Obtención e inmovilización de proteasas de Metarhizium robertsii Mt015 como ingrediente activo en bioplaguicidas de nueva generación

dc.contributor.advisorCruz Barrera, Fredy Mauricio
dc.contributor.advisorSerrato Bermúdez, Juan Carlos
dc.contributor.authorCristancho Mora, Javier Stiven
dc.contributor.cvlacCristancho Mora, Javier rh=0001941646]
dc.contributor.hostingInstitutionAgrosavia
dc.contributor.orcidCristancho Mora, Javier [000000024083091X]
dc.contributor.researchgroupBioproductos
dc.date.accessioned2025-08-27T15:28:51Z
dc.date.available2025-08-27T15:28:51Z
dc.date.issued2025
dc.descriptionilustraciones, diagramas, fotografías a colorspa
dc.description.abstractLos plaguicidas químicos de alto espectro para el control de plagas en la agricultura son altamente tóxicos y generan efectos negativos en el ecosistema en donde se aplica, por ello actualmente se han llevado a cabo estudios para la obtención de insumos sostenibles y eficientes como agentes de control biológico, denominados bioplaguicidas, los cuales son obtenidos a partir de metabolitos secundarios microbianos, particularmente, enzimas provenientes de hongos entomopatógenos que degradan la cutícula del insecto plaga. Agrosavia ha venido trabajando en el desarrollo de bioplaguicidas contra Tuta absoluta y Plutella xylostella en cultivos de crucíferas y tomate, sin embargo, se ha encontrado la necesidad de mejorar factores de virulencia mediante la potenciación con enzimas producidas de manera exógena y su incorporación en la formulación de los bioproductos. El objetivo de la tesis de maestría es producir e inmovilizar enzimas proteasas del hongo M. robertsii Mt015 como agentes de potenciación. Para ello se llevó a cabo un proceso de fermentación líquida en matraces Erlenmeyer y en biorreactor de 5 litros obteniendo las enzimas del microorganismo e inmovilizándolas mediante adsorción con soportes inertes de tipo inorgánico. Se encontró que es posible obtener resultados de actividad proteasa con materias primas económicas y sostenibles a nivel de matraces (3,74 U/mL) y biorreactor (2,39 U/mL), con condiciones de temperatura de 28°C, agitación de 150 rpm y pH de 8,5. De los ensayos de inmovilización enzimática se observó que el mejor soporte de tipo inorgánico para la adsorción de enzimas son las D1 con resultados de 7,41 y 8,05 U/g a distintas relaciones soporte-caldo de fermentación líquido, obteniendo así formulados en polvo a los que se les puede medir actividad biológica e incorporarlos como agentes de potenciación en bioplaguicidas de nueva generación (Texto tomado de la fuente).spa
dc.description.abstractHigh-spectrum chemical pesticides for pest control in agriculture are highly toxic and generate negative effects on the ecosystem where they are applied, many studies have currently been carried out to obtain sustainable and efficient inputs as biological control agents, called biopesticides, which are obtained from microbial secondary metabolites, particularly enzymes from entomopathogenic fungi that degrade the cuticle of the pest insect. Agrosavia has been working on the development of biopesticides against Tuta absoluta and Plutella xylostella in cruciferous and tomato crops, however, the need has been found to improve virulence factors by potentiation with exogenously produced enzymes and their incorporation into the formulation of bioproducts. The objective of the thesis is to produce and immobilize protease enzymes from the fungus M. robertsii Mt015 as potentiation agents. For this purpose, a liquid fermentation process was carried out at flask and bioreactor scale, obtaining the enzymes from the microorganism and immobilizing them by adsorption with inert inorganic supports. It was found that it is possible to obtain protease activity results with economic and sustainable raw materials at flask (3,74 U/mL) and bioreactor (2.39 U/mL) level, with temperature conditions of 28°C, stirring at 150 rpm and pH of 8,5. From the enzymatic immobilization tests it was observed that the best inorganic support for enzyme adsorption is D1 with results of 7,41 and 8,05 U/g at different support-liquid extract ratios, thus obtaining powder formulations whose biological activity can be measured and incorporated as potentiating agents in new generation biopesticides.eng
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería Química
dc.description.methodsEl proyecto se desarrolló en dos fases de acuerdo con el cumplimiento de cada uno de los objetivos específicos planteados. Dentro de la primera fase se realizó una revisión bibliográfica sobre el proceso de producción de enzimas de hongos entomopatógenos mediante fermentación en medio líquido, posteriormente y con base en el medio de cultivo base aportado por Agrosavia del hongo M. robertsii Mt015 se determinaron las condiciones de fermentación y se llevó cabo el proceso experimental. Por otra parte, en la segunda fase se realizó una revisión bibliográfica sobre inmovilización enzimática con soportes inertes inorgánicos, seleccionando las principales materias primas para llevar a cabo la experimentación en laboratorio y definir el soporte que brinda mayor actividad enzimática del hongo.
dc.format.extent85 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88485
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeBogotá, Colombia
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Química
dc.relation.referencesAbdel-Baky, N. F., Alhewairini, S. S., Al-Azzazy, M. M., Qureshi, M. Z., Al-Deghairi, M. A., & Hajjar, J. (2021). Efficacy of metarhizium anisopliae and beauveria bassiana against tuta absoluta (Lepidoptera: Gelechiidae) eggs under laboratory conditions. Pakistan Journal of Agricultural https://doi.org/10.21162/PAKJAS/21.52 Sciences, 58(2), 743–750.
dc.relation.referencesAcuña Jiménez, M., García Gutiérrez, C., María, N., García, R., Meyer, M. L., Carlos, J., & Hernández, S. (2015). FORMULACIÓN DE Metarhizium anisopliae (METSCHNIKOFF) SOROKIN CON POLÍMEROS BIODEGRADABLES Y SU VIRULENCIA CONTRA Heliothis virescens (FABRICIUS). In Rev. Int. Contam. Ambie (Vol. 31, Issue 3).
dc.relation.referencesAgrosavia. s.f. Lista de artículos y servicios valorados. Artículos valorados_245_12143. D:\Users\USUARIO\Downloads
dc.relation.referencesAlves, E. A., Schmaltz, S., Tres, M. V., Zabot, G. L., Kuhn, R. C., & Mazutti, M. A. (2020). Process development to obtain a cocktail containing cell-wall degrading enzymes with insecticidal activity from Beauveria bassiana. Biochemical Engineering Journal, 156. https://doi.org/10.1016/j.bej.2019.107484
dc.relation.referencesAntanasković, A., Lopičić, Z., Dimitrijević-Branković, S., Ilić, N., Adamović, V., Šoštarić, T., & Milivojević, M. (2024). B1 as an Enzyme Immobilization Support and Its Application for Dye https://doi.org/10.3390/pr12112418 Degradation. Processes, 12(11).
dc.relation.referencesApprich, S., Tirpanalan, Ö., Hell, J., Reisinger, M., Böhmdorfer, S., Siebenhandl-Ehn, S., Novalin, S., & Kneifel, W. (2014). Wheat bran-based biorefinery 2: Valorization of products. In LWT (Vol. 56, Issue 2, pp. 222–231). Academic Press. https://doi.org/10.1016/j.lwt.2013.12.003
dc.relation.referencesArumugam, N., Dhandapani, B., & Mahadevan, S. (2020). Optimized production of extracellular alkaline protease from Aspergillus tamarii with natural by-products in a batch stirred tank bioreactor. Preparative Biochemistry and Biotechnology, 50(10), 992–999. https://doi.org/10.1080/10826068.2020.1777426
dc.relation.referencesAshkan, Z., Hemmati, R., Homaei, A., Dinari, A., JamLidoost, M., & Tashakor, A. (2021). Immobilization of enzymes on nanoinorganic support materials: An update. In International Journal of Biological Macromolecules (Vol. 168, pp. 708–721). Elsevier B.V. https://doi.org/10.1016/j.ijbiomac.2020.11.127
dc.relation.referencesBamisile, B. S., Akutse, K. S., Siddiqui, J. A., & Xu, Y. (2021). Model Application of Entomopathogenic Fungi as Alternatives to Chemical Pesticides: Prospects, Challenges, and Insights for Next-Generation Sustainable Agriculture. Frontiers in Plant Science, 12(September). https://doi.org/10.3389/fpls.2021.74180
dc.relation.referencesBarrera G. et al. (2016). Generación de estrategias para la potenciación de agentes de control biológico con miras al desarrollo de bioplaguicidas de alta eficiencia. https://vivo.agrosavia.co/display/proinv762
dc.relation.referencesBarrera. G. et al. (2021). Desarrollo de bioplaguicidas potenciados de nueva generación para el mejoramiento de la productividad e inocuidad del cultivo de tomate y crucíferas en el departamento de Cundinamarca. Formulación de proyecto SGR. Corporación Colombiana de Investigación Agropecuaria.
dc.relation.referencesBhat, M. Y., Dar, T. A., & Singh, L. R. (2016). Casein Proteins: Structural and Functional Aspects. In Milk Proteins - From Structure to Biological Properties and Health Aspects. InTech. https://doi.org/10.5772/64187
dc.relation.referencesBenjamin, A. (2023). Protein quantification methods: Advantages and limitations. J Clin Bioanal Chem 2023 Volume 7 Issue https://www.alliedacademies.org/articles/protein-quantification-methods-advantages- and-limitations.pdf
dc.relation.referencesBilgrami, A., Khan, A., (2022). Plant nematode biopesticides. Academic Press. https://doi.org/10.1016/B978-0-12-823006-0.00004-8
dc.relation.referencesBortoluzzi Baldoni, D., Antoniolli, Z. I., Márcio, &, Mazutti, A., Josemar, R., Jacques, S., Dotto, A. C., Andressa De, &, Silveira, O., Camargo Ferraz, R., Valdemir, &, Soares, B., Angélica, &, & Castro De Souza, R. (n.d.). Chitinase production by Trichoderma koningiopsis UFSMQ40 using solid state fermentation. https://doi.org/10.1007/s42770- 020-00334-w/Published
dc.relation.referencesCabrera, M. P., Assis, C. R. D., Neri, D. F. M., Pereira, C. F., Soria, F., & Carvalho, L. B. (2017). High sucrolytic activity by invertase immobilized onto magnetic diatomaceous earth nanoparticles. Biotechnology https://doi.org/10.1016/j.btre.2017.03.001 Reports, 14, 38–46.
dc.relation.referencesChanyal, S. (2016). Optimization of protease production by endophytic fungus, alternaria alternata isolated from gymnosperm tree-cupressus torulosa d.don. https://doi.org/10.20959/wjpps20167-7137
dc.relation.referencesChokri, M., Azougagh, O., El Bojaddayni, I., Jalafi, I., Ouardi, Y. EL., Jilal, I., Ahari, M., Salhi, A., El Idrissi, A., Bendahhou, A., Abou-Salama, M., & El Barkany, S. (2025). Progress in bentonite clay modification and enhancing properties to industrial applications: A review. Materials Chemistry and https://doi.org/10.1016/j.matchemphys.2025.130486 Physics, 337, 130486.
dc.relation.referencesChourasia, R., Phukon, L. C., Abedin, M. M., Padhi, S., Singh, S. P., & Rai, A. K. (2022). Whey valorization by microbial and enzymatic bioprocesses for the production of nutraceuticals and value-added products. In Bioresource Technology Reports (Vol. 19). Elsevier Ltd. https://doi.org/10.1016/j.biteb.2022.101144
dc.relation.referencesChua, C., Liu, Y., Williams, R. J., Chua, C. K., & Sing, S. L. (2024). In-process and post- process strategies for part quality assessment in metal powder bed fusion: A review. Journal of Manufacturing Systems (Vol. 73, pp. 75–105). Elsevier B.V. https://doi.org/10.1016/j.jmsy.2024.01.004
dc.relation.referencesConfortin, T. C., Spannemberg, S. S., Todero, I., Luft, L., Brun, T., Alves, E. A., Kuhn, R. C., & Mazutti, M. A. (2019). Microbial enzymes as control agents of diseases and pests in organic agriculture. New and Future Developments in Microbial Biotechnology and Bioengineering: Microbial Secondary Metabolites Biochemistry and Applications, 321– 332. https://doi.org/10.1016/B978-0-444-63504-4.00021-9
dc.relation.referencesCosta Silva, T. A., Souza, C. R. F., Said, S., & Oliveira, W. P. (2015). Drying of enzyme immobilized on eco-friendly supports. African Journal of Biotechnology, 14(44), 3019– 3026. https://doi.org/10.5897/ajb2015.14830
dc.relation.referencesCunha, F. M., Vasconcellos, V. M., Florencio, C., Badino, A. C., & Farinas, C. S. (2017). On- Site Production of Enzymatic Cocktails Using a Non-conventional Fermentation Method with Agro-Industrial Residues as Renewable Feedstocks. Waste and Biomass Valorization, 8(2), 517–526. https://doi.org/10.1007/s12649-016-9609-y
dc.relation.referencesCupp-Enyard, C., & Aldrich, S. (2008). Sigma’s non-specific protease activity assay - Casein as a substrate. Journal of Visualized Experiments, 19. https://doi.org/10.3791/899
dc.relation.referencesDe Sousa, T. K., Silva, A. T. da, & Soares, F. E. de F. (2025). Fungi-Based Bioproducts: A Review in the Context of One Health. In Pathogens (Vol. 14, Issue 5). Multidisciplinary Digital Publishing https://doi.org/10.3390/pathogens14050463 Institute (MDPI).
dc.relation.referencesDerbe, T., Temesgen, S., & Bitew, M. (2021). A Short Review on Synthesis, Characterization, and Applications of Zeolites. In Advances in Materials Science and Engineering (Vol. 2021). Hindawi Limited. https://doi.org/10.1155/2021/6637898
dc.relation.referencesDhanker, R., Saxena, A., Tiwari, A., Kumar Singh, P., Kumar Patel, A., Dahms, H. U., Hwang, J. S., González-Meza, G. M., Melchor-Martínez, E. M., Iqbal, H. M. N., & Parra- Saldívar, R. (2024). Towards sustainable diatom biorefinery: Recent trends in cultivation and applications. In Bioresource Technology (Vol. 391). Elsevier Ltd. https://doi.org/10.1016/j.biortech.2023.129905
dc.relation.referencesDhawan, M., & Joshi, N. (2017). Enzymatic comparison and mortality of Beauveria bassiana against cabbage caterpillar Pieris brassicae LINN. Brazilian Journal of Microbiology, 48(3), 522–529. https://doi.org/10.1016/j.bjm.2016.08.004
dc.relation.referencesElgammal, E. W., El-Khonezy, M. I., Ahmed, E. F., & Abd-Elaziz, A. M. (2020). Enhanced production, partial purification, and characterization of alkaline thermophilic protease from the endophytic fungus Aspergillus ochraceus BT21. Egyptian Pharmaceutical Journal, 19(4), 338–349. https://doi.org/10.4103/epj.epj_31_20
dc.relation.referencesEl-Khonezy, M. I., Elgammal, E. W., Ahmed, E. F., & Abd-Elaziz, A. M. (2021). Detergent stable thiol-dependant alkaline protease produced from the endophytic fungus Aspergillus ochraceus BT21: Purification and kinetics. Biocatalysis and Agricultural Biotechnology, 35. https://doi.org/10.1016/j.bcab.2021.102046
dc.relation.referencesFerreira, J. M., Pinto, S. M. N., & Soares, F. E. F. (2021). Metarhizium robertsii protease and conidia production, response to heat stress and virulence against Aedes aegypti larvae. AMB Express, 11(1). https://doi.org/10.1186/s13568-021-01326-1
dc.relation.referencesFerreira, J. M., Fernandes, É. K. K., Kim, J. S., & Soares, F. E. F. (2024). The Combination of Enzymes and Conidia of Entomopathogenic Fungi against Aphis gossypii Nymphs and Spodoptera frugiperda https://doi.org/10.3390/jof10040292 Larvae. Journal of Fungi, 10(4).
dc.relation.referencesFirouzbakht, H., Zibaee, A., Hoda, H., & Sohani, M. M. (2015). Purification and characterization of the cuticle-degrading proteases produced by an isolate of Beauveria bassiana using the cuticle of the predatory bug, Andrallus spinidens Fabricius (Hemiptera: Pentatomidae). Journal of Plant Protection Research, 55(2), 179–186. https://doi.org/10.1515/jppr-2015-0024
dc.relation.referencesGao, Y., Doherty, C. M., & Mulet, X. (2020). A Systematic Study of the Stability of Enzyme/Zeolitic Imidazolate Framework-8 Composites in Various Biologically Relevant Solutions. ChemistrySelect, https://doi.org/10.1002/slct.202003575 5(43), 13766–13774.
dc.relation.referencesGolzan, S. R., Talaei-Hassanloui, R., Homayoonzadeh, M., & Safavi, S. A. (2023). Role of cuticle-degrading enzymes of Beauveria bassiana and Metarhizium anisopliae in virulence on Plodia interpunctella (Lepidoptera, Pyralidae) larvae. Journal of Asia- Pacific Entomology, 26(2). https://doi.org/10.1016/j.aspen.2023.102038
dc.relation.referencesGonzález-Weller, D., Paz-Montelongo, S., Bethencourt-Barbuzano, E., Niebla-Canelo, D., Alejandro-Vega, S., Gutiérrez, Á. J., Hardisson, A., Carrascosa, C., & Rubio, C. (2023). Proteins and Minerals in Whey Protein Supplements. Foods, 12(11). https://doi.org/10.3390/foods12112238
dc.relation.referencesGoyal, S., Ramawat, K. G., & Mérillon, J. M. (2016). Fungal Metabolites. Fungal Metabolites, February 2016. https://doi.org/10.1007/978-3-319-19456-1
dc.relation.referencesGuo, Y., Wang, Z., Zhou, X. et al. Removal of mercury (II) from aqueous solution with three commercial raw activated carbons. Res Chem Intermed 43, 2273–2297 (2017). https://doi.org/10.1007/s11164-016-2761-y
dc.relation.referencesHe, J., Zhang, X., Wang, Q., Li, N., Ding, D., & Wang, B. (2023). Optimization of the Fermentation Conditions of Metarhizium robertsii and Its Biological Control of Wolfberry Root Rot Disease. https://doi.org/10.3390/microorganisms11102380 Microorganisms, 11(10).
dc.relation.referencesHemker, A., Nguyen, L., & Salvi, D. (2023). Effect of high-pressure technologies on enzyme activity and stability. Science and Applications. https://doi.org/10.1016/B978-0-323- 98386-0.00008-7
dc.relation.referencesHyder, M., Ul Haq, I., Younas, M., Ghafar, M. A., Akhtar, M. R., Ahmed, Z., Bukero, A., & Hou, Y. (2025). Floral Resource Integration: Enhancing Biocontrol of Tuta absoluta Within Sustainable IPM Frameworks. In Plants (Vol. 14, Issue 3). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/plants14030319
dc.relation.referencesIbrahim, A. S. S., Al-Salamah, A. A., El-Toni, A. M., Almaary, K. S., El-Tayeb, M. A., Elbadawi, Y. B., & Antranikian, G. (2016). Enhacement of alkaline protease activity and stability via covalent immobilization onto hollow core-mesoporous shell silica nanospheres. International Journal https://doi.org/10.3390/ijms17020184 of Molecular Sciencies. 17(2).
dc.relation.referencesKaya, B., Wijayarathna, E. R. K. B., Yüceer, Y. K., Agnihotri, S., Taherzadeh, M. J., & Sar, T. (2024). The use of cheese whey powder in the cultivation of protein-rich filamentous fungal biomass for sustainable food production. Frontiers in Sustainable Food Systems, 8. https://doi.org/10.3389/fsufs.2024.1386519
dc.relation.referencesKepekçi, R., İlçe, B & Kanmazalp, S. (2021). Plant-derived biomaterials for wound healing. Studies in Natural Products Chemistry. https://doi.org/10.1016/B978-0-12-819489- 8.00001-6
dc.relation.referencesKumari, A., Kaur, B., Srivastava, R., & Sangwan, R. S. (2015). Isolation and immobilization of alkaline protease on mesoporous silica and mesoporous ZSM-5 zeolite materials for improved catalytic properties. Biochemistry and Biophysics Reports, 2, 108–114. https://doi.org/10.1016/j.bbrep.2015.05.009
dc.relation.referencesLacey, L. A., Grzywacz, D., Shapiro-Ilan, D. I., Frutos, R., Brownbridge, M., & Goettel, M. S. (2015). Insect pathogens as biological control agents: Back to the future. Journal of Invertebrate Pathology, https://doi.org/10.1016/j.jip.2015.07.009 132(October 2017), 1–41.
dc.relation.referencesLiu, P. et al. (2010). Adsorptive Immobilization of Four Proteases on Different Molecular Sieves. https://www.ingentaconnect.com/content/apcs/apcs/2010/00000026/00000004/art0 0 043
dc.relation.referencesLoera-Corral, O., Porcayo-Loza, J., Montesinos-Matias, R., & Favela-Torres, E. (2016). Production of conidia by the fungus Metarhizium anisopliae using solid-state fermentation. In Methods in Molecular Biology (Vol. 1477, pp. 61–69). Humana Press Inc. https://doi.org/10.1007/978-1-4939-6367-6_6
dc.relation.referencesLópez-Trujillo, J., Mellado-Bosque, M., Ascacio-Valdés, J. A., Prado-Barragán, L. A., Hernández-Herrera, J. A., & Aguilera-Carbó, A. F. (2023). Temperature and pH Optimization for Protease Production Fermented by Yarrowia lipolytica from Agro- Industrial Waste. Fermentation, 9(9). https://doi.org/10.3390/fermentation9090819
dc.relation.referencesLuo, Y., & Wang, T. (2016). Pharmaceutical and Cosmetic Applications of Protein By- Products. In Protein Byproducts: Transformation from Environmental Burden Into Value-Added Products (pp. 147–160). Elsevier Inc. https://doi.org/10.1016/B978-0 12- 802391-4.00009-4
dc.relation.referencesLutyński, M., Sakiewicz, P., & Lutyńska, S. (2019). Characterization of diatomaceous earth and resources https://doi.org/10.3390/min9110670 of Poland. Minerals, 9(11).
dc.relation.referencesMaghraby, Y. R., El-Shabasy, R. M., Ibrahim, A. H., & Azzazy, H. M. E. S. (2023). Enzyme Immobilization Technologies and Industrial Applications. In ACS Omega (Vol. 8, Issue 6, pp. 5184–5196). https://doi.org/10.1021/acsomega.2c07560 American Chemical Society.
dc.relation.referencesMantzoukas, S., Kitsiou, F., Natsiopoulos, D., & Eliopoulos, P. A. (2022). Entomopathogenic Fungi: Interactions Encyclopedia, 2(2), 646–656. and https://doi.org/10.3390/encyclopedia2020044 Applications.
dc.relation.referencesMartău, G. A., Unger, P., Schneider, R., Venus, J., Vodnar, D. C., & López-Gómez, J. P. (2021). Integration of solid state and submerged fermentations for the valorization of organic municipal solid https://doi.org/10.3390/jof7090766 waste. Journal of Fungi, 7(9).
dc.relation.referencesMartínez-Medina, G. A., Barragán, A. P., Ruiz, H. A., Ilyina, A., Hernández, J. L. M., Rodríguez-Jasso, R. M., Hoyos-Concha, J. L., & Aguilar-González, C. N. (2018). Fungal proteases and production of bioactive peptides for the food industry. In Enzymes in Food Biotechnology: Production, Applications, and Future Prospects (pp. 221–246). Elsevier. https://doi.org/10.1016/B978-0-12-813280-7.00014-1
dc.relation.referencesMascarin, G. M., Golo, P. S., de Souza Ribeiro-Silva, C., Muniz, E. R., de Oliveira Franco, A., Kobori, N. N., & Fernandes, É. K. K. (2024). Advances in submerged liquid fermentation and formulation of entomopathogenic fungi. In Applied Microbiology and Biotechnology (Vol. 108, Issue 1). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s00253-024-13287-z
dc.relation.referencesMefteh, F. Ben, Frikha, F., Daoud, A., Bouket, A. C., Luptakova, L., Alenezi, F. N., Al-Anzi, B. S., Oszako, T., Gharsallah, N., & Belbahri, L. (2019). Response surface methodology optimization of an acidic protease produced by penicillium bilaiae isolate tdpef30, a newly recovered endophytic fungus from healthy roots of date palm trees (Phoenix dactylifera l.). https://doi.org/10.3390/microorganisms7030074 Microorganisms, 7(3).
dc.relation.referencesMejía, C. (2022). Informe de subactividad de expresión de enzimas. Desarrollo de bioplaguicidas potenciados de nueva generación para el mejoramiento de la productividad e inocuidad del cultivo de tomate y crucíferas en el departamento de Cundinamarca. Corporación Colombiana de Investigación Agropecuaria.
dc.relation.referencesMéndez-González, F., Loera, O., Saucedo-Castañeda, G., & Favela-Torres, E. (2020). Forced aeration promotes high production and productivity of infective conidia from Metarhizium robertsii in solid-state fermentation. Biochemical Engineering Journal, 156(July 2019), 107492. https://doi.org/10.1016/j.bej.2020.107492
dc.relation.referencesMinitab LLC. (2018). MINITAB. https://www.minitab.com/en-us/products/minitab/
dc.relation.referencesMordor Intelligence, (s.f). Biopesticides Market SIZE & SHARE ANALYSIS - GROWTH TRENDS & FORECASTS UP TO 2029 Source: https://www.mordorintelligence.com/industry-reports/global-biopesticides- market-industry
dc.relation.referencesMukherjee, K., & Vilcinskas, A. (2018). The entomopathogenic fungus Metarhizium robertsii communicates with the insect host galleria mellonella during infection. Virulence, 9(1), 402–413. https://doi.org/10.1080/21505594.2017.1405190
dc.relation.referencesMulet-Cabero, A. I., Torcello-Gómez, A., Saha, S., Mackie, A. R., Wilde, P. J., & Brodkorb, A. (2020). Impact of caseins and whey proteins ratio and lipid content on in vitro digestion and ex vivo absorption. https://doi.org/10.1016/j.foodchem.2020.126514
dc.relation.referencesMurray, M. (2019). Comprehensive Biotechnology. Third Edition. University Of Waterloo. Ontario. Canada
dc.relation.referencesNaher, L., Fatin, S. N., Sheikh, M. A. H., Azeez, L. A., Siddiquee, S., Zain, N. M., & Karim, S. M. R. (2021). Cellulase enzyme production from filamentous fungi trichoderma reesei and aspergillus awamori in submerged fermentation with rice straw. Journal of Fungi, 7(10), 1–11. https://doi.org/10.3390/jof7100868
dc.relation.referencesNazir, M. T., Soufiani, A. M., Ferreira, J. A., Sar, T., & Taherzadeh, M. J. (2022). Production of filamentous fungal biomass with increased oil content using olive oil as a carbon source. Journal of Chemical Technology and Biotechnology, 97(9), 2626–2635. https://doi.org/10.1002/jctb.7135
dc.relation.referencesOliveira-Ribeiro, L. M., Meili, L., Silva-Belo-Gois, G. N., Rosas-Garcia-Almeida, R. M., & da Silva-Duarte, J. L. (2019). Immobilization of lipase in B1 obtained from Manihot esculenta Crantz. Revista ION, 32(2), 7–13. https://doi.org/10.18273/revion.v32n2- 2019001
dc.relation.referencesOuedraogo, J., Tsang, A. (2021). Production of native and recombinant enzymes by fungi for applications. Encyclopedia of Mycology. https://doi.org/10.1016/B978-0-12-819990-9.00046-9
dc.relation.referencesPadilla Doval, J., & Zambrano Arteaga, J. C. (2021). Estructura, propiedades y genética de las CSNs de la leche: una revisión. CES Medicina Veterinaria y Zootecnia, 16(3), 62 95. https://doi.org/10.21615/cesmvz.5231
dc.relation.referencesPawar, K. S., Singh, P. N., & Singh, S. K. (2023). Fungal alkaline proteases and their potential applications in different industries. In Frontiers in Microbiology (Vol. 14). Frontiers Media S.A. https://doi.org/10.3389/fmicb.2023.1138401
dc.relation.referencesPerwez, M., & Al Asheh, S. (2025). Valorization of agro-industrial waste through solid-state fermentation: Mini review. In Biotechnology Reports (Vol. 45). Elsevier B.V. https://doi.org/10.1016/j.btre 2024.e00873
dc.relation.referencesPimcharoen, K., Opaprakasit, P., Yingchutrakul, Y., Simanon, N., Butkinaree, C., Yuttayong, D., Hompa, R., Vayachuta, L., & Prompinit, P. (2024). Bromelain Immobilized onto Clay-Carboxymethylcellulose Composites for Improving Nutritive Value of Soybean Meal. ACS Applied Bio Materials, https://doi.org/10.1021/acsabm.4c00392
dc.relation.referencesPourkhanali, K., Khayati, G., Mizani, F., & Raouf, F. (2022). Characterization of free and immobilized lipase from Penicillium sp. onto three modified bentonites: A comparative study. Journal of Biotechnology, https://doi.org/10.1016/j.jbiotec.2021.12.013
dc.relation.referencesPrimožič, M., Podrepšek, G. H., Pavlovič, I., Škerget, M., Knez, Ž., & Leitgeb, M. (2019). Acta Enzyme immobilization onto B1 produced by the hydrothermal carbonization of biomass. Chimica Slovenica, 66(3), 732–739. https://doi.org/10.17344/acsi.2019.5013
dc.relation.referencesReinehr, C. O., Treichel, H., Tres, M. V., Steffens, J., Brião, V. B., & Colla, L. M. (2017). Successive membrane separation processes simplify concentration of lipases produced by Aspergillus niger by solid-state fermentation. Bioprocess and Biosystems Engineering, 40(6), 843–855. https://doi.org/10.1007/s00449-017-1749-3
dc.relation.referencesSahoo, A., Mahanty, B., Daverey, A., & Dutta, K. (2020). Nattokinase production from Bacillus subtilis using cheese whey: Effect of nitrogen supplementation and dynamic modelling. Journal of Water https://doi.org/10.1016/j.jwpe.2020.101533
dc.relation.referencesSambo, S., Adamu, S., & Haruna, I. (2024). Comparison of Protease Activity between Two Fungal Strains and Commercial Rennet on Different Substrates. Greener Trends in Food Science and Nutrition, https://doi.org/10.15580/gtfsn.2024.1.111124166
dc.relation.referencesSelf, R. A., Harrison, M. D., Te’o, V. S., & Van Sluyter, S. (2022). Development of simple, scalable protease production from Botrytis cinerea. Applied Microbiology and Biotechnology, 106(5–6), 2219–2233. https://doi.org/10.1007/s00253-022-11817-1
dc.relation.referencesSerrano-Lotina, A., Portela, R., Baeza, P., Alcolea-Rodriguez, V., Villarroel, M., & Ávila, P. (2023). Zeta potential as a tool for functional materials development. Catalysis Today, 423. https://doi.org/10.1016/j.cattod.2022.08.004
dc.relation.referencesShang, J, et al., (2024). Metarhizium robertsii. Trends in Parasitology. https://www.cell.com/trends/parasitology/abstract/S1471-4922(23)00279- 9#:~:text=M.,propagation%20within%20insect%20body%20cavities
dc.relation.referencesShen, S., Yang, S., Jiang, Q., Luo, M., Li, Y., Yang, C., & Zhang, D. (2020). Effect of dissolved organic matter on adsorption of sediments to Oxytetracycline: An insight from zeta potential and DLVO theory. Environmental Science and Pollution Research, 27(2), 1697–1709. https://doi.org/10.1007/s11356-019-06787-3
dc.relation.referencesSigurdardóttir, S. B., Lehmann, J., Ovtar, S., Grivel, J. C., Negra, M. Della, Kaiser, A., & Pinelo, M. (2018). Enzyme Immobilization on Inorganic Surfaces for Membrane Reactor Applications: Mass Transfer Challenges, Enzyme Leakage and Reuse of Materials. Advanced Synthesis and Catalysis, 360(14), 2578–2607. https://doi.org/10.1002/adsc.201800307
dc.relation.referencesSilva, V. D. M., De Marco, L. M., Afonso, W. D. O., Lopes, D. C. F., & Silvestre, M. P. C. (2007). Comparative Study of the Immobilization of Pancreatin and Papain on Activated Carbon and Alumina, Using Whey as Protein Substrate. World Applied Sciences Journal, 2(3), 175–183.
dc.relation.referencesSobral, A. F., Ramos, D. G., Lima, B. C. S., Liu, T. P. S. L., Silva, M. R. O. B. da, Lino, L. H. S., Cardoso, K. B. B., Albuquerque, W. W. C., Nascimento, T. P., & Brandão Costa, R. M. P. (2025). Purification and Characterization of a Protease Using Aspergillus oryzae Under Submerged Fermentation Using Dairy By-Products as a Substrate. Catalysts, 15(6). https://doi.org/10.3390/catal15060575
dc.relation.referencesSomatco. (s.f). Zeta-Meter System 3.0+. Manual de uso. Universidad Nacional de Colombia.
dc.relation.referencesSørensen, J. L., & Sondergaard, T. E. (2014). The effects of different yeast extracts on secondary metabolite production in Fusarium. International Journal of Food Microbiology, 170, 55–60. https://doi.org/10.1016/j.ijfoodmicro.2013.10.024
dc.relation.referencesSouza, S. A. de, Padial, I. M. P. M., Souza, T. S. de, Domingues, A., Ferreira, E. A., Mauad, M., Cardoso, C. A. L., Malaquias, J. B., Oliveira, L. V. de Q., Formagio, A. S. N., Mauad, J. R. C., & Mussury, R. M. (2025). Evaluation of Bioinseticide in the Control of Plutella xylostella (Linnaeus, 1758): A Laboratory Study for Large-Scale Implementation. Sustainability (Switzerland), 17(4). https://doi.org/10.3390/su17041626
dc.relation.referencesSpanou, A., Liakouli, N. C., Fiotaki, C., & Pavlidis, I. V. (2024). Comparative Study of Immobilized Biolipasa-R for Second Generation Biodiesel Production from an Acid Oil. ChemBioChem. https://doi.org/10.1002/cbic.202400514
dc.relation.referencesTakalloo, Z., Nikkhah, M., Nemati, R., Jalilian, N., & Sajedi, R. H. (2020). Autolysis, plasmolysis and enzymatic hydrolysis of baker’s yeast (Saccharomyces cerevisiae): a comparative study. World Journal of Microbiology and Biotechnology, 36(5). https://doi.org/10.1007/s11274-020-02840-3
dc.relation.referencesTalebi, M., Vaezifar, S., Jafary, F., Fazilati, M., & Motamedi, S. (2016). Stability improvement of immobilized α-amylase using nano pore zeolite. Iranian Journal of Biotechnology, 14(1), 33–38. https://doi.org/10.15171/ijb.1261
dc.relation.referencesTao, Z., Yuan, H., Liu, M., Liu, Q., Zhang, S., Liu, H., Jiang, Y., Huang, D., & Wang, T. (2023). Yeast Extract: Characteristics, Production, Applications and Future Perspectives. In Journal of Microbiology and Biotechnology (Vol. 33, Issue 1, pp. 151– 166). Korean Society for Microbiolog and Biotechnology. https://doi.org/10.4014/jmb.2207.07057
dc.relation.referencesThurman, J. H., & Furlong, M. J. (2025). “Biocontrol of diamondback moth (Plutella xylostella) in organic crops: Spatial and seasonal dynamics.” Agriculture, Ecosystems and Environment, 385. https://doi.org/10.1016/j.agee.2025.109567
dc.relation.referencesUmaru, F. F., & Simarani, K. (2020). Evaluation of the potential of fungal biopesticides for the biological control of the seed bug, elasmolomus pallens (Dallas) (hemiptera: Rhyparochromidae). Insects, 11(5). https://doi.org/10.3390/insects11050277
dc.relation.referencesVakili, F., Mojtabavi, S., Imanparast, S., Kianmehr, Z., Forootanfar, H., & Faramarzi, M. A. (2020). Immobilization of lipase on the modified magnetic diatomite earth for effective methyl esterification of isoamyl alcohol to synthesize banana flavor. 3 Biotech, 10(10). https://doi.org/10.1007/s13205-020-02437-5
dc.relation.referencesVirginia, M. S., Patricia, V. T., Jadson, D. P. B., Laura, M. P., Elza, A. de L. A. L., & Ana, L. F. P. (2013). Pathogenicity of Beauveria bassiana and production of cuticle-degrading enzymes in the presence of Diatraea saccharalis cuticle. African Journal of Biotechnology, 12(46), 6491–6497. https://doi.org/10.5897/ajb2013.11972
dc.relation.referencesVivekanandhan, P., Swathy, K., Sarayut, P., & Patcharin, K. (2024). Biology, classification, and entomopathogen-based management and their mode of action on Tuta absoluta (Meyrick) in Asia. In Frontiers in Microbiology (Vol. 15). Frontiers Media SA. https://doi.org/10.3389/fmicb.2024.1429690
dc.relation.referencesZafar, J., Shoukat, R. F., Zhang, Y., Freed, S., Xu, X., & Jin, F. (2020). Metarhizium anisopliae challenges immunity and demography of Plutella xylostella. Insects, 11(10), 1–15. https://doi.org/10.3390/insects11100694
dc.relation.referencesZakirov, T. R., & Khramchenkov, M. G. (2022). Effect of pore space heterogeneity on the adsorption dynamics in porous media at various convection-diffusion and reaction conditions: A lattice Boltzmann study. Journal of Petroleum Science and Engineering, 212. https://doi.org/10.1016/j.petrol.2022.110300
dc.relation.referencesZhang, D., Qi, H., & Zhang, F. (2025). Parasitism by Entomopathogenic Fungi and Insect Host Defense Strategies. In Microorganisms (Vol. 13, Issue 2). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/microorganisms13020283
dc.relation.referencesZhang, H., Jiang, Z., Xia, Q., & Zhou, D. (2021). Progress and perspective of enzyme immobilization on zeolite crystal materials. Biochemical Engineering Journal, 172(February), 108033. https://doi.org/10.1016/j.bej.2021.108033
dc.relation.referencesZhao, Z., Xiao, Z., Jiang, B. Chen, J. (2024). Tailored chitosan integration in diatomaceous earth particles as scaffold for fructosyltransferase immobilization in fructooligosaccharide production. Journal of the Science of Food and Agriculture. Wiley. https://doi.org/10.1002/jsfa.13480
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.lembENZIMAS PROTEOLITICASspa
dc.subject.lembProteolytic enzymeseng
dc.subject.lembPRODUCTOS QUIMICOS AGRICOLAS-ASPECTOS AMBIENTALESspa
dc.subject.lembAgricultural chemicals - environmental aspectseng
dc.subject.lembHONGOS ENTOMOPATOGENOSspa
dc.subject.lembEntomopathogenic fungieng
dc.subject.lembPOLILLA DEL TOMATE-CONTROL QUIMICOspa
dc.subject.lembScrobieleula absoluta - Chemical controleng
dc.subject.proposalBioplaguicidasspa
dc.subject.proposalFermentación líquidaspa
dc.subject.proposalHongo entomopatógenospa
dc.subject.proposalInmovilización enzimáticaspa
dc.subject.proposalSoportes inorgánicosspa
dc.subject.proposalBiopesticideseng
dc.subject.proposalEntomopathogenic funguseng
dc.subject.proposalEnzymatic immobilizationeng
dc.subject.proposalInorganic supportseng
dc.subject.proposalLiquid fermentationeng
dc.subject.proposalBioplaguicidasspa
dc.titleObtención e inmovilización de proteasas de Metarhizium robertsii Mt015 como ingrediente activo en bioplaguicidas de nueva generaciónspa
dc.title.translatedObtaining and immobilizing proteases from Metarhizium robertsii Mt015 as an active ingredient in new-generation biopesticideseng
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentPúblico general
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.fundernameAgrosavia

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Obtención e inmovilización de proteasas de Mt015 - Tesis.pdf
Tamaño:
2.19 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: