Obtención e inmovilización de proteasas de Metarhizium robertsii Mt015 como ingrediente activo en bioplaguicidas de nueva generación
dc.contributor.advisor | Cruz Barrera, Fredy Mauricio | |
dc.contributor.advisor | Serrato Bermúdez, Juan Carlos | |
dc.contributor.author | Cristancho Mora, Javier Stiven | |
dc.contributor.cvlac | Cristancho Mora, Javier rh=0001941646] | |
dc.contributor.hostingInstitution | Agrosavia | |
dc.contributor.orcid | Cristancho Mora, Javier [000000024083091X] | |
dc.contributor.researchgroup | Bioproductos | |
dc.date.accessioned | 2025-08-27T15:28:51Z | |
dc.date.available | 2025-08-27T15:28:51Z | |
dc.date.issued | 2025 | |
dc.description | ilustraciones, diagramas, fotografías a color | spa |
dc.description.abstract | Los plaguicidas químicos de alto espectro para el control de plagas en la agricultura son altamente tóxicos y generan efectos negativos en el ecosistema en donde se aplica, por ello actualmente se han llevado a cabo estudios para la obtención de insumos sostenibles y eficientes como agentes de control biológico, denominados bioplaguicidas, los cuales son obtenidos a partir de metabolitos secundarios microbianos, particularmente, enzimas provenientes de hongos entomopatógenos que degradan la cutícula del insecto plaga. Agrosavia ha venido trabajando en el desarrollo de bioplaguicidas contra Tuta absoluta y Plutella xylostella en cultivos de crucíferas y tomate, sin embargo, se ha encontrado la necesidad de mejorar factores de virulencia mediante la potenciación con enzimas producidas de manera exógena y su incorporación en la formulación de los bioproductos. El objetivo de la tesis de maestría es producir e inmovilizar enzimas proteasas del hongo M. robertsii Mt015 como agentes de potenciación. Para ello se llevó a cabo un proceso de fermentación líquida en matraces Erlenmeyer y en biorreactor de 5 litros obteniendo las enzimas del microorganismo e inmovilizándolas mediante adsorción con soportes inertes de tipo inorgánico. Se encontró que es posible obtener resultados de actividad proteasa con materias primas económicas y sostenibles a nivel de matraces (3,74 U/mL) y biorreactor (2,39 U/mL), con condiciones de temperatura de 28°C, agitación de 150 rpm y pH de 8,5. De los ensayos de inmovilización enzimática se observó que el mejor soporte de tipo inorgánico para la adsorción de enzimas son las D1 con resultados de 7,41 y 8,05 U/g a distintas relaciones soporte-caldo de fermentación líquido, obteniendo así formulados en polvo a los que se les puede medir actividad biológica e incorporarlos como agentes de potenciación en bioplaguicidas de nueva generación (Texto tomado de la fuente). | spa |
dc.description.abstract | High-spectrum chemical pesticides for pest control in agriculture are highly toxic and generate negative effects on the ecosystem where they are applied, many studies have currently been carried out to obtain sustainable and efficient inputs as biological control agents, called biopesticides, which are obtained from microbial secondary metabolites, particularly enzymes from entomopathogenic fungi that degrade the cuticle of the pest insect. Agrosavia has been working on the development of biopesticides against Tuta absoluta and Plutella xylostella in cruciferous and tomato crops, however, the need has been found to improve virulence factors by potentiation with exogenously produced enzymes and their incorporation into the formulation of bioproducts. The objective of the thesis is to produce and immobilize protease enzymes from the fungus M. robertsii Mt015 as potentiation agents. For this purpose, a liquid fermentation process was carried out at flask and bioreactor scale, obtaining the enzymes from the microorganism and immobilizing them by adsorption with inert inorganic supports. It was found that it is possible to obtain protease activity results with economic and sustainable raw materials at flask (3,74 U/mL) and bioreactor (2.39 U/mL) level, with temperature conditions of 28°C, stirring at 150 rpm and pH of 8,5. From the enzymatic immobilization tests it was observed that the best inorganic support for enzyme adsorption is D1 with results of 7,41 and 8,05 U/g at different support-liquid extract ratios, thus obtaining powder formulations whose biological activity can be measured and incorporated as potentiating agents in new generation biopesticides. | eng |
dc.description.degreelevel | Maestría | |
dc.description.degreename | Magíster en Ingeniería Química | |
dc.description.methods | El proyecto se desarrolló en dos fases de acuerdo con el cumplimiento de cada uno de los objetivos específicos planteados. Dentro de la primera fase se realizó una revisión bibliográfica sobre el proceso de producción de enzimas de hongos entomopatógenos mediante fermentación en medio líquido, posteriormente y con base en el medio de cultivo base aportado por Agrosavia del hongo M. robertsii Mt015 se determinaron las condiciones de fermentación y se llevó cabo el proceso experimental. Por otra parte, en la segunda fase se realizó una revisión bibliográfica sobre inmovilización enzimática con soportes inertes inorgánicos, seleccionando las principales materias primas para llevar a cabo la experimentación en laboratorio y definir el soporte que brinda mayor actividad enzimática del hongo. | |
dc.format.extent | 85 páginas | |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88485 | |
dc.language.iso | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | |
dc.publisher.faculty | Facultad de Ingeniería | |
dc.publisher.place | Bogotá, Colombia | |
dc.publisher.program | Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Química | |
dc.relation.references | Abdel-Baky, N. F., Alhewairini, S. S., Al-Azzazy, M. M., Qureshi, M. Z., Al-Deghairi, M. A., & Hajjar, J. (2021). Efficacy of metarhizium anisopliae and beauveria bassiana against tuta absoluta (Lepidoptera: Gelechiidae) eggs under laboratory conditions. Pakistan Journal of Agricultural https://doi.org/10.21162/PAKJAS/21.52 Sciences, 58(2), 743–750. | |
dc.relation.references | Acuña Jiménez, M., García Gutiérrez, C., María, N., García, R., Meyer, M. L., Carlos, J., & Hernández, S. (2015). FORMULACIÓN DE Metarhizium anisopliae (METSCHNIKOFF) SOROKIN CON POLÍMEROS BIODEGRADABLES Y SU VIRULENCIA CONTRA Heliothis virescens (FABRICIUS). In Rev. Int. Contam. Ambie (Vol. 31, Issue 3). | |
dc.relation.references | Agrosavia. s.f. Lista de artículos y servicios valorados. Artículos valorados_245_12143. D:\Users\USUARIO\Downloads | |
dc.relation.references | Alves, E. A., Schmaltz, S., Tres, M. V., Zabot, G. L., Kuhn, R. C., & Mazutti, M. A. (2020). Process development to obtain a cocktail containing cell-wall degrading enzymes with insecticidal activity from Beauveria bassiana. Biochemical Engineering Journal, 156. https://doi.org/10.1016/j.bej.2019.107484 | |
dc.relation.references | Antanasković, A., Lopičić, Z., Dimitrijević-Branković, S., Ilić, N., Adamović, V., Šoštarić, T., & Milivojević, M. (2024). B1 as an Enzyme Immobilization Support and Its Application for Dye https://doi.org/10.3390/pr12112418 Degradation. Processes, 12(11). | |
dc.relation.references | Apprich, S., Tirpanalan, Ö., Hell, J., Reisinger, M., Böhmdorfer, S., Siebenhandl-Ehn, S., Novalin, S., & Kneifel, W. (2014). Wheat bran-based biorefinery 2: Valorization of products. In LWT (Vol. 56, Issue 2, pp. 222–231). Academic Press. https://doi.org/10.1016/j.lwt.2013.12.003 | |
dc.relation.references | Arumugam, N., Dhandapani, B., & Mahadevan, S. (2020). Optimized production of extracellular alkaline protease from Aspergillus tamarii with natural by-products in a batch stirred tank bioreactor. Preparative Biochemistry and Biotechnology, 50(10), 992–999. https://doi.org/10.1080/10826068.2020.1777426 | |
dc.relation.references | Ashkan, Z., Hemmati, R., Homaei, A., Dinari, A., JamLidoost, M., & Tashakor, A. (2021). Immobilization of enzymes on nanoinorganic support materials: An update. In International Journal of Biological Macromolecules (Vol. 168, pp. 708–721). Elsevier B.V. https://doi.org/10.1016/j.ijbiomac.2020.11.127 | |
dc.relation.references | Bamisile, B. S., Akutse, K. S., Siddiqui, J. A., & Xu, Y. (2021). Model Application of Entomopathogenic Fungi as Alternatives to Chemical Pesticides: Prospects, Challenges, and Insights for Next-Generation Sustainable Agriculture. Frontiers in Plant Science, 12(September). https://doi.org/10.3389/fpls.2021.74180 | |
dc.relation.references | Barrera G. et al. (2016). Generación de estrategias para la potenciación de agentes de control biológico con miras al desarrollo de bioplaguicidas de alta eficiencia. https://vivo.agrosavia.co/display/proinv762 | |
dc.relation.references | Barrera. G. et al. (2021). Desarrollo de bioplaguicidas potenciados de nueva generación para el mejoramiento de la productividad e inocuidad del cultivo de tomate y crucíferas en el departamento de Cundinamarca. Formulación de proyecto SGR. Corporación Colombiana de Investigación Agropecuaria. | |
dc.relation.references | Bhat, M. Y., Dar, T. A., & Singh, L. R. (2016). Casein Proteins: Structural and Functional Aspects. In Milk Proteins - From Structure to Biological Properties and Health Aspects. InTech. https://doi.org/10.5772/64187 | |
dc.relation.references | Benjamin, A. (2023). Protein quantification methods: Advantages and limitations. J Clin Bioanal Chem 2023 Volume 7 Issue https://www.alliedacademies.org/articles/protein-quantification-methods-advantages- and-limitations.pdf | |
dc.relation.references | Bilgrami, A., Khan, A., (2022). Plant nematode biopesticides. Academic Press. https://doi.org/10.1016/B978-0-12-823006-0.00004-8 | |
dc.relation.references | Bortoluzzi Baldoni, D., Antoniolli, Z. I., Márcio, &, Mazutti, A., Josemar, R., Jacques, S., Dotto, A. C., Andressa De, &, Silveira, O., Camargo Ferraz, R., Valdemir, &, Soares, B., Angélica, &, & Castro De Souza, R. (n.d.). Chitinase production by Trichoderma koningiopsis UFSMQ40 using solid state fermentation. https://doi.org/10.1007/s42770- 020-00334-w/Published | |
dc.relation.references | Cabrera, M. P., Assis, C. R. D., Neri, D. F. M., Pereira, C. F., Soria, F., & Carvalho, L. B. (2017). High sucrolytic activity by invertase immobilized onto magnetic diatomaceous earth nanoparticles. Biotechnology https://doi.org/10.1016/j.btre.2017.03.001 Reports, 14, 38–46. | |
dc.relation.references | Chanyal, S. (2016). Optimization of protease production by endophytic fungus, alternaria alternata isolated from gymnosperm tree-cupressus torulosa d.don. https://doi.org/10.20959/wjpps20167-7137 | |
dc.relation.references | Chokri, M., Azougagh, O., El Bojaddayni, I., Jalafi, I., Ouardi, Y. EL., Jilal, I., Ahari, M., Salhi, A., El Idrissi, A., Bendahhou, A., Abou-Salama, M., & El Barkany, S. (2025). Progress in bentonite clay modification and enhancing properties to industrial applications: A review. Materials Chemistry and https://doi.org/10.1016/j.matchemphys.2025.130486 Physics, 337, 130486. | |
dc.relation.references | Chourasia, R., Phukon, L. C., Abedin, M. M., Padhi, S., Singh, S. P., & Rai, A. K. (2022). Whey valorization by microbial and enzymatic bioprocesses for the production of nutraceuticals and value-added products. In Bioresource Technology Reports (Vol. 19). Elsevier Ltd. https://doi.org/10.1016/j.biteb.2022.101144 | |
dc.relation.references | Chua, C., Liu, Y., Williams, R. J., Chua, C. K., & Sing, S. L. (2024). In-process and post- process strategies for part quality assessment in metal powder bed fusion: A review. Journal of Manufacturing Systems (Vol. 73, pp. 75–105). Elsevier B.V. https://doi.org/10.1016/j.jmsy.2024.01.004 | |
dc.relation.references | Confortin, T. C., Spannemberg, S. S., Todero, I., Luft, L., Brun, T., Alves, E. A., Kuhn, R. C., & Mazutti, M. A. (2019). Microbial enzymes as control agents of diseases and pests in organic agriculture. New and Future Developments in Microbial Biotechnology and Bioengineering: Microbial Secondary Metabolites Biochemistry and Applications, 321– 332. https://doi.org/10.1016/B978-0-444-63504-4.00021-9 | |
dc.relation.references | Costa Silva, T. A., Souza, C. R. F., Said, S., & Oliveira, W. P. (2015). Drying of enzyme immobilized on eco-friendly supports. African Journal of Biotechnology, 14(44), 3019– 3026. https://doi.org/10.5897/ajb2015.14830 | |
dc.relation.references | Cunha, F. M., Vasconcellos, V. M., Florencio, C., Badino, A. C., & Farinas, C. S. (2017). On- Site Production of Enzymatic Cocktails Using a Non-conventional Fermentation Method with Agro-Industrial Residues as Renewable Feedstocks. Waste and Biomass Valorization, 8(2), 517–526. https://doi.org/10.1007/s12649-016-9609-y | |
dc.relation.references | Cupp-Enyard, C., & Aldrich, S. (2008). Sigma’s non-specific protease activity assay - Casein as a substrate. Journal of Visualized Experiments, 19. https://doi.org/10.3791/899 | |
dc.relation.references | De Sousa, T. K., Silva, A. T. da, & Soares, F. E. de F. (2025). Fungi-Based Bioproducts: A Review in the Context of One Health. In Pathogens (Vol. 14, Issue 5). Multidisciplinary Digital Publishing https://doi.org/10.3390/pathogens14050463 Institute (MDPI). | |
dc.relation.references | Derbe, T., Temesgen, S., & Bitew, M. (2021). A Short Review on Synthesis, Characterization, and Applications of Zeolites. In Advances in Materials Science and Engineering (Vol. 2021). Hindawi Limited. https://doi.org/10.1155/2021/6637898 | |
dc.relation.references | Dhanker, R., Saxena, A., Tiwari, A., Kumar Singh, P., Kumar Patel, A., Dahms, H. U., Hwang, J. S., González-Meza, G. M., Melchor-Martínez, E. M., Iqbal, H. M. N., & Parra- Saldívar, R. (2024). Towards sustainable diatom biorefinery: Recent trends in cultivation and applications. In Bioresource Technology (Vol. 391). Elsevier Ltd. https://doi.org/10.1016/j.biortech.2023.129905 | |
dc.relation.references | Dhawan, M., & Joshi, N. (2017). Enzymatic comparison and mortality of Beauveria bassiana against cabbage caterpillar Pieris brassicae LINN. Brazilian Journal of Microbiology, 48(3), 522–529. https://doi.org/10.1016/j.bjm.2016.08.004 | |
dc.relation.references | Elgammal, E. W., El-Khonezy, M. I., Ahmed, E. F., & Abd-Elaziz, A. M. (2020). Enhanced production, partial purification, and characterization of alkaline thermophilic protease from the endophytic fungus Aspergillus ochraceus BT21. Egyptian Pharmaceutical Journal, 19(4), 338–349. https://doi.org/10.4103/epj.epj_31_20 | |
dc.relation.references | El-Khonezy, M. I., Elgammal, E. W., Ahmed, E. F., & Abd-Elaziz, A. M. (2021). Detergent stable thiol-dependant alkaline protease produced from the endophytic fungus Aspergillus ochraceus BT21: Purification and kinetics. Biocatalysis and Agricultural Biotechnology, 35. https://doi.org/10.1016/j.bcab.2021.102046 | |
dc.relation.references | Ferreira, J. M., Pinto, S. M. N., & Soares, F. E. F. (2021). Metarhizium robertsii protease and conidia production, response to heat stress and virulence against Aedes aegypti larvae. AMB Express, 11(1). https://doi.org/10.1186/s13568-021-01326-1 | |
dc.relation.references | Ferreira, J. M., Fernandes, É. K. K., Kim, J. S., & Soares, F. E. F. (2024). The Combination of Enzymes and Conidia of Entomopathogenic Fungi against Aphis gossypii Nymphs and Spodoptera frugiperda https://doi.org/10.3390/jof10040292 Larvae. Journal of Fungi, 10(4). | |
dc.relation.references | Firouzbakht, H., Zibaee, A., Hoda, H., & Sohani, M. M. (2015). Purification and characterization of the cuticle-degrading proteases produced by an isolate of Beauveria bassiana using the cuticle of the predatory bug, Andrallus spinidens Fabricius (Hemiptera: Pentatomidae). Journal of Plant Protection Research, 55(2), 179–186. https://doi.org/10.1515/jppr-2015-0024 | |
dc.relation.references | Gao, Y., Doherty, C. M., & Mulet, X. (2020). A Systematic Study of the Stability of Enzyme/Zeolitic Imidazolate Framework-8 Composites in Various Biologically Relevant Solutions. ChemistrySelect, https://doi.org/10.1002/slct.202003575 5(43), 13766–13774. | |
dc.relation.references | Golzan, S. R., Talaei-Hassanloui, R., Homayoonzadeh, M., & Safavi, S. A. (2023). Role of cuticle-degrading enzymes of Beauveria bassiana and Metarhizium anisopliae in virulence on Plodia interpunctella (Lepidoptera, Pyralidae) larvae. Journal of Asia- Pacific Entomology, 26(2). https://doi.org/10.1016/j.aspen.2023.102038 | |
dc.relation.references | González-Weller, D., Paz-Montelongo, S., Bethencourt-Barbuzano, E., Niebla-Canelo, D., Alejandro-Vega, S., Gutiérrez, Á. J., Hardisson, A., Carrascosa, C., & Rubio, C. (2023). Proteins and Minerals in Whey Protein Supplements. Foods, 12(11). https://doi.org/10.3390/foods12112238 | |
dc.relation.references | Goyal, S., Ramawat, K. G., & Mérillon, J. M. (2016). Fungal Metabolites. Fungal Metabolites, February 2016. https://doi.org/10.1007/978-3-319-19456-1 | |
dc.relation.references | Guo, Y., Wang, Z., Zhou, X. et al. Removal of mercury (II) from aqueous solution with three commercial raw activated carbons. Res Chem Intermed 43, 2273–2297 (2017). https://doi.org/10.1007/s11164-016-2761-y | |
dc.relation.references | He, J., Zhang, X., Wang, Q., Li, N., Ding, D., & Wang, B. (2023). Optimization of the Fermentation Conditions of Metarhizium robertsii and Its Biological Control of Wolfberry Root Rot Disease. https://doi.org/10.3390/microorganisms11102380 Microorganisms, 11(10). | |
dc.relation.references | Hemker, A., Nguyen, L., & Salvi, D. (2023). Effect of high-pressure technologies on enzyme activity and stability. Science and Applications. https://doi.org/10.1016/B978-0-323- 98386-0.00008-7 | |
dc.relation.references | Hyder, M., Ul Haq, I., Younas, M., Ghafar, M. A., Akhtar, M. R., Ahmed, Z., Bukero, A., & Hou, Y. (2025). Floral Resource Integration: Enhancing Biocontrol of Tuta absoluta Within Sustainable IPM Frameworks. In Plants (Vol. 14, Issue 3). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/plants14030319 | |
dc.relation.references | Ibrahim, A. S. S., Al-Salamah, A. A., El-Toni, A. M., Almaary, K. S., El-Tayeb, M. A., Elbadawi, Y. B., & Antranikian, G. (2016). Enhacement of alkaline protease activity and stability via covalent immobilization onto hollow core-mesoporous shell silica nanospheres. International Journal https://doi.org/10.3390/ijms17020184 of Molecular Sciencies. 17(2). | |
dc.relation.references | Kaya, B., Wijayarathna, E. R. K. B., Yüceer, Y. K., Agnihotri, S., Taherzadeh, M. J., & Sar, T. (2024). The use of cheese whey powder in the cultivation of protein-rich filamentous fungal biomass for sustainable food production. Frontiers in Sustainable Food Systems, 8. https://doi.org/10.3389/fsufs.2024.1386519 | |
dc.relation.references | Kepekçi, R., İlçe, B & Kanmazalp, S. (2021). Plant-derived biomaterials for wound healing. Studies in Natural Products Chemistry. https://doi.org/10.1016/B978-0-12-819489- 8.00001-6 | |
dc.relation.references | Kumari, A., Kaur, B., Srivastava, R., & Sangwan, R. S. (2015). Isolation and immobilization of alkaline protease on mesoporous silica and mesoporous ZSM-5 zeolite materials for improved catalytic properties. Biochemistry and Biophysics Reports, 2, 108–114. https://doi.org/10.1016/j.bbrep.2015.05.009 | |
dc.relation.references | Lacey, L. A., Grzywacz, D., Shapiro-Ilan, D. I., Frutos, R., Brownbridge, M., & Goettel, M. S. (2015). Insect pathogens as biological control agents: Back to the future. Journal of Invertebrate Pathology, https://doi.org/10.1016/j.jip.2015.07.009 132(October 2017), 1–41. | |
dc.relation.references | Liu, P. et al. (2010). Adsorptive Immobilization of Four Proteases on Different Molecular Sieves. https://www.ingentaconnect.com/content/apcs/apcs/2010/00000026/00000004/art0 0 043 | |
dc.relation.references | Loera-Corral, O., Porcayo-Loza, J., Montesinos-Matias, R., & Favela-Torres, E. (2016). Production of conidia by the fungus Metarhizium anisopliae using solid-state fermentation. In Methods in Molecular Biology (Vol. 1477, pp. 61–69). Humana Press Inc. https://doi.org/10.1007/978-1-4939-6367-6_6 | |
dc.relation.references | López-Trujillo, J., Mellado-Bosque, M., Ascacio-Valdés, J. A., Prado-Barragán, L. A., Hernández-Herrera, J. A., & Aguilera-Carbó, A. F. (2023). Temperature and pH Optimization for Protease Production Fermented by Yarrowia lipolytica from Agro- Industrial Waste. Fermentation, 9(9). https://doi.org/10.3390/fermentation9090819 | |
dc.relation.references | Luo, Y., & Wang, T. (2016). Pharmaceutical and Cosmetic Applications of Protein By- Products. In Protein Byproducts: Transformation from Environmental Burden Into Value-Added Products (pp. 147–160). Elsevier Inc. https://doi.org/10.1016/B978-0 12- 802391-4.00009-4 | |
dc.relation.references | Lutyński, M., Sakiewicz, P., & Lutyńska, S. (2019). Characterization of diatomaceous earth and resources https://doi.org/10.3390/min9110670 of Poland. Minerals, 9(11). | |
dc.relation.references | Maghraby, Y. R., El-Shabasy, R. M., Ibrahim, A. H., & Azzazy, H. M. E. S. (2023). Enzyme Immobilization Technologies and Industrial Applications. In ACS Omega (Vol. 8, Issue 6, pp. 5184–5196). https://doi.org/10.1021/acsomega.2c07560 American Chemical Society. | |
dc.relation.references | Mantzoukas, S., Kitsiou, F., Natsiopoulos, D., & Eliopoulos, P. A. (2022). Entomopathogenic Fungi: Interactions Encyclopedia, 2(2), 646–656. and https://doi.org/10.3390/encyclopedia2020044 Applications. | |
dc.relation.references | Martău, G. A., Unger, P., Schneider, R., Venus, J., Vodnar, D. C., & López-Gómez, J. P. (2021). Integration of solid state and submerged fermentations for the valorization of organic municipal solid https://doi.org/10.3390/jof7090766 waste. Journal of Fungi, 7(9). | |
dc.relation.references | Martínez-Medina, G. A., Barragán, A. P., Ruiz, H. A., Ilyina, A., Hernández, J. L. M., Rodríguez-Jasso, R. M., Hoyos-Concha, J. L., & Aguilar-González, C. N. (2018). Fungal proteases and production of bioactive peptides for the food industry. In Enzymes in Food Biotechnology: Production, Applications, and Future Prospects (pp. 221–246). Elsevier. https://doi.org/10.1016/B978-0-12-813280-7.00014-1 | |
dc.relation.references | Mascarin, G. M., Golo, P. S., de Souza Ribeiro-Silva, C., Muniz, E. R., de Oliveira Franco, A., Kobori, N. N., & Fernandes, É. K. K. (2024). Advances in submerged liquid fermentation and formulation of entomopathogenic fungi. In Applied Microbiology and Biotechnology (Vol. 108, Issue 1). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s00253-024-13287-z | |
dc.relation.references | Mefteh, F. Ben, Frikha, F., Daoud, A., Bouket, A. C., Luptakova, L., Alenezi, F. N., Al-Anzi, B. S., Oszako, T., Gharsallah, N., & Belbahri, L. (2019). Response surface methodology optimization of an acidic protease produced by penicillium bilaiae isolate tdpef30, a newly recovered endophytic fungus from healthy roots of date palm trees (Phoenix dactylifera l.). https://doi.org/10.3390/microorganisms7030074 Microorganisms, 7(3). | |
dc.relation.references | Mejía, C. (2022). Informe de subactividad de expresión de enzimas. Desarrollo de bioplaguicidas potenciados de nueva generación para el mejoramiento de la productividad e inocuidad del cultivo de tomate y crucíferas en el departamento de Cundinamarca. Corporación Colombiana de Investigación Agropecuaria. | |
dc.relation.references | Méndez-González, F., Loera, O., Saucedo-Castañeda, G., & Favela-Torres, E. (2020). Forced aeration promotes high production and productivity of infective conidia from Metarhizium robertsii in solid-state fermentation. Biochemical Engineering Journal, 156(July 2019), 107492. https://doi.org/10.1016/j.bej.2020.107492 | |
dc.relation.references | Minitab LLC. (2018). MINITAB. https://www.minitab.com/en-us/products/minitab/ | |
dc.relation.references | Mordor Intelligence, (s.f). Biopesticides Market SIZE & SHARE ANALYSIS - GROWTH TRENDS & FORECASTS UP TO 2029 Source: https://www.mordorintelligence.com/industry-reports/global-biopesticides- market-industry | |
dc.relation.references | Mukherjee, K., & Vilcinskas, A. (2018). The entomopathogenic fungus Metarhizium robertsii communicates with the insect host galleria mellonella during infection. Virulence, 9(1), 402–413. https://doi.org/10.1080/21505594.2017.1405190 | |
dc.relation.references | Mulet-Cabero, A. I., Torcello-Gómez, A., Saha, S., Mackie, A. R., Wilde, P. J., & Brodkorb, A. (2020). Impact of caseins and whey proteins ratio and lipid content on in vitro digestion and ex vivo absorption. https://doi.org/10.1016/j.foodchem.2020.126514 | |
dc.relation.references | Murray, M. (2019). Comprehensive Biotechnology. Third Edition. University Of Waterloo. Ontario. Canada | |
dc.relation.references | Naher, L., Fatin, S. N., Sheikh, M. A. H., Azeez, L. A., Siddiquee, S., Zain, N. M., & Karim, S. M. R. (2021). Cellulase enzyme production from filamentous fungi trichoderma reesei and aspergillus awamori in submerged fermentation with rice straw. Journal of Fungi, 7(10), 1–11. https://doi.org/10.3390/jof7100868 | |
dc.relation.references | Nazir, M. T., Soufiani, A. M., Ferreira, J. A., Sar, T., & Taherzadeh, M. J. (2022). Production of filamentous fungal biomass with increased oil content using olive oil as a carbon source. Journal of Chemical Technology and Biotechnology, 97(9), 2626–2635. https://doi.org/10.1002/jctb.7135 | |
dc.relation.references | Oliveira-Ribeiro, L. M., Meili, L., Silva-Belo-Gois, G. N., Rosas-Garcia-Almeida, R. M., & da Silva-Duarte, J. L. (2019). Immobilization of lipase in B1 obtained from Manihot esculenta Crantz. Revista ION, 32(2), 7–13. https://doi.org/10.18273/revion.v32n2- 2019001 | |
dc.relation.references | Ouedraogo, J., Tsang, A. (2021). Production of native and recombinant enzymes by fungi for applications. Encyclopedia of Mycology. https://doi.org/10.1016/B978-0-12-819990-9.00046-9 | |
dc.relation.references | Padilla Doval, J., & Zambrano Arteaga, J. C. (2021). Estructura, propiedades y genética de las CSNs de la leche: una revisión. CES Medicina Veterinaria y Zootecnia, 16(3), 62 95. https://doi.org/10.21615/cesmvz.5231 | |
dc.relation.references | Pawar, K. S., Singh, P. N., & Singh, S. K. (2023). Fungal alkaline proteases and their potential applications in different industries. In Frontiers in Microbiology (Vol. 14). Frontiers Media S.A. https://doi.org/10.3389/fmicb.2023.1138401 | |
dc.relation.references | Perwez, M., & Al Asheh, S. (2025). Valorization of agro-industrial waste through solid-state fermentation: Mini review. In Biotechnology Reports (Vol. 45). Elsevier B.V. https://doi.org/10.1016/j.btre 2024.e00873 | |
dc.relation.references | Pimcharoen, K., Opaprakasit, P., Yingchutrakul, Y., Simanon, N., Butkinaree, C., Yuttayong, D., Hompa, R., Vayachuta, L., & Prompinit, P. (2024). Bromelain Immobilized onto Clay-Carboxymethylcellulose Composites for Improving Nutritive Value of Soybean Meal. ACS Applied Bio Materials, https://doi.org/10.1021/acsabm.4c00392 | |
dc.relation.references | Pourkhanali, K., Khayati, G., Mizani, F., & Raouf, F. (2022). Characterization of free and immobilized lipase from Penicillium sp. onto three modified bentonites: A comparative study. Journal of Biotechnology, https://doi.org/10.1016/j.jbiotec.2021.12.013 | |
dc.relation.references | Primožič, M., Podrepšek, G. H., Pavlovič, I., Škerget, M., Knez, Ž., & Leitgeb, M. (2019). Acta Enzyme immobilization onto B1 produced by the hydrothermal carbonization of biomass. Chimica Slovenica, 66(3), 732–739. https://doi.org/10.17344/acsi.2019.5013 | |
dc.relation.references | Reinehr, C. O., Treichel, H., Tres, M. V., Steffens, J., Brião, V. B., & Colla, L. M. (2017). Successive membrane separation processes simplify concentration of lipases produced by Aspergillus niger by solid-state fermentation. Bioprocess and Biosystems Engineering, 40(6), 843–855. https://doi.org/10.1007/s00449-017-1749-3 | |
dc.relation.references | Sahoo, A., Mahanty, B., Daverey, A., & Dutta, K. (2020). Nattokinase production from Bacillus subtilis using cheese whey: Effect of nitrogen supplementation and dynamic modelling. Journal of Water https://doi.org/10.1016/j.jwpe.2020.101533 | |
dc.relation.references | Sambo, S., Adamu, S., & Haruna, I. (2024). Comparison of Protease Activity between Two Fungal Strains and Commercial Rennet on Different Substrates. Greener Trends in Food Science and Nutrition, https://doi.org/10.15580/gtfsn.2024.1.111124166 | |
dc.relation.references | Self, R. A., Harrison, M. D., Te’o, V. S., & Van Sluyter, S. (2022). Development of simple, scalable protease production from Botrytis cinerea. Applied Microbiology and Biotechnology, 106(5–6), 2219–2233. https://doi.org/10.1007/s00253-022-11817-1 | |
dc.relation.references | Serrano-Lotina, A., Portela, R., Baeza, P., Alcolea-Rodriguez, V., Villarroel, M., & Ávila, P. (2023). Zeta potential as a tool for functional materials development. Catalysis Today, 423. https://doi.org/10.1016/j.cattod.2022.08.004 | |
dc.relation.references | Shang, J, et al., (2024). Metarhizium robertsii. Trends in Parasitology. https://www.cell.com/trends/parasitology/abstract/S1471-4922(23)00279- 9#:~:text=M.,propagation%20within%20insect%20body%20cavities | |
dc.relation.references | Shen, S., Yang, S., Jiang, Q., Luo, M., Li, Y., Yang, C., & Zhang, D. (2020). Effect of dissolved organic matter on adsorption of sediments to Oxytetracycline: An insight from zeta potential and DLVO theory. Environmental Science and Pollution Research, 27(2), 1697–1709. https://doi.org/10.1007/s11356-019-06787-3 | |
dc.relation.references | Sigurdardóttir, S. B., Lehmann, J., Ovtar, S., Grivel, J. C., Negra, M. Della, Kaiser, A., & Pinelo, M. (2018). Enzyme Immobilization on Inorganic Surfaces for Membrane Reactor Applications: Mass Transfer Challenges, Enzyme Leakage and Reuse of Materials. Advanced Synthesis and Catalysis, 360(14), 2578–2607. https://doi.org/10.1002/adsc.201800307 | |
dc.relation.references | Silva, V. D. M., De Marco, L. M., Afonso, W. D. O., Lopes, D. C. F., & Silvestre, M. P. C. (2007). Comparative Study of the Immobilization of Pancreatin and Papain on Activated Carbon and Alumina, Using Whey as Protein Substrate. World Applied Sciences Journal, 2(3), 175–183. | |
dc.relation.references | Sobral, A. F., Ramos, D. G., Lima, B. C. S., Liu, T. P. S. L., Silva, M. R. O. B. da, Lino, L. H. S., Cardoso, K. B. B., Albuquerque, W. W. C., Nascimento, T. P., & Brandão Costa, R. M. P. (2025). Purification and Characterization of a Protease Using Aspergillus oryzae Under Submerged Fermentation Using Dairy By-Products as a Substrate. Catalysts, 15(6). https://doi.org/10.3390/catal15060575 | |
dc.relation.references | Somatco. (s.f). Zeta-Meter System 3.0+. Manual de uso. Universidad Nacional de Colombia. | |
dc.relation.references | Sørensen, J. L., & Sondergaard, T. E. (2014). The effects of different yeast extracts on secondary metabolite production in Fusarium. International Journal of Food Microbiology, 170, 55–60. https://doi.org/10.1016/j.ijfoodmicro.2013.10.024 | |
dc.relation.references | Souza, S. A. de, Padial, I. M. P. M., Souza, T. S. de, Domingues, A., Ferreira, E. A., Mauad, M., Cardoso, C. A. L., Malaquias, J. B., Oliveira, L. V. de Q., Formagio, A. S. N., Mauad, J. R. C., & Mussury, R. M. (2025). Evaluation of Bioinseticide in the Control of Plutella xylostella (Linnaeus, 1758): A Laboratory Study for Large-Scale Implementation. Sustainability (Switzerland), 17(4). https://doi.org/10.3390/su17041626 | |
dc.relation.references | Spanou, A., Liakouli, N. C., Fiotaki, C., & Pavlidis, I. V. (2024). Comparative Study of Immobilized Biolipasa-R for Second Generation Biodiesel Production from an Acid Oil. ChemBioChem. https://doi.org/10.1002/cbic.202400514 | |
dc.relation.references | Takalloo, Z., Nikkhah, M., Nemati, R., Jalilian, N., & Sajedi, R. H. (2020). Autolysis, plasmolysis and enzymatic hydrolysis of baker’s yeast (Saccharomyces cerevisiae): a comparative study. World Journal of Microbiology and Biotechnology, 36(5). https://doi.org/10.1007/s11274-020-02840-3 | |
dc.relation.references | Talebi, M., Vaezifar, S., Jafary, F., Fazilati, M., & Motamedi, S. (2016). Stability improvement of immobilized α-amylase using nano pore zeolite. Iranian Journal of Biotechnology, 14(1), 33–38. https://doi.org/10.15171/ijb.1261 | |
dc.relation.references | Tao, Z., Yuan, H., Liu, M., Liu, Q., Zhang, S., Liu, H., Jiang, Y., Huang, D., & Wang, T. (2023). Yeast Extract: Characteristics, Production, Applications and Future Perspectives. In Journal of Microbiology and Biotechnology (Vol. 33, Issue 1, pp. 151– 166). Korean Society for Microbiolog and Biotechnology. https://doi.org/10.4014/jmb.2207.07057 | |
dc.relation.references | Thurman, J. H., & Furlong, M. J. (2025). “Biocontrol of diamondback moth (Plutella xylostella) in organic crops: Spatial and seasonal dynamics.” Agriculture, Ecosystems and Environment, 385. https://doi.org/10.1016/j.agee.2025.109567 | |
dc.relation.references | Umaru, F. F., & Simarani, K. (2020). Evaluation of the potential of fungal biopesticides for the biological control of the seed bug, elasmolomus pallens (Dallas) (hemiptera: Rhyparochromidae). Insects, 11(5). https://doi.org/10.3390/insects11050277 | |
dc.relation.references | Vakili, F., Mojtabavi, S., Imanparast, S., Kianmehr, Z., Forootanfar, H., & Faramarzi, M. A. (2020). Immobilization of lipase on the modified magnetic diatomite earth for effective methyl esterification of isoamyl alcohol to synthesize banana flavor. 3 Biotech, 10(10). https://doi.org/10.1007/s13205-020-02437-5 | |
dc.relation.references | Virginia, M. S., Patricia, V. T., Jadson, D. P. B., Laura, M. P., Elza, A. de L. A. L., & Ana, L. F. P. (2013). Pathogenicity of Beauveria bassiana and production of cuticle-degrading enzymes in the presence of Diatraea saccharalis cuticle. African Journal of Biotechnology, 12(46), 6491–6497. https://doi.org/10.5897/ajb2013.11972 | |
dc.relation.references | Vivekanandhan, P., Swathy, K., Sarayut, P., & Patcharin, K. (2024). Biology, classification, and entomopathogen-based management and their mode of action on Tuta absoluta (Meyrick) in Asia. In Frontiers in Microbiology (Vol. 15). Frontiers Media SA. https://doi.org/10.3389/fmicb.2024.1429690 | |
dc.relation.references | Zafar, J., Shoukat, R. F., Zhang, Y., Freed, S., Xu, X., & Jin, F. (2020). Metarhizium anisopliae challenges immunity and demography of Plutella xylostella. Insects, 11(10), 1–15. https://doi.org/10.3390/insects11100694 | |
dc.relation.references | Zakirov, T. R., & Khramchenkov, M. G. (2022). Effect of pore space heterogeneity on the adsorption dynamics in porous media at various convection-diffusion and reaction conditions: A lattice Boltzmann study. Journal of Petroleum Science and Engineering, 212. https://doi.org/10.1016/j.petrol.2022.110300 | |
dc.relation.references | Zhang, D., Qi, H., & Zhang, F. (2025). Parasitism by Entomopathogenic Fungi and Insect Host Defense Strategies. In Microorganisms (Vol. 13, Issue 2). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/microorganisms13020283 | |
dc.relation.references | Zhang, H., Jiang, Z., Xia, Q., & Zhou, D. (2021). Progress and perspective of enzyme immobilization on zeolite crystal materials. Biochemical Engineering Journal, 172(February), 108033. https://doi.org/10.1016/j.bej.2021.108033 | |
dc.relation.references | Zhao, Z., Xiao, Z., Jiang, B. Chen, J. (2024). Tailored chitosan integration in diatomaceous earth particles as scaffold for fructosyltransferase immobilization in fructooligosaccharide production. Journal of the Science of Food and Agriculture. Wiley. https://doi.org/10.1002/jsfa.13480 | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | |
dc.subject.lemb | ENZIMAS PROTEOLITICAS | spa |
dc.subject.lemb | Proteolytic enzymes | eng |
dc.subject.lemb | PRODUCTOS QUIMICOS AGRICOLAS-ASPECTOS AMBIENTALES | spa |
dc.subject.lemb | Agricultural chemicals - environmental aspects | eng |
dc.subject.lemb | HONGOS ENTOMOPATOGENOS | spa |
dc.subject.lemb | Entomopathogenic fungi | eng |
dc.subject.lemb | POLILLA DEL TOMATE-CONTROL QUIMICO | spa |
dc.subject.lemb | Scrobieleula absoluta - Chemical control | eng |
dc.subject.proposal | Bioplaguicidas | spa |
dc.subject.proposal | Fermentación líquida | spa |
dc.subject.proposal | Hongo entomopatógeno | spa |
dc.subject.proposal | Inmovilización enzimática | spa |
dc.subject.proposal | Soportes inorgánicos | spa |
dc.subject.proposal | Biopesticides | eng |
dc.subject.proposal | Entomopathogenic fungus | eng |
dc.subject.proposal | Enzymatic immobilization | eng |
dc.subject.proposal | Inorganic supports | eng |
dc.subject.proposal | Liquid fermentation | eng |
dc.subject.proposal | Bioplaguicidas | spa |
dc.title | Obtención e inmovilización de proteasas de Metarhizium robertsii Mt015 como ingrediente activo en bioplaguicidas de nueva generación | spa |
dc.title.translated | Obtaining and immobilizing proteases from Metarhizium robertsii Mt015 as an active ingredient in new-generation biopesticides | eng |
dc.type | Trabajo de grado - Maestría | |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dcterms.audience.professionaldevelopment | Público general | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | |
oaire.fundername | Agrosavia |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Obtención e inmovilización de proteasas de Mt015 - Tesis.pdf
- Tamaño:
- 2.19 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería Química
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: