Modelo de degradación para baterías de segunda vida en la gestión de energía de una microrred aislada

dc.contributor.advisorCandelo Becerra , John Edwin
dc.contributor.advisorGomez Luna, Eduardo
dc.contributor.authorGuzmán Patiño, Wilder Fitzgerald
dc.contributor.cvlacGuzmán, Wilder Fitzgerald
dc.contributor.googlescholarhttps://www.researchgate.net/profile/Wilder-Guzman-Patino
dc.contributor.orcidGuzmán Patiño, Wilder Fitzgeral [0000000150565462]
dc.contributor.orcidCandelo Becerra, John Edwin [0000000297849494]
dc.contributor.orcidGómez-Luna. Eduardo [0000000322636758]
dc.date.accessioned2025-12-19T15:47:10Z
dc.date.available2025-12-19T15:47:10Z
dc.date.issued2025-09-14
dc.descriptionilustraciones
dc.description.abstractEsta investigación presenta el desarrollo y análisis de un sistema de gestión de energía (EMS) aplicado a una microrred aislada que integra generación fotovoltaica, un generador diésel y un sistema de almacenamiento con baterías de ion-litio de segunda vida (SLB). Se modelaron los recursos distribuidos y se incorporó un modelo empírico de degradación de SLB en la función objetivo del EMS que fue contrastado con otro modelo lineal. El modelo empírico fue ajustado mediante dos factores adicionales: uno para representar la heterogeneidad térmica a nivel de módulo y otro para capturar la degradación por calendario y el efecto del estado de carga promedio. Los resultados muestran que la elección del modelo de degradación impacta de manera directa en los costos, la estrategia de despacho y la estimación de la vida útil remanente. Además, se determinó que la temperatura y los gradientes térmicos internos, constituyen el factor externo más determinante en la degradación de sistemas estacionarios. Finalmente, se concluyó que las SLB pueden operar entre 6.9 y 11.3 años (equivalentes a 2520–4114 ciclos completos), dependiendo de la severidad de las condiciones de operación y de la parametrización del modelo. (texto tomado de la fuente)spa
dc.description.abstractThis research presents the development and analysis of an Energy Management System (EMS) applied to an isolated microgrid that integrates photovoltaic generation, a dieselgenerator, and a second-life lithium-ion battery (SLB) storage system. The distributed resources were modeled, and an empirical degradation model of SLBs was incorporated into the EMS objective function, which was contrasted with a linear model. The empirical model was refined using two additional factors: one to represent thermal heterogeneity at the module level and another to capture calendar aging and the effect of the average state of charge. The results show that the choice of degradation model directly impacts costs, dispatch strategy, and the estimation of remaining useful life. Furthermore, it was determined that temperature and internal thermal gradients constitute the most decisive external factor in the degradation of stationary systems. Finally, it was concluded that SLBs can operatebetween 6.9 and 11.3 years (equivalent to 2520–4114 full cycles), depending on the severityeng
dc.description.curricularareaIngeniería Eléctrica E Ingeniería De Control.Sede Medellín
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería - Ingeniería Eléctrica
dc.description.methodsTeórica por medio de simulaciones.
dc.description.researchareaFuentes alternas de energía
dc.format.extent217 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/89239
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.publisher.facultyFacultad de Minas
dc.publisher.placeMedellín, Colombia
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Ingeniería Eléctrica
dc.relation.referencesA. Emrani and A. Berrada, “A comprehensive review on techno-economic assessment of hybrid energy storage systems integrated with renewable energy,” Journal of Energy Storage, vol. 84, 4 2024.
dc.relation.referencesG. E. Blomgren, “The Development and Future of Lithium Ion Batteries,” Journal of The Electrochemical Society, vol. 164, no. 1, pp. A5019–A5025, 2017.
dc.relation.referencesE. Hossain, D. Murtaugh, J. Mody, H. M. R. Faruque, M. S. H. Sunny, and N. Mohammad, “A Comprehensive Review on Second-Life Batteries: Current State, Manufacturing Considerations, Applications, Impacts, Barriers Potential Solutions, Business Strategies, and Policies,” IEEE Access, vol. 7, no. June, pp. 73 215–73 252, 2019.
dc.relation.references“Frontier Technology Issues: Lithium-ion batteries: a pillar for a fossil fuel-free economy?” United Nations, Tech. Rep., 2021.
dc.relation.referencesM. H. S. M. Haram, J. W. Lee, G. Ramasamy, E. E. Ngu, S. P. Thiagarajah, and Y. H. Lee, “Feasibility of utilising second life EV batteries: Applications, lifespan, economics, environmental impact, assessment, and challenges,” Alexandria Engineering Journal, vol. 60, no. 5, pp. 4517–4536, 2021. [Online]. Available: https://doi.org/10.1016/j.aej.2021.03.021
dc.relation.referencesUnidad de Planeación Minero-Energética, “Plan Indicativo de Cobertura de Energia El´ectrica 2019-2023,” Bogotá D.C, Tech. Rep., 2023.
dc.relation.referencesL. Ahmadi, A. Yip, M. Fowler, S. B. Young, and R. A. Fraser, “Environmental feasibility of re-use of electric vehicle batteries,” Sustainable Energy Technologies and Assessments, vol. 6, pp. 64–74, 2014.
dc.relation.referencesS. Nyamathulla and C. Dhanamjayulu, “A review of battery energy storage systems and advanced battery management system for different applications: Challenges and recommendations,” Journal of Energy Storage, vol. 86, 5 2024.
dc.relation.referencesD. A. Elalfy, E. Gouda, M. F. Kotb, V. Bureˇs, and B. E. Sedhom, “Comprehensive review of energy storage systems technologies, objectives, challenges, and future trends,” Energy Strategy Reviews, vol. 54, 7 2024.
dc.relation.references“Diagrama de batería Li-Ion.” [Online]. Available: https://es.dreamstime.com/stockde- ilustración-diagrama-del-batería-li-ion-image97122415
dc.relation.referencesJ. A. Anusch Dietz and J. T. Varga Valero, “Estudio y evaluación de métodos electroquímicos para la recuperación de litio desde salmueras del salar de Atacama,” Ph.D. dissertation, Unversidad de Chile, Santiago de Chile, 2021.
dc.relation.referencesY. Miao, P. Hynan, A. Von Jouanne, and A. Yokochi, “Current li-ion battery technologies in electric vehicles and opportunities for advancements,” Energies, vol. 12, no. 6, pp. 1–20, 2019.
dc.relation.referencesA. Vayrynen and J. Salminen, “Lithium ion battery production,” Journal of Chemical Thermodynamics, vol. 46, pp. 80–85, 3 2012.
dc.relation.referencesD. I. Stroe, M. Swierczynski, A. I. Stroe, and S. K. Kær, “Generalized characterization methodology for performance modelling of lithium-ion batteries,” Batteries, vol. 2, no. 4, 12 2016.
dc.relation.referencesA. Farmann, W. Waag, and D. U. Sauer, “Application-specific electrical characterization of high power batteries with lithium titanate anodes for electric vehicles,” Energy, vol. 112, pp. 294–306, 10 2016.
dc.relation.referencesM. C. Yagci, R. Behmann, V. Daubert, J. A. Braun, D. Velten, and W. G. Bessler, “Electrical and Structural Characterization of Large-Format Lithium Iron Phosphate Cells Used in Home-Storage Systems,” Energy Technology, vol. 9, no. 6, 6 2021.
dc.relation.referencesN. Zatta, B. De Cesaro, E. Dal Cin, G. Carraro, G. Cristofoli, A. Trov`o, A. Lazzaretto, and M. Guarnieri, “Holistic Testing and Characterization of Commercial 18650 Lithium-Ion Cells,” Batteries, vol. 10, no. 7, 7 2024.
dc.relation.referencesO. Tasneem, H. Tasneem, and X. Xian, “Lithium-ion Battery Technologies for Grid-scale Renewable Energy Storage,” Next Research, vol. 2, no. 2, p. 100297, 6 2025. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S305047592500168X
dc.relation.referencesY. Wang, J. Tian, Z. Sun, L. Wang, R. Xu, M. Li, and Z. Chen, “A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems,” Renewable and Sustainable Energy Reviews, vol. 131, 10 2020.
dc.relation.referencesM. U. Ali, A. Zafar, S. H. Nengroo, S. Hussain, M. J. Alvi, and H. J. Kim, “Towards a smarter battery management system for electric vehicle applications: A critical review of lithium-ion battery state of charge estimation,” 1 2019.
dc.relation.referencesL. Lu, X. Han, J. Li, J. Hua, and M. Ouyang, “A review on the key issues for lithiumion battery management in electric vehicles,” Journal of Power Sources, vol. 226, pp. 272–288, 3 2013.
dc.relation.referencesC. R. Birkl, M. R. Roberts, E. McTurk, P. G. Bruce, and D. A. Howey, “Degradation diagnostics for lithium ion cells,” Journal of Power Sources, vol. 341, pp. 373–386, 2 2017.
dc.relation.referencesJ. S. Edge, S. O’Kane, R. Prosser, N. D. Kirkaldy, A. N. Patel, A. Hales, A. Ghosh, W. Ai, J. Chen, J. Yang, S. Li, M. C. Pang, L. Bravo Diaz, A. Tomaszewska, M. W. Marzook, K. N. Radhakrishnan, H. Wang, Y. Patel, B. Wu, and G. J. Offer, “Lithium ion battery degradation: what you need to know,” Physical Chemistry Chemical Physics, vol. 23, no. 14, pp. 8200–8221, 4 2021.
dc.relation.referencesY. Liu, C. Liu, Y. Liu, F. Sun, J. Qiao, and T. Xu, “Review on degradation mechanism and health state estimation methods of lithium-ion batteries,” Journal of Traffic and Transportation Engineering, vol. 10, no. 4, pp. 578–610, 8 2023.
dc.relation.referencesB. Xu, A. Oudalov, A. Ulbig, G. Andersson, and D. S. Kirschen, “Modeling of lithiumion battery degradation for cell life assessment,” IEEE Transactions on Smart Grid, vol. 9, no. 2, pp. 1131–1140, 2018.
dc.relation.referencesG. Ning, B. Haran, and B. N. Popov, “Capacity fade study of lithium-ion batteries cycled at high discharge rates,” Journal of Power Sources, vol. 117, no. 1-2, pp. 160– 169, 5 2003.
dc.relation.referencesJ. Tian, R. Xiong, and W. Shen, “A review on state of health estimation for lithium ion batteries in photovoltaic systems,” eTransportation, vol. 2, 11 2019.
dc.relation.referencesO. Boqtob, H. El Moussaoui, H. El Markhi, and T. Lamhamdi, “Microgrid energy management system: A state-of-the-art review,” Journal of Electrical Systems, vol. 15, no. 1, pp. 53–67, 2019. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0- 85062975313partnerID=40md5=fa3fa3625fd186b71d2dcbaf8cdf43a6
dc.relation.referencesP. Sharma, H. Dutt Mathur, P. Mishra, and R. C. Bansal, “A critical and comparative review of energy management strategies for microgrids,” Applied Energy, vol. 327, 12 2022.
dc.relation.referencesE. Martinez-Laserna, I. Gandiaga, E. Sarasketa-Zabala, J. Badeda, D. I. Stroe, M. Swierczynski, and A. Goikoetxea, “Battery second life: Hype, hope or reality? A critical review of the state of the art,” Renewable and Sustainable Energy Reviews, vol. 93, no. October 2017, pp. 701–718, 2018.
dc.relation.referencesX. Han, L. Lu, Y. Zheng, X. Feng, Z. Li, J. Li, and M. Ouyang, “A review on the key issues of the lithium ion battery degradation among the whole life cycle,” 8 2019.
dc.relation.references“Atlas de radiación solar, ultravioleta y ozona de Colombia,” Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM), Tech. Rep., 2018.
dc.relation.referencesS. Chalise, J. Sternhagen, T. M. Hansen, and R. Tonkoski, “Energy management of remote microgrids considering battery lifetime,” Electricity Journal, vol. 29, no. 6, pp. 1–10, 2016.
dc.relation.referencesMSG Equipment, “Which batteries is Tesla using in its models?” 2023. [Online]. Available: https://msg.equipment/en/blog/articles/which-batteries-is-tesla-using-inits- models
dc.relation.referencesPanasonic, “Panasonic Lithium Ion Datasheet NCR18650B,” 2024. [Online]. Available: https://www.alldatasheet.com/datasheetpdf/ pdf/597043/PANASONICBATTERY/NCR18650B.html
dc.relation.referencesUnited Nations Framework Convention on Climate Change (UNFCCC), “The Paris Agreement,” 2015. [Online]. Available: https://unfccc.int/process-and-meetings/theparis- agreement
dc.relation.referencesMinisterio de Minas y Energ´ıa, “Transición energética: un legado para el presente y el futuro de Colombia,” Tech. Rep., 2021. [Online]. Available: https://www.minenergia.gov.co/es/micrositios/enlace-legado-transicion-energetica/
dc.relation.referencesSuperintendencia de Servicios P´ublicos Domiciliarios, “Informe Sectorial para la Prestación del Servicio de Energía Eléctrica 2023 para Zonas No Interconectadas,” Tech. Rep., 2023.
dc.relation.referencesD. Schnitzer, D. Shinde Lounsbury, J. P. Carvallo, R. Deshmukh, J. Apt, and D. Kammen, “Microgrids for Rural Electrification : A critical review of best practices based on seven case studies Microgrids for Rural Electrification : A critical review of best practices,” United Nation Fundation, Tech. Rep., 2014.
dc.relation.referencesT. Mosetlhe, A. Yusuff, T. Ayodele, and A. Ogunjuyigbe, “Sustainable rural electrification through micro-grids in developing nations — A review of recent development,” Energy Reports, vol. 13, pp. 1171–1177, 6 2025.
dc.relation.referencesG. Zubi, R. Dufo-l´opez, M. Carvalho, and G. Pasaoglu, “The lithium-ion battery: State of the art and future perspectives,” Renewable and Sustainable Energy Reviews, vol. 89, no. October 2017, pp. 292–308, 2018.
dc.relation.referencesA. Manthiram, “An Outlook on Lithium Ion Battery Technology,” ACS Central Science, vol. 3, no. 10, pp. 1063–1069, 10 2017.
dc.relation.referencesXu Bolun, “Degradation-limiting Optimization of Battery Energy Storage Systems Operation,” Ph.D. dissertation, 2013.
dc.relation.referencesH. Bajolle, M. Lagadic, and N. Louvet, “The future of lithium-ion batteries: Exploring expert conceptions, market trends, and price scenarios,” Energy Research and Social Science, vol. 93, 11 2022.
dc.relation.referencesC. Pillot, “Lithium ion battery raw material Supply & demand 2016-2025,” 2016.
dc.relation.referencesJ. Fleischmann, M. Hanicke, E. Horetsky, D. Ibrahim, S. Jautelat, M. Linder, P. Schaufuss, L. Torscht, and A. van de Rijt, “Battery 2030: Resilient, sustainable, and circular,” Tech. Rep. [Online]. Available: https://www.mckinsey.com/industries/automotiveand- assembly/our-insights/battery-2030-resilient-sustainable-and-circular/
dc.relation.referencesL. C. Casals, B. Amante Garc´ıa, and C. Canal, “Second life batteries lifespan: Rest of useful life and environmental analysis,” Journal of Environmental Management, vol. 232, no. October 2017, pp. 354–363, 2019.
dc.relation.referencesD. Strickland, L. Chittock, D. A. Stone, M. P. Foster, and B. Price, “Estimation of transportation battery second life for use in electricity grid systems,” IEEE Transactions on Sustainable Energy, vol. 5, no. 3, pp. 795–803, 2014.
dc.relation.referencesJ. Neubauer, K. Smith, E. Wood, and A. Pesaran, “Identifying and Overcoming Critical Barriers to Widespread Second Use of PEV Batteries,” National Renewable Energy Laboratory (NREL), no. February, pp. 23–62, 2015. [Online]. Available: www.nrel.gov/publications.
dc.relation.referencesH. Ambrose, D. Gershenson, A. Gershenson, and D. Kammen, “Driving rural energy access: A second-life application for electric-vehicle batteries,” Environmental Research Letters, vol. 9, no. 9, 2014.
dc.relation.referencesY. Chen, Y. Kang, Y. Zhao, L.Wang, J. Liu, Y. Li, Z. Liang, X. He, X. Li, N. Tavajohi, and B. Li, “A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards,” pp. 83–99, 2021.
dc.relation.referencesM. Li, J. Lu, Z. Chen, and K. Amine, “30 Years of Lithium-Ion Batteries,” Advanced Materials, vol. 30, no. 33, pp. 1–24, 2018
dc.relation.referencesD. Kamath, R. Arsenault, H. C. Kim, and A. Anctil, “Economic and Environmental Feasibility of Second-Life Lithium-Ion Batteries as Fast-Charging Energy Storage,” Environmental Science and Technology, vol. 54, no. 11, pp. 6878–6887, 2020.
dc.relation.referencesH. Ali, H. A. Khan, and M. G. Pecht, “Circular economy of Li Batteries: Technologies and trends,” Journal of Energy Storage, vol. 40, 8 2021.
dc.relation.referencesM. Roslan, P. R. Satpathy, T. Prasankumar, K. Vigna, Ramachandaramurthy, M. Mansor, and S. L. Walker, “Second-life battery energy storage system for energy sustainability,” Journal of Energy Storage, vol. 123, p. 116808, 2025.
dc.relation.referencesE. Braco, I. San Mart´ın, A. Berrueta, P. Sanchis, and A. Urs´ua, “Experimental assessment of cycling ageing of lithium-ion second-life batteries from electric vehicles,” Journal of Energy Storage, vol. 32, 12 2020.
dc.relation.referencesP. M. Attia, A. Bills, F. Brosa Planella, P. Dechent, G. dos Reis,M. Dubarry, P. Gasper, R. Gilchrist, S. Greenbank, D. Howey, O. Liu, E. Khoo, Y. Preger, A. Soni, S. Sripad, A. G. Stefanopoulou, and V. Sulzer, “Review—“Knees” in Lithium-Ion Battery Aging Trajectories,” Journal of The Electrochemical Society, vol. 169, no. 6, p. 060517, 6 2022.
dc.relation.referencesE. Braco, I. San Martin, A. Berrueta, P. Sanchis, and A. Ursua, “Experimental Assessment of First- And Second-Life Electric Vehicle Batteries: Performance, Capacity Dispersion, and Aging,” IEEE Transactions on Industry Applications, vol. 57, no. 4, pp. 4107–4117, 7 2021.
dc.relation.referencesE. Braco, I. S. Martin, P. Sanchis, and A. Urs´ua, “Characterization and capacity dispersion of lithiumion second-life batteries from electric vehicles,” in Proceedings - 2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe, EEEIC/I and CPS Europe 2019. Institute of Electrical and Electronics Engineers Inc., 6 2019.
dc.relation.referencesS. J. Tong, A. Same, M. A. Kootstra, and J. W. Park, “Off-grid photovoltaic vehicle charge using second life lithium batteries: An experimental and numerical investigation,” Applied Energy, vol. 104, pp. 740–750, 2013. [Online]. Available: http://dx.doi.org/10.1016/j.apenergy.2012.11.046
dc.relation.referencesG. Lacey, G. Putrus, and A. Salim, “The use of second life electric vehicle batteries for grid support,” IEEE EuroCon 2013, no. July 2013, pp. 1255–1261, 2013.
dc.relation.referencesC. Heymans, S. B. Walker, S. B. Young, and M. Fowler, “Economic analysis of second use electric vehicle batteries for residential energy storage and load-levelling,” Energy Policy, vol. 71, no. September 2018, pp. 22–30, 2014.
dc.relation.referencesM. Abdel-monem, O. Hegazy, N. Omar, K. Trad, P. V. Den, and J. V. Mierlo, “Lithiumion Batteries : Comprehensive Technical Analysis of Second-Life Batteries for Smart Grid Applications Vito , Unit of Energy Technology Acknowledgments Keywords,” in 2017 19th European Conference on Power Electronics and Applications (EPE’17 ECCE Europe), 2017, pp. 1–16.
dc.relation.referencesL. C. Casals and B. A. Garc´ıa, “Second-life batteries on a gas turbine power plant to provide area regulation services,” Batteries, vol. 3, no. 1, 2017.
dc.relation.referencesL. Canals Casals, M. Barbero, and C. Corchero, “Reused second life batteries for aggregated demand response services,” Journal of Cleaner Production, vol. 212, pp. 99–108, 2019.
dc.relation.referencesP. J. Hart, P. J. Kollmeyer, L. W. Juang, R. H. Lasseter, and T. M. Jahns, “Modeling of second-life batteries for use in a CERTS microgrid,” in 2014 IEEE Power and Energy Conference at Illinois, PECI 2014, 2014.
dc.relation.referencesM. Aziz, T. Oda, T. Mitani, Y. Watanabe, and T. Kashiwagi, “Utilization of electric vehicles and their used batteries for peak-load shifting,” Energies, vol. 8, no. 5, pp. 3720–3738, 2015.
dc.relation.referencesH. Bai, S. Lei, S. Geng, X. Hu, Z. Li, and Z. Song, “Techno-economic assessment of isolated micro-grids with second-life batteries: A reliability-oriented iterative design framework,” Applied Energy, vol. 364, 6 2024.
dc.relation.referencesZ. Su, C. Dunlap, and P. Chen, “Optimal Design of an Off-grid PV Charger System with Second-Life Batteries Considering Performance Degradation,” in IFACPapersOnLine, vol. 58, no. 28. Elsevier B.V., 10 2024, pp. 300–305.
dc.relation.referencesS. V. Ganesh, “Critical analysis of aging models for lithium-ion second-life battery applications,” Ph.D. dissertation, 2020.
dc.relation.referencesX. Shu, S. Shen, J. Shen, Y. Zhang, G. Li, Z. Chen, and Y. Liu, “State of health prediction of lithium-ion batteries based on machine learning: Advances and perspectives,” iScience, vol. 24, no. 11, 11 2021.
dc.relation.referencesA. Basia, Z. Simeu-Abazi, E. Gascard, and P. Zwolinski, “Review on State of Health estimation methodologies for lithium-ion batteries in the context of circular economy,” CIRP Journal of Manufacturing Science and Technology, vol. 32, pp. 517–528, 1 2021.
dc.relation.referencesM. F. Ge, Y. Liu, X. Jiang, and J. Liu, “A review on state of health estimations and remaining useful life prognostics of lithium-ion batteries,” Measurement: Journal of the International Measurement Confederation, vol. 174, 4 2021.
dc.relation.referencesM. F. Ge, Y. Liu, X. Jiang, and J. Liu, “A review on state of health estimations and remaining useful life prognostics of lithium-ion batteries,” Measurement: Journal of the International Measurement Confederation, vol. 174, 4 2021.
dc.relation.referencesH. Tian, P. Qin, K. Li, and Z. Zhao, “A review of the state of health for lithium-ion batteries: Research status and suggestions,” Journal of Cleaner Production, vol. 261, 2020.
dc.relation.referencesS. S. Madani, Y. Shabeer, F. Allard, M. Fowler, C. Ziebert, Z. Wang, S. Panchal, H. Chaoui, S. Mekhilef, S. X. Dou, K. See, and K. Khalilpour, “A Comprehensive Review on Lithium-Ion Battery Lifetime Prediction and Aging Mechanism Analysis,” Batteries, vol. 11, no. 4, 4 2025.
dc.relation.referencesQ. Li, R. Song, and Y. Wei, “A review of state-of-health estimation for lithium-ion battery packs,” 5 2025.
dc.relation.referencesL. Timilsina, P. R. Badr, P. H. Hoang, G. Ozkan, B. Papari, and C. S. Edrington, “Battery Degradation in Electric and Hybrid Electric Vehicles: A Survey Study,” IEEE Access, vol. 11, pp. 42 431–42 462, 2023.
dc.relation.referencesM. Fahad, E. Elbouchikhi, and M. Benbouzid, “Microgrids energy management systems : A critical review on methods , solutions , and prospects,” Applied Energy, vol. 222, no. March, pp. 1033–1055, 2018.
dc.relation.referencesY. E. Garc´ıa Vera, R. Dufo-L´opez, and J. L. Bernal-Agust´ın, “Energy management in microgrids with renewable energy sources: A literature review,” Applied Sciences (Switzerland), vol. 9, no. 18, 2019.
dc.relation.referencesB. Zhao, X. Zhang, J. Chen, C. Wang, S. Member, and L. Guo, “Operation Optimization of Standalone Microgrids Considering Lifetime Characteristics of Battery Energy Storage System,” IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, pp. 1–10, 2013.
dc.relation.referencesH. Farzin, M. Fotuhi-Firuzabad, and M. Moeini-Aghtaie, “A Practical Scheme to Involve Degradation Cost of Lithium-Ion Batteries in Vehicle-to-Grid Applications,” IEEE Transactions on Sustainable Energy, vol. 7, no. 4, pp. 1730–1738, 10 2016.
dc.relation.referencesC. Ju, P. Wang, L. Goel, and Y. Xu, “A two-layer energy management system for microgrids with hybrid energy storage considering degradation costs,” IEEE Transactions on Smart Grid, vol. 9, no. 6, pp. 6047–6057, 2018.
dc.relation.referencesC. Liu, X. Wang, X. Wu, and J. Guo, “Economic scheduling model of microgrid considering the lifetime of batteries,” IET Generation, Transmission and Distribution, vol. 11, no. 3, pp. 759–767, 2017.
dc.relation.referencesJ. Cai, H. Zhang, and X. Jin, “Aging-aware predictive control of PV-battery assets in buildings,” Applied Energy, vol. 236, pp. 478–488, 2 2019.
dc.relation.referencesM. Elkazaz, M. Sumner, and D. Thomas, “Energy management system for hybrid PV-wind-battery microgrid using convex programming, model predictive and rolling horizon predictive control with experimental validation,” International Journal of Electrical Power and Energy Systems, vol. 115, 2 2020.
dc.relation.referencesY. Zhou, S. Cao, J. L. Hensen, and A. Hasan, “Heuristic battery-protective strategy for energy management of an interactive renewables–buildings–vehicles energy sharing network with high energy flexibility,” Energy Conversion and Management, vol. 214, 6 2020.
dc.relation.referencesW. Zhuo, “Microgrid energy management strategy with battery energy storage system and approximate dynamic programming,” in Proceedings of the 37th Chinese Control Conference. Wuhan: Australian Research Council, 2018.
dc.relation.referencesR. Du, X. Hu, S. Xie, L. Hu, Z. Zhang, and X. Lin, “Battery aging- and temperatureaware predictive energy management for hybrid electric vehicles,” Journal of Power Sources, vol. 473, 10 2020.
dc.relation.referencesP. G. Anselma, P. Kollmeyer, J. Lempert, Z. Zhao, G. Belingardi, and A. Emadi, “Battery state-of-health sensitive energy management of hybrid electric vehicles: Lifetime prediction and ageing experimental validation,” Applied Energy, vol. 285, 3 2021.
dc.relation.referencesJ. Li, X. Wu, M. Xu, and Y. Liu, “A real-time optimization energy management of range extended electric vehicles for battery lifetime and energy consumption,” Journal of Power Sources, vol. 498, no. December 2020, 2021.
dc.relation.referencesT. Alharbi, K. Bhattacharya, and M. Kazerani, “Planning and Operation of Isolated Microgrids Based on Repurposed Electric Vehicle Batteries,” IEEE Transactions on Industrial Informatics, vol. 15, no. 7, pp. 4319–4331, 2019.
dc.relation.referencesY. Deng, Y. Zhang, F. Luo, and Y. Mu, “Operational planning of centralized charging stations utilizing second-life battery energy storage systems,” IEEE Transactions on Sustainable Energy, vol. 12, no. 1, pp. 387–399, 1 2021.
dc.relation.referencesOzcan, A. C. Duman, Gonul, and Guler, “Techno-economic analysis of grid-connected PV and second-life battery systems for net-zero energy houses,” Journal of Building Engineering, vol. 89, 7 2024.
dc.relation.referencesZ. Su, C. Dunlap, and P. Chen, “Optimal Design of an Off-grid PV Charger System with Second-Life Batteries Considering Performance Degradation,” in IFACPapersOnLine, vol. 58, no. 28. Elsevier B.V., 10 2024, pp. 300–305.
dc.relation.referencesL. C. Canals, B. A. Amante, and M. M. Gonz´alez, “Aging Model for Re-used Electric Vehicle Batteries in Second Life Stationary Applications,” in Project Management and Engineering Research. Springer International Publishing, 2017, no. March.
dc.relation.referencesI. Mathews, B. Xu, W. He, V. Barreto, T. Buonassisi, and I. M. Peters, “Technoeconomic model of second-life batteries for utility-scale solar considering calendar and cycle aging,” Applied Energy, vol. 269, no. April, p. 115127, 2020. [Online]. Available: https://doi.org/10.1016/j.apenergy.2020.115127
dc.relation.referencesA. Assuncao, P. S. Moura, and A. T. de Almeida, “Technical and economic assessment of the secondary use of repurposed electric vehicle batteries in the residential sector to support solar energy,” Applied Energy, vol. 181, pp. 120–131, 11 2016.
dc.relation.referencesZ. Song, S. Feng, L. Zhang, Z. Hu, X. Hu, and R. Yao, “Economy analysis of second-life battery in wind power systems considering battery degradation in dynamic processes: Real case scenarios,” Applied Energy, vol. 251, 10 2019.
dc.relation.referencesH. Bai, S. Lei, S. Geng, X. Hu, Z. Li, and Z. Song, “Techno-economic assessment of isolated micro-grids with second-life batteries: A reliability-oriented iterative design framework,” Applied Energy, vol. 364, 6 2024.
dc.relation.referencesM. Cheng, X. Zhang, A. Ran, G. Wei, and H. Sun, “Optimal dispatch approach for second-life batteries considering degradation with online SoH estimation,” Renewable and Sustainable Energy Reviews, vol. 173, 3 2023.
dc.relation.referencesJ.Wang, P. Liu, J. Hicks-Garner, E. Sherman, S. Soukiazian, M. Verbrugge, H. Tataria, J. Musser, and P. Finamore, “Cycle-life model for graphite-LiFePO4 cells,” Journal of Power Sources, vol. 196, no. 8, pp. 3942–3948, 4 2011.
dc.relation.references“Boletín Técnico - Calculo del Indice de Cobertura de Energía Eléctrica ICEE 2023,” Unidad de Planeación Minero-Energética, Tech. Rep., 2025.
dc.relation.references“Informe sectorial de la prestación del servicio de energía eléctrica,” Superintendencia de Servicios Públicos Domiciliarios, Bogotá D.C., Tech. Rep., 2021.
dc.relation.referencesMinisterio de Minas y Energía, “LEY 855 DE 2003,” 2003. [Online]. Available: https://www.suin-juriscol.gov.co/viewDocument.asp?id=1669722
dc.relation.referencesD. Pearce and M. Webb, “Rural electrification in developing countries: A reappraisal,” Energy Policy, vol. 15, no. 4, pp. 329–338, 1987. [Online]. Available: http://www.sciencedirect.com/science/article/pii/0301421587900231
dc.relation.referencesE. E. Gaona, C. L. Trujillo, and J. A. Guacaneme, “Rural microgrids and its potential application in Colombia,” Renewable and Sustainable Energy Reviews, vol. 51, pp. 125–137, 6 2015.
dc.relation.referencesC. A. Rufino Junior, E. Riva Sanseverino, P. Gallo, D. Koch, Y. Kotak, H. G. Schweiger, and H. Zanin, “Towards a business model for second-life batteries – barriers, opportunities, uncertainties, and technologies,” pp. 507–525, 3 2023.
dc.relation.references“The Role of Critical Minerals in Clean Energy Transitions,” International Energy Agency, Tech. Rep., 2022. [Online]. Available: https://www.iea.org/reports/the-roleof- critical-minerals-in-clean-energy-transitions
dc.relation.referencesS. Bawankar, G. Dwivedi, I. Nanda, V. Daniel Jim´enez Macedo, S. Kesharvani, K. Meshram, S. Jain, S. Mishra, V. Pratap Singh, and P. Verma, “Environmental impact assessment of lithium ion battery employing cradle to grave,” Sustainable Energy Technologies and Assessments, vol. 60, 12 2023.
dc.relation.referencesF. Arshad, J. Lin, N. Manurkar, E. Fan, A. Ahmad, M. u. N. Tariq, F. Wu, R. Chen, and L. Li, “Life Cycle Assessment of Lithium-ion Batteries: A Critical Review,” 5 2022.
dc.relation.referencesM. Bowler, “Battery Second Use: A Framework for Evaluating the Combination of Two Value Chains,” Ph.D. dissertation, Clemson University, 2014.
dc.relation.referencesR. Santana, “Propuesta de marco regulatorio para bater´ıas fuera de uso provenientes de la electromovilidad: Requisitos de ingreso, reciclaje y utilizaci´on en segunda vida para almacenamiento estacionario de energ´ıa,” Comisi´on Econ´omica para Am´erica Latina y el Caribe (CEPAL), Santiago de Chile, Tech. Rep., 2024.
dc.relation.referencesJ. Kirchherr, D. Reike, and M. Hekkert, “Conceptualizing the circular economy: An analysis of 114 definitions,” Resources, Conservation and Recycling, vol. 127, no. April, pp. 221–232, 2017.
dc.relation.referencesMinisterio de Ambiente, “Estrategia Nacional de Economía Circular,” 2025. [Online]. Available: https://www.minambiente.gov.co/asuntos-ambientales-sectorialy- urbana/estrategia-nacional-de-economia-circular/
dc.relation.referencesF. Turan, A. R. Boynuegri, and T. Durmaz, “Comprehensive technical and economic evaluations of using second-life batteries as energy storage in off-grid applications: A customized cost analysis,” Journal of Energy Storage, vol. 120, 6 2025.
dc.relation.referencesF. Martin-Mart´ınez, A. S´anchez-Miralles, and M. Rivier, “A literature review of Microgrids: A functional layer based classification,” Renewable and Sustainable Energy Reviews, vol. 62, pp. 1133–1153, 9 2016.
dc.relation.referencesS. Parhizi, H. Lotfi, A. Khodaei, and S. Bahramirad, “State of the art in research on microgrids: A review,” IEEE Access, vol. 3, pp. 890–925, 2015.
dc.relation.referencesN. Hatziargyriou, Microgrid: Architecture and Control, 2014, vol. 1, no. 1.
dc.relation.referencesM. Uddin, H. Mo, D. Dong, S. Elsawah, J. Zhu, and J. M. Guerrero, “Microgrids: A review, outstanding issues and future trends,” Energy Strategy Reviews, vol. 49, 9 2023.
dc.relation.referencesV. K. Sood and H. Abdelgawad, “Microgrids architectures,” in Distributed Energy Resources in Microgrids: Integration, Challenges and Optimization. Elsevier, 1 2019, pp. 1–31.
dc.relation.referencesA. Hirsch, Y. Parag, and J. Guerrero, “Microgrids: A review of technologies, key drivers, and outstanding issues,” Renewable and Sustainable Energy Reviews, vol. 90, pp. 402–411, 7 2018.
dc.relation.referencesM. S. B. Arif and M. A. Hasan, “Microgrid architecture, control, and operation,” in Hybrid-renewable energy systems in microgrids: Integration, developments and control. Elsevier, 1 2018, pp. 23–37.
dc.relation.referencesA. Cagnano, E. De Tuglie, and P. Mancarella, “Microgrids: Overview and guidelines for practical implementations and operation,” Applied Energy, vol. 258, 1 2020.
dc.relation.referencesF. Khan, M. Y. Ali, V. K. Sood, F. Bhuiyan, P. Insull, and F. Ahmad, “Simulation of microgrid system with distributed generation,” 2017 IEEE Electrical Power and Energy Conference, EPEC 2017, vol. 2017-Octob, pp. 1–6, 2018.
dc.relation.referencesCorporación Ruta N, “Observatorio CT+i: Informe No. 1 Área de oportunidad en Microredes Inteligentes,” Tech. Rep., 2015. [Online]. Available: www.brainbookn.com
dc.relation.referencesM. A. Shobug, F. Yang, and J. Lu, “Stability improvement of microgrids under dynamic load conditions: A new adaptive virtual synchronous generator based virtual inertia control approach,” Results in Engineering, vol. 25, 3 2025.
dc.relation.referencesE. Planas, A. Gil-De-Muro, J. Andreu, I. Kortabarria, and I. Mart´ınez De Alegr´ıa, “General aspects, hierarchical controls and droop methods in microgrids: A review,” Renewable and Sustainable Energy Reviews, vol. 17, pp. 147–159, 1 2013.
dc.relation.referencesA. R. Singh, D. Lei, A. Kumar, R. Singh, and N. Meena, “Microgrid System,” in Microgrid: Operation, Control, Monitoring and Protection, Springer Nature Singapore Pte Ltd. 2020, Ed., 2020.
dc.relation.referencesM. Soshinskaya, W. H. Crijns-Graus, J. M. Guerrero, and J. C. Vasquez, “Microgrids: Experiences, barriers and success factors,” pp. 659–672, 2014.
dc.relation.referencesM. Eskandari, A. Rajabi, A. V. Savkin, M. H. Moradi, and Z. Y. Dong, “Battery energy storage systems (BESSs) and the economy-dynamics of microgrids: Review, analysis, and classification for standardization of BESSs applications,” Journal of Energy Storage, vol. 55, 11 2022.
dc.relation.referencesA. H. Fathima and K. Palanisamy, “Renewable systems and energy storages for hybrid systems,” in Hybrid-renewable energy systems in microgrids: Integration, developments and control. Elsevier, 1 2018, pp. 147–164.
dc.relation.referencesS. Choudhury, “Review of energy storage system technologies integration to microgrid: Types, control strategies, issues, and future prospects,” Journal of Energy Storage, vol. 48, 4 2022.
dc.relation.referencesM. Li, J. Lu, Z. Chen, and K. Amine, “30 Years of Lithium-Ion Batteries,” Advanced Materials, vol. 30, no. 33, 8 2018.
dc.relation.referencesN. A. Godshall, I. D. Raistrick, and R. A. Huggins, “THERMODYNAMIC INVESTIGATIONS OF TERNARY LITHIUM-TRANSITION METAL-OXYGEN CATHODE MATERIALS,” Mat. Res. Bull, vol. 15, pp. 561–570, 1980.
dc.relation.referencesS. Dhundhara, Y. P. Verma, and A. Williams, “Techno-economic analysis of the lithium-ion and lead-acid battery in microgrid systems,” Energy Conversion and Management, vol. 177, no. September, pp. 122–142, 2018.
dc.relation.referencesY.Wu, Lithium-Ion Batteries: Fundamentals and Applications (Electrochemical Energy Storage and Conversion) , Taylor & Francis, Ed. CRC Press, 4 2015.
dc.relation.referencesFraunhofer, “Development perspectives for lithium-ion battery cell formats,” Tech. Rep., 2022.
dc.relation.referencesJ. Warner, “Battery Management System Controls,” in The Handbook of Lithium- Ion Battery Pack Design, Chemistry, Components, Types and Terminology. Elsevier Science, 2015, pp. 92–99.
dc.relation.referencesP. K. Roy, M. Shahjalal, T. Shams, A. Fly, S. Stoyanov, M. Ahsan, and J. Haider, “A Critical Review on Battery Aging and State Estimation Technologies of Lithium-Ion Batteries: Prospects and Issues,” Electronics (Switzerland), vol. 12, no. 19, 10 2023.
dc.relation.referencesJ. S. Menye, M. B. Camara, and B. Dakyo, “Lithium Battery Degradation and Failure Mechanisms: A State-of-the-Art Review,” Energies, vol. 18, no. 2, 1 2025.
dc.relation.referencesD. Li, D. Danilov, H. J. Bergveld, R.-A. Eichel, and P. H. Notten, “Understanding Battery Aging Mechanisms,” in Future Lithium-ion Batteries, Ali Eftekhari, Ed. Royal Society of Chemistry, 3 2019, pp. 236–266.
dc.relation.referencesK. Uddin, S. Perera, W. D. Widanage, L. Somerville, and J. Marco, “Characterising lithium-ion battery degradation through the identification and tracking of electrochemical battery model parameters,” Batteries, vol. 2, no. 2, 6 2016.
dc.relation.referencesJ. Guo, Y. Li, K. Pedersen, and D. I. Stroe, “Lithium-ion battery operation, degradation, and aging mechanism in electric vehicles: An overview,” Energies, vol. 14, no. 17, 9 2021.
dc.relation.referencesD. H. C. Lam, J. Wong, Y. S. Lim, and L. C. Hau, “State of Charge, State of Health, and Degradation Estimation for Second-Life Batteries for Maximum Demand Reductions,” in 2022 IEEE International Conference on Power and Energy: Advancement in Power and Energy Systems towards Sustainable and Resilient Energy Supply, PECon 2022. Institute of Electrical and Electronics Engineers Inc., 2022, pp. 240–245.
dc.relation.referencesL. Colarullo and J. Thakur, “Second-life EV batteries for stationary storage applications in Local Energy Communities,” Renewable and Sustainable Energy Reviews, vol. 169, 11 2022.
dc.relation.referencesM. Elmahallawy, T. Elfouly, A. Alouani, and A. M. Massoud, “A Comprehensive Review of Lithium-Ion Batteries Modeling, and State of Health and Remaining Useful Lifetime Prediction,” IEEE Access, vol. 10, pp. 119 040–119 070, 2022.
dc.relation.referencesM. Murnane and A. Ghazel, “A Closer Look at State of Charge (SOC) and State of Health (SOH) Estimation Techniques for Batteries,” Analog Device, Tech. Rep., 2023.
dc.relation.referencesA. J. Albarakati, Y. Boujoudar, M. Azeroual, L. Eliysaouy, H. Kotb, A. Aljarbouh, H. Khalid Alkahtani, S. M. Mostafa, A. Tassaddiq, and A. Pupkov, “Microgrid energy management and monitoring systems: A comprehensive review,” Frontiers in Energy Research, vol. 10, 12 2022.
dc.relation.referencesY. E. Vera, R. Dufo-López, and J. L. Bernal-Agustín, “Energy management in microgrids with renewable energy sources: A literature review,” Applied Sciences, vol. 9, no. 18, 9 2019.
dc.relation.referencesJ. Sievers and T. Blank, “A Systematic Literature Review on Data-Driven Residential and Industrial Energy Management Systems,” Energies, vol. 16, no. 4, 2 2023.
dc.relation.referencesS. E. Eyimaya and N. Altin, “Review of Energy Management Systems in Microgrids,” Applied Sciences, vol. 14, no. 3, 2 2024.
dc.relation.referencesN. Misljenovic, M. ˇZnidarec, G. Knezevic, D. Sljivac, and A. Sumper, “A Review of Energy Management Systems and Organizational Structures of Prosumers,” Energies, vol. 16, no. 7, 4 2023.
dc.relation.referencesH. Shayeghi, E. Shahryari, M. Moradzadeh, and P. Siano, “A survey on microgrid energy management considering flexible energy sources,” Energies, vol. 12, no. 11, 6 2019.
dc.relation.referencesS. Pouraltafi-kheljan, M. Ugur, E. Bozulu, B. C. C¸ ali¸skan, O. Keysan, and M. Gol, “Centralized microgrid control system in compliance with ieee 2030.7 standard based on an advanced field unit,” Energies, vol. 14, no. 21, 11 2021.
dc.relation.referencesF. A. Sarwar, I. Hernando-Gil, and I. Vechiu, “Review of energy management systems and optimization methods for hydrogen-based hybrid building microgrids,” Energy Conversion and Economics, vol. 5, no. 4, pp. 259–279, 8 2024.
dc.relation.referencesG. S. Thirunavukkarasu, M. Seyedmahmoudian, E. Jamei, B. Horan, S. Mekhilef, and A. Stojcevski, “Role of optimization techniques in microgrid energy management systems— A review,” Energy Strategy Reviews, vol. 43, 9 2022.
dc.relation.referencesP. Sandhya Rani and K. Sumanth, “A Model Predictive Control Approach for Efficient Optimization of Microgrid Operations using Mixed Integer Linear Programming,” International Journal of Engineering Research & Technology (IJERT), vol. 5, no. 8, 2016. [Online]. Available: www.ijert.org
dc.relation.referencesR. G. Allwyn, A. Al-Hinai, and V. Margaret, “A comprehensive review on energy management strategy of microgrids,” pp. 5565–5591, 12 2023.
dc.relation.referencesM. H. Mostafa, S. H. Abdel Aleem, S. G. Ali, and A. Y. Abdelaziz, “Energymanagement solutions for microgrids,” in Distributed Energy Resources in Microgrids: Integration, Challenges and Optimization. Elsevier, 1 2019, ch. 20, pp. 483–515.
dc.relation.referencesM. Manbachi, “Energy Management Systems for Hybrid AC/DC Microgrids: Challenges and Opportunities,” in Operation of Distributed Energy Resources in Smart Distribution Networks. Elsevier, 6 2018, ch. 13, pp. 303–348.
dc.relation.referencesY. Kotak, C. M. Fernandez, L. C. Casals, B. S. Kotak, D. Koch, C. Geisbauer, L. Trilla, A. Gomez-Nuñez, and H. G. Schweiger, “End of electric vehicle batteries: Reuse vs. recycle,” Energies, vol. 14, no. 8, 4 2021.
dc.relation.referencesK. Sevdari, M. Marinelli, and F. Pastorelli, “Overview of EV battery types and degradation measurement for Renault Zoe NMC batteries,” in 2024 International Conference on Renewable Energies and Smart Technologies, REST 2024. Institute of Electrical and Electronics Engineers Inc., 2024.
dc.relation.referencesA. Hassan, S. A. Khan, R. Li, W. Su, X. Zhou, M. Wang, and B. Wang, “Second-Life Batteries: A Review on Power Grid Applications, Degradation Mechanisms, and Power Electronics Interface Architectures,” Batteries, vol. 9, no. 12, 12 2023.
dc.relation.referencesA. Perez, I. S. Martín, P. Sanchis, and A. Ursúa, “Lithium-ion Second-Life Batteries: Aging Modeling and Experimental Validation,” 2024.
dc.relation.referencesG. Pozzato, S. Beom Lee, and S. Onori, “Modeling degradation of Lithium-ion batteries for second-life applications,” in 2021 IEEE Conference on Control Technology and Applications (CCTA), 2022.
dc.relation.referencesR. Hernandez-Sampieri, C. Fernandez-Collado, and P. Bastipsta-Lucio, Metodolog´ıa de la investigaci´on, sexta ed., Mac Graw Hill Education, Ed., Mexico, 2014.
dc.relation.referencesE. E. Gaona, C. L. Trujillo, and J. A. Guacaneme, “Rural microgrids and its potential application in Colombia,” Renewable and Sustainable Energy Reviews, vol. 51, pp. 125–137, 2015. [Online]. Available: http://dx.doi.org/10.1016/j.rser.2015.04.176
dc.relation.referencesJ. D. Garzón-Hidalgo and A. J. Saavedra-Montes, “Una metodología de diseño de micro redes para zonas no interconectadas de Colombia A design methodology of microgrids for non-interconnected zones of Colombia,” 2015.
dc.relation.referencesIPSE, “Listado proyectos,” 2019. [Online]. Available: https://ipse.gov.co/mapa-delsitio/ proyectos-ipse/listado-proyectos/
dc.relation.referencesV. V. Murty and A. Kumar, “Multi-objective energy management in microgrids with hybrid energy sources and battery energy storage systems,” Protection and Control of Modern Power Systems, vol. 5, no. 1, 12 2020.
dc.relation.referencesH. Masrur, K. V. Konneh, M. Ahmadi, K. R. Khan, M. L. Othman, and T. Senjyu, “Assessing the techno-economic impact of derating factors on optimally tilted grid-tied photovoltaic systems,” Energies, vol. 14, no. 4, 2 2021.
dc.relation.referencesJA Solar, “330W PERC Module Datasheet, JAM60S09 310-330/PR Series.”
dc.relation.referencesG. Gladson Moshi, C. Bovo, and A. Berizzi, “Optimal Operational Planning for PVWind- Diesel-Battery Microgrid,” in 2015 IEEE Eindhoven PowerTech, IEEE Xplore, Ed., 2015.
dc.relation.referencesComisión de regulación de Energía y Gas (CREG), “Determinación de Inversiones y Gastos de Administración, Operación y Mantenimiento para la actividad de Generación en Zonas No Interconectadas,” Bogotá D.C., Tech. Rep., 2013.
dc.relation.referencesBanco de la Republica de Colombia, “Indice de Precios del Productor (IPP),” 2025. [Online]. Available: https://suameca.banrep.gov.co/estadisticaseconomicas/ informacionSerie/100003/indice de precios al productor ipp
dc.relation.referencesA. S. Ogunjuyigbe, T. R. Ayodele, and O. A. Akinola, “Optimal allocation and sizing of PV/Wind/Split-diesel/Battery hybrid energy system for minimizing life cycle cost, carbon emission and dump energy of remote residential building,” Applied Energy, vol. 171, pp. 153–171, 6 2016.
dc.relation.referencesH. Moradi, M. Esfahanian, A. Abtahi, and A. Zilouchian, “Optimization and energy management of a standalone hybrid microgrid in the presence of battery storage system,” Energy, vol. 147, pp. 226–238, 3 2018.
dc.relation.referencesA. Saez-De-Ibarra, E. Martinez-Laserna, C. Koch-Ciobotaru, P. Rodriguez, D. I. Stroe, and M. Swierczynski, “Second life battery energy storage system for residential demand response service,” Proceedings of the IEEE International Conference on Industrial Technology, vol. 2015-June, no. June, pp. 2941–2948, 2015.
dc.relation.referencesZ. Su, C. Dunlap, and P. Chen, “Optimal Design of an Off-grid PV Charger System with Second-Life Batteries Considering Performance Degradation,” in IFACPapersOnLine, vol. 58, no. 28. Elsevier B.V., 10 2024, pp. 300–305.
dc.relation.referencesR. Wei, Y. Wang, F. Zhou, X. Chen, B. Chai, J. Liu, Y. Wang, and H. Jin, “Energy management for electric bus charging station with facilitated second-life batteries,” Renewable Energy, vol. 241, 3 2025.
dc.relation.referencesTesla Motor Club, “Inside the battery pack,” 2014. [Online]. Available: https://teslamotorsclub.com/tmc/threads/pics-info-inside-the-batterypack. 34934/page-14post-755546
dc.relation.referencesSharad Bhowmick, “Tesla Model S Battery System: An Engineer’s Perspective,” 2021. [Online]. Available: https://circuitdigest.com/article/tesla-model-s-battery-systeman- engineers-perspective
dc.relation.referencesTridens technology, “Ventas mundiales de coches el´ectricos y estad ´ısticas de veh´ıculos el´ectricos (2024),” 2024. [Online]. Available: https://tridenstechnology.com/es/estadisticas-de-ventas-de-coches-electricos/
dc.relation.referencesRoland Irle, “Global EV Sales for 2023,” 2023. [Online]. Available: https://evvolumes. com/news/ev/global-ev-sales-for-2023/
dc.relation.referencesClean Technica, “Global EV Sales — BYD Song Beats Tesla Model Y on the World Stage!” 2025. [Online]. Available: https://cleantechnica.com/2025/06/04/global-evsales- byd-song-beats-tesla-model-y-on-the-world-stage/
dc.relation.referencesRoad Genius, “Global EV Sales by Top Automakers,” 2024. [Online]. Available: https://roadgenius.com/cars/ev/statistics/sales-by-automaker/
dc.relation.referencesX. Lai, Y. Huang, C. Deng, H. Gu, X. Han, Y. Zheng, and M. Ouyang, “Sorting, regrouping, and echelon utilization of the large-scale retired lithium batteries: A critical review,” Renewable and Sustainable Energy Reviews, vol. 146, 8 2021.
dc.relation.referencesX. Gu, H. Bai, X. Cui, J. Zhu, W. Zhuang, Z. Li, X. Hu, and Z. Song, “Challenges and opportunities for second-life batteries: Key technologies and economy,” Renewable and Sustainable Energy Reviews, vol. 192, 3 2024.
dc.relation.referencesS. J. Tong, A. Same, M. A. Kootstra, and J. W. Park, “Off-grid photovoltaic vehicle charge using second life lithium batteries: An experimental and numerical investigation,” Applied Energy, vol. 104, pp. 740–750, 2013.
dc.relation.referencesS. Shokrzadeh and E. Bibeau, “Repurposing batteries of plug-in electric vehicles to support renewable energy penetration in the electric grid,” in SAE Technical Papers. SAE International, 2012.
dc.relation.referencesD. Kehl, T. Jennert, F. Lienesch, and M. Kurrat, “Electrical characterization of li-ion battery modules for second-life applications,” Batteries, vol. 7, no. 2, 6 2021.
dc.relation.referencesE. Locorotondo, V. Cultrera, L. Pugi, L. Bersi, M. Pasquali, N. Andrenacci, G. Lutzemberger, and M. Pierini, “Electrical lithium battery performance model for second life applications,” in 2020 IEEE International Conference Environment and Electrical Engineering and 2020 IEEE Industrial and Commercial Power Systems Europe (EEEIC). IEEE, 2020.
dc.relation.referencesH. Quinard, E. Redondo-Iglesias, S. Pelissier, and P. Venet, “Fast electrical characterizations of high-energy second life lithium-ion batteries for embedded and stationary applications,” Batteries, vol. 5, no. 1, 3 2019.
dc.relation.referencesM. Oztop and A. Sahinaslan, “Control of temperature distribution for Li-ion battery modules via longitudinal fins,” Journal of Energy Storage, vol. 52, 8 2022.
dc.relation.referencesS. Hemavathi, C. R. Jeevandoss, S. Srinivas, and A. S. Prakash, “Experimental Studies on Li-ion Battery Pack for Temperature Distribution Analysis During Fast Discharging and Various Ambient Temperature Conditions,” Heat Transfer Research, vol. 55, no. 2, pp. 41–54, 2024.
dc.relation.referencesH. Li, Y. Ye, Z. Zhang, W. Yu, Z. Zhang, and W. Zhu, “Investigating the impact of battery arrangements on thermal management performance of lithium-ion battery pack design,” Advances in Mechanical Engineering, vol. 16, no. 9, 9 2024.
dc.relation.referencesR. Yang, K. Li, Y. Xie, Y. Zhang, C. Xi, and Y. Zhang, “Thermal management requirements in battery packs: An analysis of the effects of battery degradation,” Energy, vol. 331, 9 2025.
dc.relation.referencesS. Khange and A. K. Sharma, “Managing thermal non-uniformities and cell aging in Li-ion battery packs with passive cooling using thermal conductive pads,” Process Safety and Environmental Protection, vol. 200, 8 2025.
dc.relation.referencesH. S and P. U. Sathyakam, “A cell level design and analysis of lithium-ion battery packs,” Ionics, vol. 31, no. 1, pp. 413–425, 1 2025.
dc.relation.referencesD. Koster, A. Marongiu, D. Chahardahcherik, C. F. Braun, D. Schulte, and E. Figgemeier, “Degradation analysis of 18650 cylindrical cell battery pack with immersion liquid cooling system. Part 1: Aging assessment at pack level,” Journal of Energy Storage, vol. 62, 6 2023.
dc.relation.referencesA. Garces Ruiz, Optimización convexa - Aplicaciones en operación y dinámica de sistemas de potencia, Universidad Tecnológica de Pereira, Ed., Pereira, Colombia, 2020.
dc.relation.referencesM. C. Grant and S. P. Boyd, “The CVX Users’ Guide - Release 2.2,” CVX Research, Tech. Rep., 2020.
dc.relation.referencesB. Fleck and M. Huot, “Comparative life-cycle assessment of a small wind turbine for residential off-grid use,” Renewable Energy, vol. 34, no. 12, pp. 2688–2696, 12 2009.
dc.relation.referencesM. Philippot, D. Costa, M. S. Hosen, A. Sen´ecat, E. Brouwers, E. Nanini-Maury, J. Van Mierlo, and M. Messagie, “Environmental impact of the second life of an automotive battery: Reuse and repurpose based on ageing tests,” Journal of Cleaner Production, vol. 366, 9 2022.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines
dc.subject.lembGeneración de energía fotovoltaica
dc.subject.lembBaterías electricas
dc.subject.lembBatería de ion de litio
dc.subject.proposalSistema de Gestión de la Energíaspa
dc.subject.proposalMicrorredspa
dc.subject.proposalBater´ıas de Segunda Vidaspa
dc.subject.proposalBaterías de Ion-Litiospa
dc.subject.proposalEnergy management systemeng
dc.subject.proposalMicrogrideng
dc.subject.proposalSecLithiumIon Battery ond-Life Batterieseng
dc.subject.wikidataGestión de la energía
dc.titleModelo de degradación para baterías de segunda vida en la gestión de energía de una microrred aisladaspa
dc.title.translatedDegradation model for second-life batteries in the energy management of an isolated microgrideng
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentPúblico general
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.awardtitleModelo de degradación para baterías de segunda vida en la gestión de energía de una microrred aislada

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1110560702.2025.pdf
Tamaño:
11.18 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: