azevedo, C., Proença, H., y Vieira, S. M. (2016). Noise Versus Outliers BT - Secondary Analysis of Electronic Health Records (M. I. T. C. Data (ed.); pp. 163–183). Springer International Publishing.https://doi.org/10.1007/978-3-319-43742-2_14spa
dc.relation.referencesSalinas Rodríguez, A., Manrique Espinoza, B., y Sosa Rubí, S. G. (2009). Análisis estadístico para datos de conteo: Aplicaciones para el uso de los servicios de salud. Salud Publica de Mexico, 51(5), 397–406.spa
dc.relation.referencesSAS Institute, I. (2008). The GLIMMIX procedure. SAS/STAT 9.2 User’s Guide, 2075–2420.spa
dc.relation.referencesSavolainen, P. T., Mannering, F. L., Lord, D., y Quddus, M. A. (2011). The statistical analysis of highway crash-injury severities : A review and assessment of methodological alternatives. Accident Analysis and Prevention, 43(5), 1666-1676. https://doi.org/10.1016/j.aap.2011.03.025spa
dc.relation.referencesScutari, M. (2017). Bayesian Network Constraint-Based Structure Learning Algorithms: Parallel and Optimized Implementations in the {bnlearn} {R} Package. Journal of Statistical Software, 77(2), 1–20. https://doi.org/10.18637/jss.v077.i02spa
dc.relation.referencesSecretaría Distrital de movilidad. (2018). Volumnes vehiculares a partir del modelo de transporte de Bogota año 2018.spa
dc.relation.referencesSecretaría Distrital de movilidad. (2019). Velocidades Bitcarrier 2018-2019. Datos Abiertos Secretaría Distrital de Movilidad. https://www.movilidadbogota.gov.co/web/simurspa
dc.relation.referencesSecretaría Distrital de Movilidad. (2015a). Resolución 182 de 2015. 3–5.spa
dc.relation.referencesSecretaría Distrital de Movilidad. (2015b). Resolución 402 de 2015. 3–5.spa
dc.relation.referencesSecretaría Distrital de Movilidad. (2015c). Resolución 560 de 2015. 3–5.spa
dc.relation.referencesSecretaría Distrital de Movilidad. (2015d). Resolución 833 del 2015.spa
dc.relation.referencesSecretaría Distrital de Movilidad. (2015e). Resolución 946 de 2015. 67–69.spa
dc.relation.referencesSecretaría Distrital de Movilidad. (2016). Resolución 258 de 2016. 5–7.spa
dc.relation.referencesSecretaría Distrital de Movilidad. (2017). Resolución 093 del 2017.spa
dc.relation.referencesSecretaría Distrital de Movilidad. (2018a). Anuario de Siniestralidad vial de Bogotá 2018.spa
dc.relation.referencesSecretaría Distrital de Movilidad. (2018b). Resolución 233 del 2018. 37.spa
dc.relation.referencesSecretaría Distrital de Movilidad. (2018c). Sistema Geográfico de Accidentes de Tránsito SIGAT (II). https://www.movilidadbogota.gov.co/web/SIMUR/sigatjs/consultaPlaca/spa
dc.relation.referencesSecretaría Distrital de Movilidad. (2019). Resultados de la Encuesta de Movilidad de Bogotá y municipios vecinos 2019.spa
dc.relation.referencesSecretaría Distrital de Movilidad. (2020). Anuario de siniestralidad vial de Bogotá 2020.spa
dc.relation.referencesShachter, R. D. (1986). Evaluating Influence Diagrams. Operations Research, 34(6), 871–882. https://doi.org/10.1287/opre.34.6.871spa
dc.relation.referencesShankar, V., Mannering, F., y Barfield, W. (1995). Effect of roadway geometrics and environmental factors on rural freeway accident frequencies. ACCIDENT ANALYSIS AND PREVENTION VO - 27, 3, 371. http://ezproxy.unal.edu.co/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=edsbl&AN=EN027767539&lang=es&site=eds-livespa
dc.relation.referencesSnijders, T. A. B., y Bosker, R. J. (2011). Multilevel analysis. An introduction to basic and advanced multilevel modeling. SAGE Publications Inc.spa
dc.relation.referencesSoler Flores, F. J., Pardillo Mayora, J. M., Jurado Piña, R., y Coruña, A. del V. C. de I. del T. | V. C. de I. del T. | 02/07/2008-04/07/2008 | La. (2008). Tratamiento de outliers en los modelos de predicción de accidentes de tráfico. En Actas del VIII Congreso de Ingeniería del Transporte | VIII Congreso de Ingeniería del Transporte | 02/07/2008-04/07/2008 | La Coruña, España. E.T.S.I. Caminos, Canales y Puertos (UPM). http://ezproxy.unal.edu.co/login url=http://search.ebscohost.com/login.aspx?direct=true&db=edsbas&AN=edsbas.5F3C06B&lang=es&site=eds-livespa
dc.relation.referencesSrinivasan, R., y Bauer, K. (2013). Safety Performance Function Development Guide: Developing Jurisdiction-Specific SPFs. FHWA-SA-14-005, September, 1–47.spa
dc.relation.referencesTarko, A. P., Romero, M., Thomaz, J., Ramos, J., Sultana, A., Pineda, R., Chen, E., Purdue, U., Indiana Department of, T., y Federal Highway, A. (2016). Updating RoadHAT: Collision Diagram Builder and HSM Elements. https://doi.org/10.5703/1288284316334spa
dc.relation.referencesTaylor, R. (2015). Interpretation of the Correlation Coefficient : A Basic Review. 35–39.spa
dc.relation.referencesTransmilenio S.A. (2021). Datos abiertos Bogota - Transmilenio. Datos abiertos Bogota. https://datosabiertos.bogota.gov.co/organization/transmileniospa
dc.relation.referencesValencia-Alaix, V. G., Restrepo-Betancur, B., Lizarazo-Jimenez, C., y Pineda-Mendez, R. A. (2020). Estimation of safety performance functions (SPF) at signalized intersections in Medellín, Colombia. DYNA (Colombia), 87(214), 215–220. https://doi.org/10.15446/DYNA.V87N214.83880spa
dc.relation.referencesVenables, W. N., y Ripley, B. D. (2002). Modern Applied Statistics with S (Fourth). Springer. https://www.stats.ox.ac.uk/pub/MASS4/spa
dc.relation.referencesVieira Gomes, S. (2013). The influence of the infrastructure characteristics in urban road accidents occurrence. Accident Analysis and Prevention, 60, 289–297. https://doi.org/10.1016/j.aap.2013.02.042spa
dc.relation.referencesWang, H., y Song, M. (2011). Ckmeans.1d.dp: Optimal $k$-means clustering in one dimension by dynamic programming. The R Journal, 3(2), 29–33. https://doi.org/10.32614/RJ-2011-015spa
dc.relation.referencesWang, J., y Huang, H. (2016). Road network safety evaluation using Bayesian hierarchical joint model. Accident Analysis and Prevention, 90, 152–158. https://doi.org/10.1016/j.aap.2016.02.018spa
dc.relation.referencesWei, T., y Simko, V. (2021). R package “corrplot”: Visualization of a Correlation Matrix. https://github.com/taiyun/corrplotspa
dc.relation.referencesWilliamson, M., y Zhou, H. (2012). Develop Calibration Factors for Crash Prediction Models for Rural Two-Lane Roadways in Illinois. Procedia - Social and Behavioral Sciences, 43, 330–338. https://doi.org/10.1016/j.sbspro.2012.04.106spa
dc.relation.referencesWinkelmann, R. (2008). Econometric Analysis of Count Data. [electronic resource]. En Springer eBooks (Fifth edit). Springer Berlin Heidelberg. http://ezproxy.unal.edu.co/login?url=http://search.ebscohost.com/login.aspx direct=true&db=cat02704a&AN=unc.000787976&lang=es&site=eds-livespa
dc.relation.referencesWorld Health Organization. (2018). Global status report on road safety 2018 (Paprika).spa
dc.relation.referencesZeileis, A., Kleiber, C., y Jackman, S. (2008). Regression Models for Count Data in {R}. Journal of Statistical Software, 27(8). http://www.jstatsoft.org/v27/i08/spa
dc.relation.referencesZeng, Q., y Huang, H. (2014). Bayesian spatial joint modeling of traffic crashes on an urban road network. Accident Analysis and Prevention, 67, 105–112. https://doi.org/10.1016/j.aap.2014.02.018spa
dc.relation.referencesZou, K. H., Tuncali, K., y Silverman, S. G. (2003). Correlation and Simple Linear Regression. Radiology, 617–622. https://doi.org/10.1148/radiol.2273011499spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::624 - Ingeniería civilspa
dc.subject.proposalSeguridad vialspa
dc.subject.proposalModelos de predicción de accidentes vialesspa
dc.subject.proposalFunciones de desempeño de seguridad vial (SPF)spa
dc.subject.proposalCorredores arteriales urbanosspa
dc.subject.proposalModelos lineales generalizados multivariados (GLM)spa
dc.subject.proposalRedes bayesianas de probabilidad (PBN)spa
dc.subject.proposalRoad safetyeng
dc.subject.proposalCrash predictions modelseng
dc.subject.proposalSafety performance functions (SPF)eng
dc.subject.proposalUrban arterial roadseng
dc.subject.proposalMultivariate generalized linear models (GLM)eng
dc.subject.proposalProbability Bayesian Networks models (PBN)eng
dc.subject.unescoSeguridad del transportespa
dc.subject.unescoTransport safetyeng
dc.subject.unescoTransporte por carreteraspa
dc.subject.unescoRoad transporteng
dc.titleModelo para predicción de siniestros viales basado en redes bayesianas para corredores de la red vial arterial de la ciudad de Bogotáspa
dc.title.translatedCrash prediction models based on Bayesian networks for corridors of arterial roads in Bogotáeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1.015.424.410.2021.pdf
Tamaño:
6.08 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Transporte

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: