A measure for computing the speed limit rate in a region

dc.contributor.advisorMoreno Arboleda, Francisco Javier
dc.contributor.authorZea Gallego, Simon
dc.contributor.orcidMoreno Arboleda, Francisco Javier [0000-0001-7806-6278]spa
dc.date.accessioned2022-11-10T13:40:37Z
dc.date.available2022-11-10T13:40:37Z
dc.date.issued2022-11-08
dc.descriptionilustraciones, diagramasspa
dc.description.abstractIn this thesis, we propose a measure that, based on the trajectories of moving objects, determines the speed limit rate, given a speed limit, in each of the cells in which a region is segmented (the space where the objects move). To do this, we formally define the concept of speed limit rate, which is based on speed segments. The time is also segmented into intervals. In this way, we can analyze the movement of objects in a cell in each time interval. We implemented the corresponding algorithm and conducted experiments with trajectories of taxis in Porto (Portugal). Our results showed that our speed limit rate measure can be helpful for analyzing the behavior of moving objects regarding their speed. Our measure also might serve as a rough estimate for congestion in a (sub)region. This could be useful for traffic analysis including prediction techniqueseng
dc.description.abstractEsta tesis propone una medida que, a partir de las trayectorias de objetos móviles, determina la tasa límite de velocidad dado un límite de velocidad en cada una de las celdas en las que se segmenta una región (el espacio donde se mueven los objetos). Para ello, se define formalmente el concepto de tasa de límite de velocidad, basada en segmentos de velocidad. El tiempo también se segmenta en intervalos. Por tanto, Se puede analizar el movimiento de los objetos en una celda en un intervalo de tiempo determinado. Para ello, se implementó el algoritmo correspondiente y se hicieron experimentos con trayectorias de taxis en Oporto (Portugal). Los resultados mostraron que la medida de tasa de límite de velocidad puede ser útil para analizar el comportamiento de los objetos móviles con respecto a su velocidad. Además, la medida también podría servir como una estimación aproximada de la congestión en una (sub)región, siendo útil para el análisis del tráfico, incluidas las técnicas de predicción. (Texto tomado de la fuente)spa
dc.description.curricularareaÁrea Curricular de Ingeniería de Sistemas e Informáticaspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Analíticaspa
dc.description.researchareaBases de datosspa
dc.format.extent68 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82679
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Analíticaspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesA. Raffaetà, L. L. (2011). visual mobility analysis using t-warehouse. International Journal of Data Warehousing and Mining Volume 7 Issue 1, 1-23.spa
dc.relation.referencesAbish Malik, R. M. (2010). Visual Analytics Law Enforcement Toolkit. IEEE International Conference on Technologies for Homeland Security (HST), 222–228.spa
dc.relation.referencesAfrin, T., & Yodo, N. (2020). A survey of road traffic congestion measures towards a sustainable and resilient transportation system. Sustainability, 12(11), 4660.spa
dc.relation.referencesAllen, J. F. (1983). Maintaining knowledge about temporal intervals. Communications of the ACM, 26(11), 832-843.spa
dc.relation.referencesAlsahfi, T., Almotairi, M., & Elmasri, R. (2020). A survey on trajectory data warehouse. Spatial Information Research, 28(1), 53-66.spa
dc.relation.referencesAndrienko, N., & Andrienko, G. (2013). Visual analytics of movement: An overview of methods, tools and procedures. Information visualization, 12(1), 3-24.spa
dc.relation.referencesAnna Fredrikson, C. N. (1999). Temporal, Geographical and Categorical Aggregations Viewed through Coordinated Displays: A Case Study with Highway Incident Data. NPIVM '99 Proceedings of the 1999 workshop on new paradigms in information visualization and manipulation in conjunction with the eighth ACM internation conference on Information and knowledge management, 26-34 .spa
dc.relation.referencesBeliakov, G., Gagolewski, M., James, S., Pace, S., Pastorello, N., Thilliez, E., & Vasa, R. (2018). Measuring traffic congestion: an approach based on learning weighted inequality, spread and aggregation indices from comparison data. Applied Soft Computing, 67, 910- 919.spa
dc.relation.referencesChen, W., Guo, F., & Wang, F. Y. (2015). A survey of traffic data visualization. IEEE Transactions on Intelligent Transportation Systems, 16(6), 2970-2984.spa
dc.relation.referencesDodge, S., Weibel, R., & Lautenschütz, A. K. (2008). Towards a taxonomy of movement patterns. Information visualization, 7(3-4), 240-252.spa
dc.relation.referencesFelice, P., Clementini, E. (2009). Topological Relationships. In: LIU, L., ÖZSU, M.T. (eds) Encyclopedia of Database Systems. Springer, Boston, MA. https://doi.org/10.1007/978-0- 387-39940-9_432.spa
dc.relation.referencesGonzalez-Calderon, C. A., Posada Henao, J. J., & SÁNCHEZ-DÍAZ, I. D. (2012). The need for congestion pricing in medellin: an economic perspective. Dyna, 79(171), 123-131.spa
dc.relation.referencesGüting, R. H., & Schneider, M. (2005). Moving objects databases. Elsevier.spa
dc.relation.referencesHe, F., Yan, X., Liu, Y., & Ma, L. (2016). A traffic congestion assessment method for urban road networks based on speed performance index. Procedia engineering, 137, 425-433.spa
dc.relation.referencesJoseph M. Hellerstein, P. J. (1997). Online Aggregation. SIGMOD '97 Proceedings of the 1997 ACM SIGMOD international conference on Management of data, 171-182.spa
dc.relation.referencesKohan, M., & Ale, J. M. (2020). Discovering traffic congestion through traffic flow patterns generated by moving object trajectories. Computers, Environment and Urban Systems, 80, 101426.spa
dc.relation.referencesLeonardi, L., Orlando, S., Raffaetà, A., Roncato, A., Silvestri, C., Andrienko, G., & Andrienko, N. (2014). A general framework for trajectory data warehousing and visual OLAP. GeoInformatica, 18(2), 273-312.spa
dc.relation.referencesMagdy, N., Sakr, M. A., & El-Bahnasy, K. (2017). A generic trajectory similarity operator in moving object databases. Egyptian Informatics Journal, 18(1), 29-37.spa
dc.relation.referencesMalinowski, E.; Zimanyi, E. (2008). Advanced Data Warehouse Design—From Conventional to Spatial and Temporal Applications; Data-Centric Systems and Applications; Springer: Berlin, Germany; doi:10.1007/978-3-540-74405-4.spa
dc.relation.referencesMoreira-Matias, L., Gama, J., Ferreira, M., Mendes-Moreira, J., & Damas, L. (2013). Predicting taxi–passenger demand using streaming data. IEEE Transactions on Intelligent Transportation Systems, 14(3), 1393-1402.spa
dc.relation.referencesMockus, A. (1998). Navigating Aggregation Spaces. Proc. IEEE Conference on Information Visualization.spa
dc.relation.referencesNatalia Adrienko, G. A. (2010). Spatial generalisation and aggregation of massive movement data. IEEE Transactions on Visualization and Computer Graphics ( Volume: 17, Issue: 2 Feb. 2011), 205–219.spa
dc.relation.referencesNatalia Andrienko, G. A. (2013). Visual analytics of movement: An overview of methods, tools and procedures. Information Visualization Volume 12 Issue 1, January 2013 , 3–24.spa
dc.relation.referencesOssama, O., Mokhtar, H. M., & El-Sharkawi, M. E. (2011). An extended k-means technique for clustering moving objects. Egyptian Informatics Journal, 12(1), 45-51.spa
dc.relation.referencesRaffaetà, A., Leonardi, L., Marketos, G., Andrienko, G., Andrienko, N., Frentzos, E., ... & Silvestri, C. (2013). Visual mobility analysis using T-warehouse. In Developments in Data Extraction, Management, and Analysis (pp. 1-22). IGI Global.spa
dc.relation.referencesRanacher, P., & Tzavella, K. (2014). How to compare movement? A review of physical movement similarity measures in geographic information science and beyond. Cartography and geographic information science, 41(3), 286-307.spa
dc.relation.referencesRao, A. M., & Rao, K. R. (2012). Measuring urban traffic congestion-a review. International Journal for Traffic & Transport Engineering, 2(4).spa
dc.relation.referencesRobert Krueger, D. T. (2014). Visual Analysis of Movement Behavior using Web Data. Visualization Symposium (PacificVis), 2014 IEEE Pacific, 193- 200.spa
dc.relation.referencesSalau, T. A. O., Adeyefa, A. O., & Oke, S. A. (2004). Vehicle speed control using road bumps. Transport, 19(3), 130-136.spa
dc.relation.referencesSchönig, H. J. (2018). Mastering PostgreSQL 11: Expert techniques to build scalable, reliable, and fault-tolerant database applications. Packt Publishing Ltd.spa
dc.relation.referencesTIBCO Software inc. (2017, 03 20). Spotfire. Retrieved from Spotfire: https://spotfire.tibco.com/.spa
dc.relation.referencesVlahogianni, E. I., Karlaftis, M. G., & Golias, J. C. (2014). Short-term traffic forecasting: Where we are and where we’re going.Transportation Research Part C: Emerging Technologies, 43, 3-19.spa
dc.relation.referencesYanagisawa, Y., & Satoh, T. (2006, April). Clustering multidimensional trajectories based on shape and velocity. In 22nd International Conference on Data Engineering Workshops (ICDEW'06) (pp. 12-12). IEEE.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc380 - Comercio , comunicaciones, transporte::388 - Transportespa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computaciónspa
dc.subject.lembFlujo de tráficospa
dc.subject.lembTraffic floweng
dc.subject.lembTransporte terrestre a alta velocidadspa
dc.subject.lembHigh speed ground transportationeng
dc.subject.proposalTrajectorieseng
dc.subject.proposalMoving objectseng
dc.subject.proposalSpeedeng
dc.subject.proposalSpeed limit rateeng
dc.subject.proposalCongestioneng
dc.subject.proposalTrayectoriasspa
dc.subject.proposalObjetos en movimientospa
dc.subject.proposalVelocidadspa
dc.subject.proposalTasa de límite de velocidadspa
dc.subject.proposalCongestiónspa
dc.titleA measure for computing the speed limit rate in a regioneng
dc.title.translatedUna medida para calcular la tasa de límite de velocidad en una regiónspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1037639269.2022.pdf
Tamaño:
6.86 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Analítica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: