Adquisición y procesamiento de imágenes multiespectrales enfocado en la reproducción y corrección de color en entornos de iluminación controlados

dc.contributor.advisorMontes Castrillón, Nubia Liliana
dc.contributor.advisorTamayo Monsalve, Manuel Alejandro
dc.contributor.authorGiraldo Duque, Maria Alejandra
dc.contributor.cvlacGiraldo Duque, Maria Alejandra [0001824872]spa
dc.contributor.orcidGiraldo Duque, Maria Alejandra [ 0000-0001-6327-201X]spa
dc.contributor.researchgroupPercepción y Control Inteligente (Pci)spa
dc.date.accessioned2024-01-25T20:38:39Z
dc.date.available2024-01-25T20:38:39Z
dc.date.issued2023
dc.descriptiongraficas, ilustraciones, tablasspa
dc.description.abstractEsta tesis presenta la validación del funcionamiento y calibración de una nueva versión de un sistema imágenes multiespectrales que utiliza un sensor de cámara de amplio espectro (400-1000nm), y tecnología de iluminación basada en LED de ancho de banda estrecha dentro del espectro visible (410,650nm). Esta versión consta de una cámara monocromática de amplio espectro que se adaptó a varios lentes para realizar diferentes tomas y pruebas. Cuenta con un entorno de iluminación controlado con forma de caja octagonal oscura y cerrada. Dentro de ella se encuentran cuatro módulos, cada uno de ellos con 8 tríos de LEDs de alta potencia con ancho de banda estrecho en diversas longitudes de onda, que incluyen 7 dentro del espectro visible y 1 en el infrarrojo cercano que toma el rango de 410-850nm. El propósito de esta tesis es presentar un sistema multiespectral para adquirir la información intrínseca del color de las imágenes en un entorno de iluminación controlado como sistema de medida de color. Para ello, es necesario caracterizar y calibrar el sistema; y adecuar la configuración de los parámetros del sensor/lente. Además, se presentan las comparaciones respectivas de los sistemas para medir su precisión y exactitud. Como resultado del proceso de captura, se generan 8 imágenes multiespectrales que contienen información correspondiente a cada una de las longitudes de onda disponibles en cada sistema. Con el fin de evitar problemas de saturación, contraste, etc; se realiza la calibración y el estudio de repetibilidad del sistema. Además, se realiza la optimización en el software del sistema para corregir errores y ajustar el color respecto a la referencia según el CIE (Comission Internationale de l´Eclairage). Para ello, se aplican técnicas de regresión lineal, no lineal y una red neuronal. La capacidad del sistema para reproducir color a partir de imágenes espectrales genera como resultado una distancia de color de 23,74 Delta E y 40,45 Delta E cuando se utiliza la primera versión, la Corona Multiespectral y la segunda, el Domo Multiespectral, respectivamente. Utilizando el mejor entre los método probados para la corrección de color (Red neuronal) los errores disminuyen hasta 3,31 Delta E y 2,22 Delta E cuando se utiliza la primera versión y la segunda, respectivamente (Texto tomado de la fuente)spa
dc.description.abstractThis thesis presents the validation of the operation and calibration of a new version of a multispectral image acquisition system using a wide spectrum (400-1000nm) camera sensor, and narrow bandwidth LED based illumination technology within the visible spectrum (410,650nm). This version consists of a broad spectrum monochromatic camera that was adapted to various lenses for different shots and tests. It has a controlled illumination environment in the shape of a dark, closed octagonal box. Inside it are four modules, each containing 8 trios of narrow bandwidth power LEDs of different wavelengths (7 within the visible spectrum and 1 in the near infrared) taking the range 410-850nm. The purpose of this thesis is to present a multispectral system for acquiring intrinsic color information from images in a controlled illumination environment as a color measurement system. For this purpose, it is necessary to characterize and calibrate the system; and to adapt the configuration of the sensor/lens parameters. In addition, the respective comparisons of the systems are presented to measure their precision and accuracy. As a result of the acquisition process, 8 multispectral images are obtained with information of each of the wavelengths available in each system. In order to avoid problems of saturation, contrast, etc., the calibration and repeatability study of the system is performed. In addition, the system software is optimized to correct errors and adjust the color with respect to the reference according to the Colorimetry Standard (CIE). For this purpose, linear and nonlinear regression techniques and a neural network are applied. The system's ability to reproduce color from spectral images results in a color distance of 23.74 Delta E and 40.45 Delta E when using the first version: Corona Multispectral and the second version: Dome Multispectral, respectively. Using the best among the proven methods for color correction (Neural Network) the errors decrease to 3.31 Delta E and 2.22 Delta E when using the first version and the second version, respectively.eng
dc.description.curricularareaEléctrica, Electrónica, Automatización Y Telecomunicaciones.Sede Manizalesspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Automatización Industrialspa
dc.format.extentxvi, 61 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85447
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizalesspa
dc.publisher.facultyFacultad de Ingeniería y Arquitecturaspa
dc.publisher.placeManizales, Colombiaspa
dc.publisher.programManizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Automatización Industrialspa
dc.relation.referencesManuel Alejandro Tamayo Monsalve. Diseño de un sistema de adquisición de imágenes multiespectrales basado en iluminación LED de potencia de ancho de banda estrecho. PhD thesis, Universidad Nacional de Colombia, 2020.spa
dc.relation.referencesJorge A Herrera Ramírez. Diseño e implementación de un sistema multiespectral en el rango ultravioleta, visible e infrarrojo: aplicación al estudio y conservación de obras de arte. PhD thesis, Universitat Polit´ecnica de Catalunya, 2014.spa
dc.relation.referencesArzoo S Shaikh and J Gohi Chiragkumar. Photochemical reaction: A lightning phenomena. International Journal of Pharmaceutical Chemistry and Analysis, 3(3):104–109, 2016.spa
dc.relation.referencesYou Li, Julien Moreau, and Javier Ibanez-Guzman. Emergent visual sensors for autonomous vehicles. IEEE Transactions on Intelligent Transportation Systems, 2023.spa
dc.relation.referencesOuafa Sijilmassi, José-Manuel López Alonso, Aurora Del Río Sevilla, and María del Carmen Barrio Asensio. Multispectral imaging method for rapid identification and analysis of paraffin-embedded pathological tissues. Journal of Digital Imaging, pages 1–12, 2023.spa
dc.relation.referencesLixia Wang, Aditya Sole, Jon Yngve Hardeberg, and Xiaoxia Wan. Optimized light source spectral power distribution for rgb camera based spectral reflectance recovery. Optics Express, 29(16):24695–24713, 2021.spa
dc.relation.referencesJianwei Qin, Kuanglin Chao, Moon S Kim, Renfu Lu, and Thomas F Burks. Hyperspectral and multispectral imaging for evaluating food safety and quality. Journal of Food Engineering, 118(2):157–171, 2013.spa
dc.relation.referencesRichard O Brown and Donald IA MacLeod. Color appearance depends on the variance of surround colors. Current Biology, 7(11):844–849, 1997.spa
dc.relation.referencesDavid Weiss, Christoph Witzel, and Karl Gegenfurtner. Determinants of colour constancy and the blue bias. i-Perception, 8(6):2041669517739635, 2017.spa
dc.relation.referencesDi Wu and Da-Wen Sun. Advanced applications of hyperspectral imaging technology for food quality and safety analysis and assessment: A review—part i: Fundamentals. Innovative Food Science & Emerging Technologies, 19:1–14, 2013.spa
dc.relation.referencesJavier y Romero Javier y Campos Joaquín y Pons Alicia López Álvarez, Miguel y Hernández Andrés. Calibración de los elementos de un sistema de imágenes multiespectrales. Journal of Imaging Science and Technology.spa
dc.relation.referencesAlberto y Jimenez-Jimenez Sergio Ivány Ontiveros-Capurata Ronald Ernesto y Ojeda- Bustamante Waldo Marcial-Pablo, Mariana de Jesús Gonzalez-Sanchez. Estimación de la fracción de vegetación usando imágenes rgb y multiespectrales de uav. Revista internacional de teledetección.spa
dc.relation.referencesEstimación cuantitativa de la salinidad del suelo utilizando imágenes hiperespectrales y multiespectrales satelitales transmitidas por uav. Remote Sensing.spa
dc.relation.referencesPhilipp Ziemer. Design and implementation of a multispectral imaging system. 2013.spa
dc.relation.referencesHidehiko Murata, Kotaro Saitoh, and Yasuhiko Sumida. True color imagery rendering for himawari-8 with a color reproduction approach based on the cie xyz color system. Journal of the Meteorological Society of Japan. Ser. II, 2018.spa
dc.relation.referencesWen-Hao Su and Da-Wen Sun. Multispectral imaging for plant food quality analysis and visualization. Comprehensive reviews in food science and food safety, 17(1):220–239, 2018.spa
dc.relation.referencesPhilipp Ziemer. Design and implementation of a multispectral imaging system. Master’s thesis, Universit at Konstanz, 2013.spa
dc.relation.referencesDavid H Foster and Kinjiro Amano. Hyperspectral imaging in color vision research: tutorial. JOSA A, 36(4):606–627, 2019.spa
dc.relation.referencesVARSHA CHIKANE and Chiou-Shann Fuh. Automatic white balance for digital still cameras. Journal of Information Science and Engineering, 22(3):497–509, 2006.spa
dc.relation.referencesChing-Chih Weng, Homer Chen, and Chiou-Shann Fuh. A novel automatic white balance method for digital still cameras. In 2005 IEEE International Symposium on Circuits and Systems (ISCAS), pages 3801–3804. IEEE, 2005.spa
dc.relation.referencesTatiana Vitorino, Andrea Casini, Costanza Cucci, Ana Gebejesje, Jouni Hiltunen, Markku Hauta-Kasari, Marcello Picollo, and Lorenzo Stefani. Accuracy in colour reproduction: using a colorchecker chart to assess the usefulness and comparability of data acquired with two hyper-spectral systems. In International Workshop on Computational Color Imaging, pages 225–235. Springer, 2015.spa
dc.relation.referencesYibo Zhang, Yichen Wu, Yun Zhang, and Aydogan Ozcan. Color calibration and fusion of lens-free and mobile-phone microscopy images for high-resolution and accurate color reproduction. Scientific reports, 6(1):1–14, 2016.spa
dc.relation.referencesDiana Marcela Montoya Montoya. Funcionamiento del ojo humano: una estrategia didáctica para el aula inclusiva a través de la relación física y biológica. Master’s thesis, Universidad Pedagógica Nacional, 2013.spa
dc.relation.referencesHakki Can Karaimer and Michael S Brown. Improving color reproduction accuracy on cameras. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 6440–6449, 2018.spa
dc.relation.referencesMaud Harleman. Daylight influence on colour design: empirical study on perceived colour and colour experience indoors. PhD thesis, KTH, School of architecture and the Built environment, 2007.spa
dc.relation.referencesNohora Alejandra Hernández Cepeda. La construcción de vínculos entre luz y color desde la perspectiva de newton: una propuesta para ampliar el campo de los fenómenos cromáticos. Master’s thesis, Universidad Pedagógica Nacional, 2017.spa
dc.relation.referencesTakayuki Honda, Daisuke Sugimura, and Takayuki Hamamoto. Multi-frame rgb/nir imaging for low-light color image super-resolution. IEEE Transactions on Computational Imaging, 6:248–262, 2019.spa
dc.relation.referencesMicrogamma. X-rite colorchecker chart, 2022.spa
dc.relation.referencesMunsell. X-rite farnsworth munsell 100 hue test, 2023.spa
dc.relation.referencesM Kamruzzaman and D-W Sun. Introduction to hyperspectral imaging technology. In Computer vision technology for food quality evaluation, pages 111–139. Elsevier, 2016.spa
dc.relation.referencesCamille Simon Chane, Alamin Mansouri, Franck S Marzani, and Frank Boochs. Integration of 3d and multispectral data for cultural heritage applications: Survey and perspectives. Image and Vision Computing, 31(1):91–102, 2013.spa
dc.relation.referencesMeritxell Vilaseca, Rita Mercadal, Jaume Pujol, Monserrat Arjona, Marta de Lasarte, Rafael Huertas, Manuel Melgosa, and Francisco H Imai. Characterization of the human iris spectral reflectance with a multispectral imaging system. Applied optics, 47(30):5622–5630, 2008.spa
dc.relation.referencesCui Ma, Ming Yu, Fokui Chen, and Hui Lin. An efficient and portable led multispectral imaging system and its application to human tongue detection. Applied Sciences, 12(7):3552, 2022.spa
dc.relation.referencesShubo Wang, Yu Han, Jian Chen, Xiongkui He, Zichao Zhang, Xuzan Liu, and Kai Zhang. Weed density extraction based on few-shot learning through uav remote sensing rgb and multispectral images in ecological irrigation area. Frontiers in Plant Science, 12:3456, 2022.spa
dc.relation.referencesDeqin Xiao, Yongqi Pan, Jianzhao Feng, Jianjun Yin, Youfu Liu, and Long He. Remote sensing detection algorithm for apple fire blight based on uav multispectral image. Computers and Electronics in Agriculture, 199:107137, 2022.spa
dc.relation.referencesEva M Valero, Yu Hu, Javier Hernández-Andrés, Timo Eckhard, Juan L Nieves, Javier Romero, Markus Schnitzlein, and Dietmar Nowack. Comparative performance analysis of spectral estimation algorithms and computational optimization of a multispectral imaging system for print inspection. Color Research & Application, 39(1):16–27, 2014.spa
dc.relation.referencesLindsay W MacDonald, Tatiana Vitorino, Marcello Picollo, Ruven Pillay, Micha l Obarzanowski, Joanna Sobczyk, S´ergio Nascimento, and Jo˜ao Linhares. Assessment of multispectral and hyperspectral imaging systems for digitisation of a russian icon. Heritage Science, 5:1–16, 2017.spa
dc.relation.referencesAiman Raza, Dominique Dumortier, Sophie Jost-Boissard, Coralie Cauwerts, and Marie Dubail. Accuracy of hyperspectral imaging systems for color and lighting research. LEUKOS, 19(1):16–34, 2023.spa
dc.relation.referencesOlivia Kuzio and Susan Farnand. Color accuracy-guided data reduction for practical led-based multispectral imaging. In Archiving Conference, volume 18, pages 65–70. Society for Imaging Science and Technology, 2021.spa
dc.relation.referencesEleni Aloupogianni, Masahiro Ishikawa, Naoki Kobayashi, and Takashi Obi. Hyperspectral and multispectral image processing for gross-level tumor detection in skin lesions: a systematic review. Journal of Biomedical Optics, 27(6):060901–060901, 2022.spa
dc.relation.referencesDragana Bartolic, Dragosav Mutavdzic, Jens Michael Carstensen, Slavica Stankovic, Milica Nikolic, Sasa Krstovic, and Ksenija Radotic. Fluorescence spectroscopy and multispectral imaging for fingerprinting of aflatoxin-b1 contaminated (zea mays l.) seeds: A preliminary study. Scientific Reports, 12(1):4849, 2022.spa
dc.relation.referencesAdrian Dascalu, Joao Catalo, and Ana Navarro. Detecting deforestation using logistic analysis and sentinel-1 multitemporal backscatter data. Remote Sensing, 15(2):290, 2023.spa
dc.relation.referencesShigeng Song, Des Gibson, Sam Ahmadzadeh, Hin On Chu, Barry Warden, Russell Overend, Fraser Macfarlane, Paul Murray, Stephen Marshall, Matt Aitkenhead, et al. Low-cost hyper-spectral imaging system using a linear variable bandpass filter for agritech applications. Applied Optics, 59(5):A167–A175, 2020.spa
dc.relation.referencesMartin Hubold, Elisabeth Montag, René Berlich, Robert Brunner, and Robert Bruning. Multi-aperture system approach for snapshot multispectral imaging applications. Optics Express, 29(5):7361–7378, 2021.spa
dc.relation.referencesM Gupta, P Goyal, and V Rathi. A new generic progressive approach based on spectral difference for single-sensor multispectral imaging system. 2021.spa
dc.relation.referencesMei-Xuan Li, Mei-jiao Wang, Zhe Liu, and Qi Sun. Design of near-ultraviolet narrowband filters in multispectral imaging system. In Seventh Symposium on Novel Photoelectronic Detection Technology and Applications, volume 11763, pages 1247–1251. SPIE, 2021.spa
dc.relation.referencesDaniel Pineda, Juan P´erez, Daniel Gaviria, Karen Ospino-Villalba, and Omar Camargo. Medusa: An open-source and webcam based multispectral imaging system. HardwareX, 11:e00282, 2022.spa
dc.relation.referencesM Rosenberger, P-G Dittrich, R Illmann, R Horn, A Golomoz, G Notni, S Eiser, O Hirst, and N Jahn. Multispectral imaging system for short wave infrared applications. In Algorithms, Technologies, and Applications for Multispectral and Hyperspectral Imaging XXVIII, volume 12094, pages 351–364. SPIE, 2022.spa
dc.relation.referencesFuzhou Shen, Hancheng Deng, Lejun Yu, and Fuhong Cai. Open-source mobile multispectral imaging system and its applications in biological sample sensing. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 280:121504, 2022.spa
dc.relation.referencesRaju Shrestha and Jon Yngve Hardeberg. How are led illumination based multispectral imaging systems influenced by different factors? In Image and Signal Processing: 6th International Conference, ICISP 2014, Cherbourg, France, June 30–July 2, 2014. Proceedings 6, pages 61–71. Springer, 2014.spa
dc.relation.referencesHui Xie, Zhuang Zhao, Jing Han, Fengchao Xiong, and Yi Zhang. Dual camera snapshot high-resolution-hyperspectral imaging system with parallel joint optimization via physics-informed learning. Optics Express, 31(9):14617–14639, 2023.spa
dc.relation.referencesYang Tang, Shuang Song, Shengxi Gui, Weilun Chao, Chinmin Cheng, and Rongjun Qin. Active and low-cost hyperspectral imaging for the spectral analysis of a low-light environment. Sensors, 23(3):1437, 2023.spa
dc.relation.referencesJong-Il Park, Moon-Hyun Lee, Michael D Grossberg, and Shree K Nayar. Multispectral imaging using multiplexed illumination. In 2007 IEEE 11th International Conference on Computer Vision, pages 1–8. IEEE, 2007.spa
dc.relation.referencesJosé Manuel Amigo and Silvia Grassi. Configuration of hyperspectral and multispectral imaging systems. In Data handling in science and technology, volume 32, pages 17–34. Elsevier, 2019.spa
dc.relation.referencesLuc Duempelmann, Benjamin Gallinet, and Lukas Novotny. Multispectral imaging with tunable plasmonic filters. ACS Photonics, 4(2):236–241, 2017.spa
dc.relation.referencesRaju Shrestha and Jon Yngve Hardeberg. Evaluation and comparison of multispectral imaging systems. In Color and Imaging Conference, volume 2014, pages 107–112. Society for Imaging Science and Technology, 2014.spa
dc.relation.referencesHans Grahn and Paul Geladi. Techniques and applications of hyperspectral image analysis. John Wiley & Sons, 2007.spa
dc.relation.referencesRaju Shrestha and Jon Yngve Hardeberg. Spectrogenic imaging: A novel approach to multispectral imaging in an uncontrolled environment. Optics Express, 22(8):9123–9133, 2014.spa
dc.relation.referencesM. A. Tamayo, G. Osorio, N. L. Montes, S. Lopez, S. Cubero, and J. Blasco. Characterization of a multispectral imaging system based on narrow bandwidth power leds. IEEE Transactions on Instrumentation and Measurement, 70:1–11, 2021.spa
dc.relation.referencesConstrucción del prototipo de un sistema de visión multiespectral basado en iluminación led, 2022. Convocatoria conjunta de desarrollo tecnológico e innovación 2019spa
dc.relation.referencesSen Cao, Brad Danielson, Shari Clare, Shantel Koenig, Carlos Campos-Vargas, and Arturo Sanchez-Azofeifa. Radiometric calibration assessments for uas-borne multispectral cameras: Laboratory and field protocols. ISPRS Journal of Photogrammetry and Remote Sensing, 149:132–145, 2019.spa
dc.relation.referencesHaris Ahmad Khan, Jean-Baptiste Thomas, Jon Yngve Hardeberg, and Olivier Laligant. Spectral adaptation transform for multispectral constancy. Journal of Imaging Science and Technology, 62(2):20504–1, 2018.spa
dc.relation.referencesSteven Le Moan and Philipp Urban. Image-difference prediction: from color to spectral. IEEE Transactions on Image Processing, 23(5):2058–2068, 2014.spa
dc.relation.referencesAlexandre Krebs, Yannick Benezeth, and Franck Marzani. Intrinsic rgb and multispectral images recovery by independent quadratic programming. PeerJ Computer Science, 6:e256, 2020.spa
dc.relation.referencesZhenghao Han, Weiqi Jin, Li Li, Xia Wang, Xiaofeng Bai, and Hailin Wang. Nonlinear regression color correction method for rgbn cameras. IEEE Access, 8:25914–25926, 2020.spa
dc.relation.referencesRadoslaw Mantiuk, Rafal Mantiuk, Anna Tomaszewska, and Wolfgang Heidrich. Color correction for tone mapping. Wiley Online Library, 28(2):193–202, 2009.spa
dc.relation.referencesDanny Pascale. Rgb coordinates of the macbeth colorchecker. The BabelColor Company, 6, 2006.spa
dc.relation.referencesAP Gusmán. Análisis y clasificación de firmas espectrales utilizando técnicas de aprendizaje automático, 2019.spa
dc.relation.referencesD Astm. 6521-19. standard practice for accelerated aging of asphalt binder using a pressurized aging vessel (pav). ASTM: West Conshohocken, PA, USA, 2019.spa
dc.relation.referencesDavid R Wyble and Danny C Rich. Evaluation of methods for verifying the performance of color-measuring instruments. part i: Repeatability. Color Research & Application: Endorsed by Inter-Society Color Council, The Colour Group (Great Britain), Canadian Society for Color, Color Science Association of Japan, Dutch Society for the Study of Color, The Swedish Colour Centre Foundation, Colour Society of Australia, Centre Fran¸cais de la Couleur, 32(3):166–175, 2007.spa
dc.relation.referencesMeritxell Vilaseca, Barbara Schael, Xana Delpueyo, Elisabet Chorro, Esther Perales, Tapani Hirvonen, and Jaume Pujol. Repeatability, reproducibility, and accuracy of a novel pushbroom hyperspectral system. Color Research & Application, 39(6):549–558, 2014.spa
dc.relation.referencesWilliane de Oliveira Silva Soares, Rogério Santana Peruchi, Rómulo Augusto Ventura Silva, and Paulo Rotella Junior. Estudios gage r&r en el análisis de sistemas de medición: Una revisión sistemática de la literatura.spa
dc.relation.referencesBerna Balta, Fazıl O¨ nder So¨ nmez, and Abdu¨ lkadir Cengiz. Gage repeatability and reproducibility investigations of a test rig using anova/xbar-r method. In ASME International Mechanical Engineering Congress and Exposition, volume 54891, pages 793–800, 2011.spa
dc.relation.referencesAntonio Cuevas, Manuel Febrero, and Ricardo Fraiman. An anova test for functional data. Computational statistics & data analysis, 47(1):111–122, 2004.spa
dc.relation.referencesJosé María Artigas, Pascual Capilla Perea, and Jaume Pujol i Ramo. Tecnología del color, volume 58. Universitat de valencia, 2002.spa
dc.relation.referencesCurtis D Mobley, Jeremy Werdell, Bryan Franz, Ziauddin Ahmad, and Sean Bailey. Atmospheric correction for satellite ocean color radiometry. -, -(GSFC-E-DAA-TN35509):– 2016.spa
dc.relation.referencesMarco Antonio Alonso P´erez. Espacios de Color RGB, HSI y sus Generalizaciones a n-Dimensiones. PhD thesis, Instituto Nacional de Astrofísica, óptica y Electrónica, 2009.spa
dc.relation.referencesMaría de Los Angeles Da Fonseca. Visi´on en color: análisis estadístico de la absorción de fotones en la retina y sus consecuencias perceptuales. PhD thesis, Universidad Nacional de Cuyo, Argentina., 2018.spa
dc.relation.referencesAlberto Ruiz Guijosa. Algoritmos para mejorar la experiencia visual de personas con daltonismo. Master’s thesis, Universidad Autonoma de madrid, 2020.spa
dc.relation.referencesJon Y Hardeberg. Acquisition and reproduction of color images: colorimetric and multispectral approaches. Universal-Publishers, 2001.spa
dc.relation.referencesGershon Buchsbaum. A spatial processor model for object colour perception. Journal of the Franklin institute, 310(1):1–26, 1980.spa
dc.relation.referencesBryce E. Bayer. Color imaging array, March 5 1975. US Patent 3971065.spa
dc.relation.referencesDavid H Foster, Kinjiro Amano, S´ergio MC Nascimento, and Michael J Foster. Frequency of metamerism in natural scenes. Josa a, 23(10):2359–2372, 2006.spa
dc.relation.referencesJeroen van Roy, JC Keresztes, Niels Wouters, Bart De Ketelaere, and Wouter Saeys. Measuring colour of vine tomatoes using hyperspectral imaging. Postharvest Biology and Technology, 129:79–89, 2017.spa
dc.relation.referencesJ Conde, H Haneishi, M Yamaguchi, N Ohyama, and J Baez. Spectral reflectance estimation of ancient mexican codices, multispectral images approach. Revista mexicana de física, 50(5):484–489, 2004.spa
dc.relation.referencesRWG Hunt and MR Pointer. A colour-appearance transform for the cie 1931 standard colorimetric observer. Color Research & Application, 10(3):165–179, 1985.spa
dc.relation.referencesDaniel Malacara. Color vision and colorimetry: theory and applications. Spie Bellingham, WA, 2011.spa
dc.relation.referencesH Joel Trussell, Eli Saber, and Michael Vrhel. Color image processing: Basics and special issue overview. IEEE signal processing magazine, 22(1), 2005.spa
dc.relation.referencesBernhard Hill. Color capture, color management, and the problem of metamerism: does multispectral imaging offer the solution? In Color Imaging: Device-Independent Color, Color Hardcopy, and Graphic Arts V, volume 3963, pages 2–14. SPIE, 1999.spa
dc.relation.referencesXiaozhao Xu, Xinfeng Zhang, Yiheng Cai, Li Zhuo, and Lansun Shen. Supervised color correction based on qpso-bp neural network algorithm. In 2009 2nd International Congress on Image and Signal Processing, pages 1–5. IEEE, 2009.spa
dc.relation.referencesSonali B Maind, Priyanka Wankar, et al. Research paper on basic of artificial neural network. International Journal on Recent and Innovation Trends in Computing and Communication, 2(1):96–100, 2014.spa
dc.relation.referencesJing Zhang, YingPing Yang, and JinMin Zhang. A mec-bp-adaboost neural networkbased color correction algorithm for color image acquisition equipments. Optik, 127(2):776–780, 2016.spa
dc.relation.referencesLi Zhuo, Jing Zhang, Pei Dong, Yingdi Zhao, and Bo Peng. An sa–ga–bp neural networkbased color correction algorithm for tcm tongue images. Neurocomputing, 134:111–116, 2014.spa
dc.relation.referencesD Crabtree, HTJ Mount, and BW Tansley. A data manipulation system for farnsworthmunsell 100-hue test results. In Proceedings of the Annual Symposium on Computer Application in Medical Care, page 678. American Medical Informatics Association, 1982.spa
dc.relation.referencesCuervo J.E and Giraldo M.A. Color reproduction multiespectral images, 2022.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.proposalColor verdaderospa
dc.subject.proposalReproducción de colorspa
dc.subject.proposalCorrección de colorspa
dc.subject.proposalImágenes multiespectralesspa
dc.subject.proposalColorchecker 24 coloresspa
dc.subject.proposalMunsellspa
dc.subject.proposalRegresión no linealspa
dc.subject.proposalTrue coloreng
dc.subject.proposalColor reproductioneng
dc.subject.proposalColor correctioneng
dc.subject.proposalMultispectral imagingeng
dc.subject.proposalColorchecker 24 colorseng
dc.subject.proposalMunselleng
dc.subject.proposalNonlinear regressioneng
dc.titleAdquisición y procesamiento de imágenes multiespectrales enfocado en la reproducción y corrección de color en entornos de iluminación controladosspa
dc.title.translatedMultispectral image acquisition and processing focused on color reproduction and correction in controlled lighting environments.eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleHermes - 48996 Construcción del Prototipo de un Sistema de Visión Multiespectral Basado en Iluminación LED.spa
oaire.fundernameUniversidad Nacional de Colombia y Universidad de Caldasspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1053870061.2023.pdf
Tamaño:
23.87 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Automatización Industrial

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: