Análisis de influencia y sensibilidad de los parámetros involucrados en el modelamiento de la dinámica del transporte axonal

dc.contributor.advisorCortés Rodriguez, Carlos Julio
dc.contributor.advisorGaleano Ureña, Carlos Humberto
dc.contributor.authorMorales Suárez, Cristian Felipe
dc.contributor.researchgroupGrupo de Investigación en Biomecánica / Universidad Nacional de Colombia Gibm-Uncbspa
dc.date.accessioned2022-03-01T16:56:31Z
dc.date.available2022-03-01T16:56:31Z
dc.date.issued2021
dc.descriptionilustraciones, graficasspa
dc.description.abstractEl transporte axonal (TA) es el medio por el cual todo el material sintetizado en el soma se distribuye a lo largo del axón para procesos funcionales de crecimiento, mantenimiento y supervivencia neuronal. Modelos matemáticos sugeridos logran determinar las principales características sobre su comportamiento, donde cada parámetro representa un estado dinámico especifico observado en estudios experimentales. En este trabajo se estudia la influencia de los parámetros sobre la distribución espacial de las proteínas y su relación con la naturaleza del fenómeno, lo anterior permitirá construir metodologías que concentren los esfuerzos en sus mediciones con las técnicas experimentales y facilitar su modelamiento matemático. El modelo es planteado por un conjunto de ecuaciones diferenciales parciales de Difusión - Advección - Reacción acopladas, su solución es abordada por el método de elementos finitos con una técnica de mallado adaptativo y se ajusta con datos experimentales a través de algoritmos de optimización disponibles en el software Matlab. Finalmente se establece un análisis de sensibilidad local y se acopla con el sistema del TA, logrando así evaluar los parámetros que mas impactan la solución del modelo. Como resultado, se llega a una convergencia numérica y experimental adecuada y un código capaz de representar la dinámica del TA garantizando demandas computacionales óptimas. En tanto a la naturaleza del fenómeno, los hallazgos obtenidos permiten sugerir, a partir del análisis de sensibilidad, que el TA esta determinado por la sinergia entre: Motores moleculares - Microtúbulos (MT) - proteínas logrando una coordinación controlada que conlleva a un balance adecuado de motores unidos a un cargo y conduciendo a movimientos bidireccionales esenciales en los múltiples procesos neuronales. (Texto tomado de la fuente)spa
dc.description.abstractThe axonal transport (AT) is the means by which all the material synthesized in the soma is distributed throughout of axon for functional processes of neuronal growth, maintenance and survival. Suggested mathematicals models achieve determine the characteristics mains about their behavior, where each parameter go represent a specific dynamic state observed in experimental studies. In this work the influence of the parameters on the spatial distribution of the proteins and their relationship with the nature of the phenomenon is studied. This will allow the construction of methodologies that concentrate the efforts in the measurement in the experimental techniques and facilitate their mathematical modeling.The model is posed by a set of coupled partial differential equations of Diffusion - Advection - Reaction, its solution is approached by the finite element method with an adaptive meshing technique and is fitted with experimental data through algorithms of optimization available in Matlab software. Finally, a local sensitivity analysis is established and it is coupled with the TA system, thus managing to evaluate the parameters that most impact the model solution. As results, an adequate numerical and experimental convergence is reached and a code capable of representing the dynamics of the AT guaranteeing optimal computational demands. Regarding the nature of the phenomenon, the findings obtained allow us to suggest, from the sensitivity analysis, that the TA is determined by the synergy between: Molecular motors - Microtubules (MT) - proteins achieving a controlled coordination that entails to an adequate balance of motors attached to a cargoes and leading to essential bidirectional movements in the multiple neural processes.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería Mecánicaspa
dc.format.extentxiv, 113 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81096
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Ingeniería Mecánica y Mecatrónicaspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Mecánicaspa
dc.relation.referencesJ. C. Blackwood and L. M. Childs, “An introduction to compartmental modeling for the budding infectious disease modeler,” Letters in Biomathematics, vol. 5, no. 1, pp. 195–221, 2018.spa
dc.relation.referencesC. Swi¸etaszczyk and L. Jødal, “Derivation and presentation of formulas for drug con- ´ centrations in two-, three- and four-compartment pharmacokinetic models,” Journal of Pharmacological and Toxicological Methods, vol. 100, no. April, pp. 1–11, 2019spa
dc.relation.referencesE. P. Esteban and G. Meléndez, “A compartment model for total body irradiation,” Informatics in Medicine Unlocked, vol. 20, 2020spa
dc.relation.referencesG. Craciun, A. Brown, and A. Friedman, “A dynamical system model of neurofilament transport in axons,” Journal of Theoretical Biology, vol. 237, no. 3, pp. 316–322, 2005spa
dc.relation.referencesA. Brown, L. Wang, and P. Jung, “Stochastic Simulation of Neurofilament Transport in Axons: The “Stop-and-Go” Hypothesis,” Molecular Biology of the Cell, vol. 16(9), no. September, pp. 4243–4255, 2005spa
dc.relation.referencesZ. Xu and V. W. Tung, “Overexpression of neurofilament subunit M accelerates axonal transport of neurofilaments,” Brain Research, vol. 866, no. 1-2, pp. 326–332, 2000spa
dc.relation.referencesS. Millecamps and J. P. Julien, “Axonal transport deficits and neurodegenerative diseases,” Nature Reviews Neuroscience, vol. 14, no. 3, pp. 161–176, 2013spa
dc.relation.referencesR. Perrot, R. Berges, A. Bocquet, and J. Eyer, “Review of the multiple aspects of neurofilament functions, and their possible contribution to neurodegeneration,” Molecular Neurobiology, vol. 38, no. 1, pp. 27–65, 2008spa
dc.relation.referencesS. R. Chada and P. J. Hollenbeck, “Mitochondrial movement and positioning in axons: The role of growth factor signaling,” Journal of Experimental Biology, vol. 206, no. 12, pp. 1985–1992, 2003.spa
dc.relation.referencesM. J. Barron, P. Griffiths, D. M. Turnbull, D. Bates, and P. Nichols, “The distributions of mitochondria and sodium channels reflect the specific energy requirements and conduction properties of the human optic nerve head,” British Journal of Ophthalmology, vol. 88, no. 2, pp. 286–290, 2004spa
dc.relation.referencesP. Weiss and H. B. Hiscoe, “Experiments on the Mechanism of Nerve Growth,” The jounal of experimental zoolooy, vol. 107, no. 3, p. 80, 1948spa
dc.relation.referencesR. J. Lasek, “Axonal transport: a dynamic view of neuronal structures,” Trends in Neurosciences, vol. 3, no. 4 C, pp. 87–91, 1980.spa
dc.relation.referencesS. Maday, A. E. Twelvetrees, A. J. Moughamian, and E. L. Holzbaur, “Axonal Transport: Cargo-Specific Mechanisms of Motility and Regulation,” Neuron, vol. 84, no. 2, pp. 292–309, 2014spa
dc.relation.referencesM. A. Welte, “Bidirectional transport along microtubules,” Current Biology, vol. 14, no. 13, pp. 525–537, 2004spa
dc.relation.referencesP. J. Hollenbeck and D. Bray, “Rapidly transported organelles containing membrane and cytoskeletal components: Their relation to axonal growth,” Journal of Cell Biology, vol. 105, no. 6 I, pp. 2827–2835, 1987spa
dc.relation.referencesM. Vershinin, B. C. Carter, D. S. Razafsky, S. J. King, and S. P. Gross, “Multiplemotor based transport and its regulation by Tau,” Proc Natl Acad Sci U S A, vol. 104, no. 1, pp. 87–92, 2007spa
dc.relation.referencesS. Konzack, E. Thies, A. Marx, E. M. Mandelkow, and E. Mandelkow, “Swimming against the tide: Mobility of the microtubule-associated protein tau in neurons,” Journal of Neuroscience, vol. 27, no. 37, pp. 9916–9927, 2007spa
dc.relation.referencesT. P. Hasaka, K. A. Myers, and P. W. Baas, “Role of actin filaments in the axonal transport of microtubules,” Journal of Neuroscience, vol. 24, no. 50, pp. 11291–11301, 2004spa
dc.relation.referencesR. D. Vale, T. S. Reese, and M. P. Sheetz, “Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility,” Cell, vol. 42, no. 1, pp. 39–50, 1985spa
dc.relation.referencesV. Muresan, “One axon, many kinesins: What’s the logic?,” Journal of Neurocytology, vol. 29, no. 11-12, pp. 799–818, 2000spa
dc.relation.referencesR. L. Radius, “Optic Nerve Fast Axonal Transport Abnormalities in Primates: Occurrence After Short Posterior Ciliary Artery Occlusion,” Archives of Ophthalmology, vol. 98, no. 11, pp. 2018–2022, 1980spa
dc.relation.referencesR. B. Vallee, J. C. Williams, D. Varma, and L. E. Barnhart, “Dynein: An Ancient Motor Protein Involved in Multiple Modes of Transport,” Journal of Neurobiology, vol. 58, no. 2, pp. 189–200, 2004spa
dc.relation.referencesB. Grafstein and D. S. Forman, “Intracellular transport in neurons.,” Physiological reviews, vol. 60, no. 4, pp. 1167–1283, 1980spa
dc.relation.referencesS. Roy, M. J. Winton, M. M. Black, J. Q. Trojanowski, and V. M. Lee, “Cytoskeletal requirements in axonal transport of slow component-b,” Journal of Neuroscience, vol. 28, no. 20, pp. 5248–5256, 2008spa
dc.relation.referencesA. Brown, “Axonal transport of membranous and nonmembranous cargoes: A unified perspective,” Journal of Cell Biology, vol. 160, no. 6, pp. 817–821, 2003spa
dc.relation.referencesM. M. Black, “Axonal transport: The orderly motion of axonal structures,” Methods in Cell Biology, vol. 131, pp. 1–19, 2016spa
dc.relation.referencesL. F. Gumy and C. C. Hoogenraad, “Local mechanisms regulating selective cargo entry and long-range trafficking in axons,” Current Opinion in Neurobiology, vol. 51, pp. 23–28, 2018spa
dc.relation.referencesJ. N. Sleigh, A. Vagnoni, A. E. Twelvetrees, and G. Schiavo, “Methodological advances in imaging intravital axonal transport,” F1000Research, vol. 6, pp. 1–12, 2017spa
dc.relation.referencesR. H. Miller and R. I. Lasek, “Cross-bridges mediate anterograde and retrograde vesicle transport along microtubules in squid axoplasm,” Journal of Cell Biology, vol. 101, no. 6, pp. 2181–2193, 1985spa
dc.relation.referencesW. M. Saxton and P. J. Hollenbeck, “The axonal transport of mitochondria,” Journal of Cell Science, vol. 125, no. 9, pp. 2095–2104, 2012.spa
dc.relation.referencesB. J. Schnapp, R. D. Vale, M. P. Sheetz, and T. S. Reese, “Single microtubules from squid axoplasm support bidirectional movement of organelles,” Cell, vol. 40, no. 2, pp. 455–462, 1985spa
dc.relation.referencesU. Atsuko, A. H. Nael, and A. Brown, “Tight functional coupling ok Kinesin A1 and Dynein motors in the bidirectional transport of neurofilament,” Molecular Biology of the Cell, vol. 20(23), pp. 4997–5006, 2009spa
dc.relation.referencesA. Brown, “Slow axonal transport: Stop and go traffic in the axon,” Nature Reviews Molecular Cell Biology, vol. 1, no. 2, pp. 153–156, 2000.spa
dc.relation.referencesL. Wang, C. L. Ho, D. Sun, R. K. Liem, and A. Brown, “Rapid movement of axonal neurofilaments interrupted by prolonged pauses,” Nature Cell Biology, vol. 2, no. 3, pp. 137–141, 2000spa
dc.relation.referencesL. Wang and A. Brown, “Rapid intermittent movement of axonal neurofilaments observed by fluorescence photobleaching,” Molecular Biology of the Cell, vol. 12, no. 10, pp. 3257–3267, 2001spa
dc.relation.referencesR. J. Lasek, P. Paggi, and M. J. Katz, “The maximum rate of neurofilament transport in axons: a view of molecular transport mechanisms continuously engaged,” Brain Research, vol. 616, no. 1-2, pp. 58–64, 1993.spa
dc.relation.referencesZ. Xu and V. W. Tung, “Temporal and spatial variations in slow axonal transport velocity along peripheral motoneuron axons,” Neuroscience, vol. 102, no. 1, pp. 193– 200, 2001spa
dc.relation.referencesY. Yan and A. Brown, “Neurofilament polymer transport in axons,” Journal of Neuroscience, vol. 25, no. 30, pp. 7014–7021, 2005.spa
dc.relation.referencesK. J. De Vos, A. J. Grierson, S. Ackerley, and C. C. Miller, “Role of axonal transport in neurodegenerative diseases,” Annual Review of Neuroscience, vol. 31, pp. 151–173, 2008.spa
dc.relation.referencesC. Ballatore, V. M. Lee, and J. Q. Trojanowski, “Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders,” Nature Reviews Neuroscience, vol. 8, no. 9, pp. 663–672, 2007spa
dc.relation.referencesX. L. Wu, J. Piña-Crespo, Y. W. Zhang, X. C. Chen, and H. X. Xu, “Tau-mediated neurodegeneration and potential implications in diagnosis and treatment of Alzheimer’s disease,” Chinese Medical Journal, vol. 130, no. 24, pp. 2978–2990, 2017spa
dc.relation.referencesY. Dong and Y. Chen, “The role of ubiquitinated TDP-43 in amyotrophic lateral sclerosis,” Neuroimmunology and Neuroinflammation, vol. 5, no. 2, p. 5, 2018spa
dc.relation.referencesW. S. Kim, K. Kagedal, and G. M. Halliday, “Alpha-synuclein biology in Lewy body diseases,” Alzheimer’s Research and Therapy, vol. 6, no. 1, pp. 1–9, 2014spa
dc.relation.referencesI. Nadelhaft, “Dynamics of fast axonal transport,” Biophysical Journal, vol. 16, no. 10, pp. 1125–1130, 1976.spa
dc.relation.referencesJ. J. Blum and M. C. Reed, “A model for slow axonal transport and its application to neurofilamentous neuropathies,” Cell Motility and the Cytoskeleton, vol. 12, no. 1, pp. 53–65, 1989spa
dc.relation.referencesD. A. Smith and R. M. Simmons, “Models of motor-assisted transport of intracellular particles,” Biophysical Journal, vol. 80, no. 1, pp. 45–68, 2001spa
dc.relation.referencesA. Friedman and G. Craciun, “A model of intracellular transport of particles in an axon,” Journal of Mathematical Biology, vol. 51, no. 2, pp. 217–246, 2005spa
dc.relation.referencesR. F. Niescier, S. K. Kwak, S. H. Joo, K. T. Chang, and K. T. Min, “Dynamics of mitochondrial transport in axons,” Frontiers in Cellular Neuroscience, vol. 10, no. 1662- 5102, pp. 1–10, 2016spa
dc.relation.referencesP. Jung and A. Brown, “Modeling the slowing of neurofilament transport along the mouse sciatic nerve,” Physical Biology, vol. 6, no. 4, 2009spa
dc.relation.referencesI. A. Kuznetsov and A. V. Kuznetsov, “Can numerical modeling help understand the fate of tau protein in the axon terminal?,” Computer Methods in Biomechanics and Biomedical Engineering, vol. 19, no. 2, pp. 115–125, 2016spa
dc.relation.referencesA. V. Kuznetsov, “An exact solution describing slow axonal transport of cytoskeletal elements: The effect of a finite half-life,” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 468, no. 2147, pp. 3384–3397, 2012spa
dc.relation.referencesA. V. Kuznetsov, A. A. Avramenko, and D. G. Blinov, “Effect of protein degradation in the axon on the speed of the bell-shaped concentration wave in slow axonal transport,” International Communications in Heat and Mass Transfer, vol. 36, no. 7, pp. 641–645, 2009spa
dc.relation.referencesA. V. Kuznetsov, A. A. Avramenko, and D. G. Blinov, “Effect of diffusion on slowing the velocity of a bell-shaped wave in slow axonal transport,” International Communications in Heat and Mass Transfer, vol. 37, no. 7, pp. 770–774, 2010spa
dc.relation.referencesA. V. Kuznetsov, A. A. Avramenko, and D. G. Blinov, “Macroscopic modeling of slow axonal transport of rapidly diffusible soluble proteins,” International Communications in Heat and Mass Transfer, vol. 36, no. 4, pp. 293–296, 2009spa
dc.relation.referencesA. V. Kuznetsov, “Analytical solution of the steady-state molecular-motor-assisted transport equations governing distribution of intracellular particles within a cell dendrite,” International Communications in Heat and Mass Transfer, vol. 35, no. 8, pp. 881– 884, 2008spa
dc.relation.referencesA. V. Kuznetsov, “Analytical solution of equations governing molecular-motor-assisted transport of intracellular particles,” International Communications in Heat and Mass Transfer, vol. 34, no. 4, pp. 391–398, 2007spa
dc.relation.referencesK. Sadegh Zadeh and S. B. Shah, “Mathematical modeling and parameter estimation of axonal cargo transport,” Journal of Computational Neuroscience, vol. 28, no. 3, pp. 495–507, 2010.spa
dc.relation.referencesM. J. Muller, S. Klumpp, and R. Lipowsky, “Motility states of molecular motors engaged in a stochastic tug-of-war,” Journal of Statistical Physics, vol. 133, no. 6, pp. 1059– 1081, 2008spa
dc.relation.referencesK. L. Gibbs, B. Kalmar, J. N. Sleigh, L. Greensmith, and G. Schiavo, “In vivo imaging of axonal transport in murine motor and sensory neurons,” Journal of Neuroscience Methods, vol. 257, pp. 26–33, 2016spa
dc.relation.referencesJ. H. Ferziger and M. Peric, Computational Methods for Fluid Dynamics. SpringerVerlag Berlin Heidelberg, 3 ed., 2002spa
dc.relation.referencesR. Larson and B. H. Edwards, Calculus. Learning, Cengage, 9 ed., 2010spa
dc.relation.referencesM. Ahmed, Q. U. A. Zainab, and S. Qamar, “Analysis of One-Dimensional Advection–Diffusion Model with Variable Coefficients Describing Solute Transport in a Porous medium,” Transport in Porous Media, vol. 118, no. 3, pp. 327–344, 2017spa
dc.relation.referencesP. Oresta, A. Lippolis, D. Politecnico, V. Turismo, C. Politecnico, V. R. David, and A. Soldati, “Advection Diffusion Model for Particles Deposition in Rayleigh-B´enard Turbulent Flows,” in Physics, pp. 1–15, 2005spa
dc.relation.referencesT. Tirabassi, A. Tiesi, D. Buske, M. T. Vilhena, and D. M. Moreira, “Some characteristics of a plume from a point source based on analytical solution of the two-dimensional advection-diffusion equation,” Atmospheric Environment, vol. 43, no. 13, pp. 2221– 2227, 2009.spa
dc.relation.referencesS. Ulfah, S. A. Awalludin, and W. Wahidin, “Advection-diffusion model for the simulation of air pollution distribution from a point source emission,” Journal of Physics: Conference Series, vol. 948, no. 1, 2018.spa
dc.relation.referencesY. Lou, X. Q. Zhao, and P. Zhou, “Global dynamics of a Lotka–Volterra competition–diffusion–advection system in heterogeneous environments,” Journal des Mathematiques Pures et Appliquees, vol. 121, pp. 47–82, 2019.spa
dc.relation.referencesR. Cui, K. Y. Lam, and Y. Lou, “Dynamics and asymptotic profiles of steady states of an epidemic model in advective environments,” Journal of Differential Equations, vol. 263, no. 4, pp. 2343–2373, 2017spa
dc.relation.referencesS. McKee, E. A. Dougall, and N. J. Mottram, “Analytic solutions of a simple advectiondiffusion model of an oxygen transfer device,” Journal of Mathematics in Industry, vol. 6, no. 1, 2016spa
dc.relation.referencesC. M. Batistela, D. P. Correa, A. M. Bueno, and J. R. C. Piqueira, “SIRSi compartmen- ´ tal model for COVID-19 pandemic with immunity loss,” Chaos, Solitons and Fractals, vol. 142, p. 12, 2020spa
dc.relation.referencesA. V. Kuznetsov and K. Hooman, “Modeling traffic jams in intracellular transport in axons,” International Journal of Heat and Mass Transfer, vol. 51, no. 23-24, pp. 5695– 5699, 2008spa
dc.relation.referencesA. V. Kuznetsov, “An exact solution of transient equations describing slow axonal transport,” Computer Methods in Biomechanics and Biomedical Engineering, vol. 16, no. 11, pp. 1232–1239, 2013.spa
dc.relation.referencesJ. Kim and H. S. Mahmassani, “Compound Gamma representation for modeling travel time variability in a traffic network,” Transportation Research Part B: Methodological, vol. 80, pp. 40–63, 2015spa
dc.relation.referencesS. K. Agarwal and S. L. Kalla, “A generalized gamma distribution and its application in reliability,” Communications in Statistics - Theory and Methods, vol. 25, no. 1, pp. 201–210, 1996spa
dc.relation.referencesK. J, O. Ngesa, and G. Orwa, “On Generalized Gamma Distribution and Its Application to Survival Data,” International Journal of Statistics and Probability, vol. 8, no. 5, p. 85, 2019spa
dc.relation.referencesI. A. Kuznetsov and A. V. Kuznetsov, “Simulating tubulin-associated unit transport in an axon: Using bootstrapping for estimating confidence intervals of best-fit parameter values obtained from indirect experimental data,” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 473, no. 2201, 2017spa
dc.relation.referencesA. V. Kuznetsov, “Analytical solution of equations describing slow axonal transport based on the stop-and-go hypothesis,” Central European Journal of Physics, vol. 9, no. 3, pp. 662–673, 2011.spa
dc.relation.referencesO. Zienkiewicz and R. Taylor, Finite Element Method: Volume 1 - The Basis. Oxford: Butterworth-Heinemann, 5th ed., 2000spa
dc.relation.referencesK. J. Bathe, Finite Element Procedures. K.J. Bathe, Watertown, MA, 2 ed., 2016.spa
dc.relation.referencesC. H. Galeano, J. M. Mantilla, and J. C. Galvis, El m´etodo de los elementos finitos. Un enfoque te´orico pr´actico. Colombia: Universidad Nacional de Colombia, 2016spa
dc.relation.referencesK. J. Bathe and H. Zhang, “A mesh adaptivity procedure for CFD and fluid-structure interactions,” Computers and Structures, vol. 87, no. 11-12, pp. 604–617, 2009spa
dc.relation.referencesW. Guo, K. Stoklund Dittlau, and L. Van Den Bosch, “Axonal transport defects and neurodegeneration: Molecular mechanisms and therapeutic implications,” Seminars in Cell and Developmental Biology, vol. 99, no. March 2019, pp. 133–150, 2020.spa
dc.relation.referencesP. Maddineni, R. B. Kasetti, P. D. Patel, J. C. Millar, C. Kiehlbauch, A. F. Clark, and G. S. Zode, “CNS axonal degeneration and transport deficits at the optic nerve head precede structural and functional loss of retinal ganglion cells in a mouse model of glaucoma,” Molecular Neurodegeneration, vol. 15, no. 1, pp. 1–20, 2020.spa
dc.relation.referencesM. A. Assmann and P. Lenz, “Characterization of bidirectional molecular motorassisted transport models,” Physical Biology, vol. 10, no. 1, 2013.spa
dc.relation.referencesA. V. Kuznetsov, “An exact solution describing slow axonal transport of cytoskeletal elements: The effect of a finite half-life,” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 468, no. 2147, pp. 3384–3397, 2012spa
dc.relation.referencesI. A. Kuznetsov and A. V. Kuznetsov, “A coupled model of fast axonal transport of organelles and slow axonal transport of tau protein,” Computer Methods in Biomechanics and Biomedical Engineering, vol. 18, no. 13, pp. 1485–1494, 2015spa
dc.relation.referencesL. G. Bilsland, E. Sahai, G. Kelly, M. Golding, L. Greensmith, and G. Schiavo, “Deficits in axonal transport precede ALS symptoms in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 47, pp. 20523–20528, 2010spa
dc.relation.referencesL. Smit-Rigter, R. Rajendran, C. A. Silva, L. Spierenburg, F. Groeneweg, E. M. Ruimschotel, D. van Versendaal, C. van der Togt, U. T. Eysel, J. A. Heimel, C. Lohmann, and C. N. Levelt, “Mitochondrial Dynamics in Visual Cortex Are Limited In Vivo and Not Affected by Axonal Structural Plasticity,” Current Biology, vol. 26, no. 19, pp. 2609–2616, 2016spa
dc.relation.referencesA. Vagnoni, P. C. Hoffmann, and S. L. Bullock, “Reducing Lissencephaly-1 levels augments mitochondrial transport and has a protective effect in adult Drosophila neurons,” Journal of Cell Science, vol. 129, no. 1, pp. 178–190, 2016spa
dc.relation.referencesJ. Sleigh and G. Schiavo, “Older but not slower: aging does not alter axonal transport dynamics of signalling endosomes in vivo ,” Matters, pp. 10–15, 2016.spa
dc.relation.referencesS. P. Gross, “Dynactin: Coordinating Motors with Opposite Inclinations,” Current Biology, vol. 13, no. 8, pp. R320–R322, 2003.spa
dc.relation.referencesR. L. Radius, “Optic Nerve Fast Axonal Transport Abnormalities in Primates: Occurrence After Short Posterior Ciliary Artery Occlusion,” Archives of Ophthalmology, vol. 98, no. 11, pp. 2018–2022, 1980.spa
dc.relation.referencesA. V. Kuznetsov and A. A. Avramenko, “A macroscopic model of traffic jams in axons,” Mathematical Biosciences, vol. 218, no. 2, pp. 142–152, 2009spa
dc.relation.referencesJ. E. Morgan, “Circulation and axonal transport in the optic nerve,” Eye, vol. 18, no. 11, pp. 1089–1095, 2004.spa
dc.relation.referencesA. Korneva, J. Schaub, J. Jefferys, E. Kimball, M. E. Pease, M. Nawathe, T. V. Johnson, I. Pitha, and H. Quigley, “A method to quantify regional axonal transport blockade at the optic nerve head after short term intraocular pressure elevation in mice,” Experimental Eye Research, vol. 196, no. February, 2020.spa
dc.relation.referencesJ. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence properties of the Nelder-Mead simplex method in low dimensions,” SIAM Journal on Optimization, vol. 9, no. 1, pp. 112–147, 1998.spa
dc.relation.referencesC. Audet and J. E. Dennis, “Analysis of generalized pattern searches,” SIAM Journal on Optimization, vol. 13, no. 3, pp. 889–903, 2003spa
dc.relation.referencesN. H. Alami, R. B. Smith, M. A. Carrasco, L. A. Williams, C. S. Winborn, S. S. Han, E. Kiskinis, B. Winborn, B. D. Freibaum, A. Kanagaraj, A. J. Clare, N. M. Badders, B. Bilican, E. Chaum, S. Chandran, C. E. Shaw, K. C. Eggan, T. Maniatis, and J. P. Taylor, “Axonal Transport of TDP-43 mRNA Granules Is Impaired by ALS-Causing Mutations,” Neuron, vol. 81, no. 3, pp. 536–543, 2014spa
dc.relation.referencesS. Rosa and D. F. Torres, “Parameter estimation, sensitivity analysis and optimal control of a periodic epidemic model with application to HRSV in Florida,” Statistics, Optimization and Information Computing, vol. 6, no. 1, pp. 139–149, 2018spa
dc.relation.referencesJ. Wu, R. Dhingra, M. Gambhir, and J. V. Remais, “Sensitivity analysis of infectious disease models: Methods, advances and their application,” Journal of the Royal Society Interface, vol. 10, no. 86, 2013.spa
dc.relation.referencesH. S. Rodrigues, M. T. T. Monteiro, and D. F. M. Torres, “Sensitivity Analysis in a Dengue Epidemiological Model,” Conference Papers in Mathematics, vol. 2013, no. June, pp. 1–7, 2013spa
dc.relation.referencesFatmawati, U. D. Purwati, and J. Nainggolan, “Parameter Estimation and Sensitivity Analysis of Malaria Model,” Journal of Physics: Conference Series, vol. 1490, no. 1, 2020.spa
dc.relation.referencesN. Chitnis, J. M. Hyman, and J. M. Cushing, “Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model,” Bulletin of Mathematical Biology, vol. 70, no. 5, pp. 1272–1296, 2008spa
dc.relation.referencesY. Wu, S. Liu, Z. Huang, and W. Yan, “Parameter optimization, sensitivity, and uncertainty analysis of an ecosystemmodel at a forest flux tower site in the United States,” Journal of Advances in Modeling Earth Systems, vol. 6, no. 2, pp. 513–526, 2014spa
dc.relation.referencesT. M. Perumal and R. Gunawan, “Understanding dynamics using sensitivity analysis : caveat and solution,” BMC Systems Biology, vol. 5, no. 1, p. 41, 2011.spa
dc.relation.referencesD. Goulet, “Parameter Fitting of Biochemical Kinetic Experiments,” SIAM Review, vol. 58, no. 2, pp. 331–353, 2016.spa
dc.relation.referencesI. G. Zs´ely, J. Z´ador, and T. Tur´anyi, “On the similarity of the sensitivity functions of methane combustion models,” Combustion Theory and Modelling, vol. 9, no. 4, pp. 721–738, 2005spa
dc.relation.referencesT. Maly and L. R. Petzold, “Numerical methods and software for sensitivity analysis of differential-algebraic systems,” Applied Numerical Mathematics, vol. 20, no. 1-2, pp. 57–79, 1996spa
dc.relation.referencesS. Devireddy, A. Liu, T. Lampe, and P. J. Hollenbeck, “The organization of mitochondrial quality control and life cycle in the nervous system In Vivo in the absence of PINK1,” Journal of Neuroscience, vol. 35, no. 25, pp. 9391–9401, 2015spa
dc.relation.referencesB. T. Helfand, P. Loomis, M. Yoon, and R. D. Goldman, “Rapid transport of neural intermediate filament protein,” Journal of Cell Science, vol. 116, no. 11, pp. 2345–2359, 2003spa
dc.relation.referencesS. L. Rogers, I. S. Tint, P. C. Fanapour, and V. I. Gelfand, “Regulated bidirectional motility of melanophore pigment granules along micro tubules in vitro,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 8, pp. 3720–3725, 1997spa
dc.relation.referencesK. Panchal and A. K. Tiwari, “Miro (Mitochondrial Rho GTPase), a key player of mitochondrial axonal transport and mitochondrial dynamics in neurodegenerative diseases,” Mitochondrion, vol. 56, no. August 2020, pp. 118–135, 2021spa
dc.relation.referencesV. K. Lund, M. D. Lycas, A. Schack, R. C. Andersen, U. Gether, and O. Kjaerulff, “Rab2 drives axonal transport of dense core vesicles and lysosomal organelles,” Cell Reports, vol. 35, no. 2, p. 108973, 2021.spa
dc.relation.referencesR. N. Weinreb, T. Aung, and F. A. Medeiros, “The pathophysiology and treatment of glaucoma: A review,” JAMA - Journal of the American Medical Association, vol. 311, no. 18, pp. 1901–1911, 2014.spa
dc.relation.referencesE. R. Tamm, C. R. Ethier, J. E. Dowling, C. Downs, M. H. Ellisman, S. Fisher, B. Fortune, M. Fruttiger, T. Jakobs, G. Lewis, R. H. Masland, C. H. Mitchell, J. Morrison, S. C. Sharma, I. Sigal, M. Sofroniew, L. Wang, J. Wiggs, and S. Wu, “Biological aspects of axonal damage in glaucoma: A brief review,” Experimental Eye Research, vol. 157, pp. 5–12, 2017.spa
dc.relation.referencesA. H. Bunt-Milam, M. B. Dennis Jr, and R. E. Bensinger, “Optic nerve head axonal transport in rabbits with hereditary glaucoma,” Exp Eye Res, vol. 44(4):537-, 1987spa
dc.relation.referencesD. Prada, A. Harris, G. Guidoboni, B. Siesky, A. M. Huang, and J. Arciero, “Autoregulation and neurovascular coupling in the optic nerve head,” Survey of Ophthalmology, vol. 61, no. 2, pp. 164–186, 2016.spa
dc.relation.referencesA. Tatone, F. Recrosi, R. Repetto, and G. Guidoboni, “From species diffusion to poroelasticity and the modeling of lamina cribrosa,” Journal of the Mechanics and Physics of Solids, vol. 124, pp. 849–870, 2019spa
dc.relation.referencesA. P. Voorhees, J. L. Grimm, R. A. Bilonick, L. Kagemann, H. Ishikawa, J. S. Schuman, G. Wollstein, and I. A. Sigal, “What is a typical optic nerve head?,” Experimental Eye Research, vol. 149, pp. 40–47, 2016spa
dc.relation.referencesI. A. Sigal, J. G. Flanagan, I. Tertinegg, and C. R. Ethier, “3D morphometry of the human optic nerve head,” Experimental Eye Research, vol. 90, no. 1, pp. 70–80, 2010spa
dc.relation.referencesC. Stowell, C. F. Burgoyne, E. R. Tamm, C. R. Ethier, J. E. Dowling, C. Downs, M. H. Ellisman, S. Fisher, B. Fortune, M. Fruttiger, T. Jakobs, G. Lewis, R. H. Masland, C. H. Mitchell, J. Morrison, S. C. Sharma, I. Sigal, M. Sofroniew, L. Wang, J. Wiggs, and S. Wu, “Biomechanical aspects of axonal damage in glaucoma: A brief review,” Experimental Eye Research, vol. 157, pp. 13–19, 2017spa
dc.relation.referencesR. E. Norman, J. G. Flanagan, I. A. Sigal, S. M. Rausch, I. Tertinegg, and C. R. Ethier, “Finite element modeling of the human sclera: Influence on optic nerve head biomechanics and connections with glaucoma,” Experimental Eye Research, vol. 93, no. 1, pp. 4–12, 2011.spa
dc.relation.referencesJ. Crawford Downs, M. D. Roberts, and I. A. Sigal, “Glaucomatous cupping of the lamina cribrosa: A review of the evidence for active progressive remodeling as a mechanism,” Experimental Eye Research, vol. 93, no. 2, pp. 133–140, 2011spa
dc.relation.referencesA. P. Voorhees, N. J. Jan, and I. A. Sigal, “Effects of collagen microstructure and material properties on the deformation of the neural tissues of the lamina cribrosa,” Acta Biomaterialia, vol. 58, pp. 278–290, 2017spa
dc.relation.referencesR. Grytz, I. A. Sigal, J. W. Ruberti, G. Meschke, and J. Crawford Downs, “Lamina cribrosa thickening in early glaucoma predicted by a microstructure motivated growth and remodeling approach,” Mechanics of Materials, vol. 44, pp. 99–109, 2012spa
dc.relation.referencesM. E. Pease, S. J. McKinnon, H. A. Quigley, L. A. Kerrigan-Baumrind, and D. J. Zack, “Obstructed axonal transport of BDNF and its receptor TrkB in experimental glaucoma,” Investigative Ophthalmology and Visual Science, vol. 41, no. 3, pp. 764–774, 2000spa
dc.relation.referencesJ. A. Kim, T. W. Kim, R. N. Weinreb, E. J. Lee, M. J. Girard, and J. M. Mari, “Lamina Cribrosa Morphology Predicts Progressive Retinal Nerve Fiber Layer Loss in Eyes with Suspected Glaucoma,” Scientific Reports, vol. 8, no. 1, pp. 1–10, 2018.spa
dc.relation.referencesZ. Wu, G. Xu, R. N. Weinreb, M. Yu, and C. K. Leung, “Optic Nerve Head Deformation in Glaucoma: A Prospective Analysis of Optic Nerve Head Surface and Lamina Cribrosa Surface Displacement,” Ophthalmology, vol. 122, no. 7, pp. 1317–1329, 2015spa
dc.relation.referencesS. Yazdani, A. Naderi Beni, and M. Pakravan, “Laminar and Prelaminar Tissue Characteristics of Glaucomatous Eyes Using Enhanced Depth Imaging OCT,” Ophthalmology. Glaucoma, vol. 4, no. 1, pp. 95–101, 2021spa
dc.relation.referencesE. J. Lee, T. W. Kim, H. Kim, S. H. Lee, M. J. Girard, and J. M. Mari, “Comparison between Lamina Cribrosa Depth and Curvature as a Predictor of Progressive Retinal Nerve Fiber Layer Thinning in Primary Open-Angle Glaucoma,” Ophthalmology. Glaucoma, vol. 1, no. 1, pp. 44–51, 2018.spa
dc.relation.referencesM. D. Rosini, Macroscopic Models for Vehicular Flows and Crowd Dynamics: Theory and Applications: Classical and Non–Classical Advanced Mathematics for Real Life Applications. Springer International Publishing, 1 ed., 2013.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.otherTRANSPORTE BIOLOGICO
dc.subject.otherTRANSPORTE AXONAL
dc.subject.otherTransporte por membranas
dc.subject.proposalAnálisis de sensibilidadspa
dc.subject.proposalBidireccionalidadspa
dc.subject.proposalEnfermedades neurodegenerativasspa
dc.subject.proposalMétodo de elementos Finitosspa
dc.subject.proposalTransporte axonalspa
dc.subject.proposalSentivity Analysiseng
dc.subject.proposalBidirectionaleng
dc.subject.proposalNeurodegenerative diseaseseng
dc.subject.proposalFinite element Methodeng
dc.subject.proposalAxonal Transporteng
dc.titleAnálisis de influencia y sensibilidad de los parámetros involucrados en el modelamiento de la dinámica del transporte axonalspa
dc.title.translatedInfluence and sensitivity analysis of the parameters involved in modeling the dynamics of axonal transporteng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1022968675.2018 - Cristian Felipe Morales Suarez.pdf
Tamaño:
17.07 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería Mecánica

Bloque de licencias

Mostrando 1 - 2 de 2
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
No hay miniatura disponible
Nombre:
Licencia y autorización para publicación de obras en el repositorio institucional UN - Cristian Felipe Morales Suarez.pdf
Tamaño:
336.09 KB
Formato:
Adobe Portable Document Format
Descripción:
Licencia de publicación