Cuantificación del efecto del clima en el aislamiento poblacional de especies de aves neotropicales (Orden Paseriformes)

dc.contributor.advisorCampos Mosos, Héctor Aníbal
dc.contributor.authorGutierrez Toro, Juan Camilo
dc.contributor.orcidGutierrez Toro, Juan Camilo [0000-0003-1554-5217]spa
dc.date.accessioned2024-10-09T13:23:55Z
dc.date.available2024-10-09T13:23:55Z
dc.date.issued2024
dc.descriptionilustraciones, diagramas, mapas, tablasspa
dc.description.abstractEsta investigación se centra en identificar los factores determinantes de la divergencia genética en aves neotropicales del orden paseriforme. El objetivo principal es analizar cómo la distancia geográfica y la disimilitud climática influyen en la diferenciación genética de estas poblaciones. Contrariamente a la creencia anterior sobre la predominancia de factores ecológicos, los hallazgos subrayan la relevancia crucial del aislamiento geográfico en las poblaciones estudiadas. A pesar de considerar la distancia geográfica, se observa la persistencia del aislamiento ambiental, indicando posibles adaptaciones locales, probablemente atribuibles a la selección natural divergente o barreras reproductivas. Se examina detalladamente la influencia de la resistencia climática en la diferenciación genética, resaltando el costo del movimiento entre poblaciones como un posible determinante de estas diferencias genéticas. La compleja interacción entre factores geográficos y ambientales destaca la necesidad de un enfoque holístico en la comprensión de estos procesos. Desde una perspectiva de conservación, a pesar del cambio climático, se evidencia una resiliencia genética que sugiere un impacto limitado en estas especies, posiblemente debido a sus amplias distribuciones geográficas. Se destaca la importancia de preservar hábitats existentes y la implementación de estrategias de conservación. En resumen, esta investigación aporta significativamente a la comprensión de los factores clave que impulsan la diversidad genética en aves neotropicales, enfatizando la importancia de la geografía y el aislamiento geográfico, con importantes implicaciones para la conservación y la adaptabilidad en un entorno de cambios ambientales. (Texto tomado de la fuente)spa
dc.description.abstractThis research focuses on identifying the determining factors of genetic divergence in neotropical passerine birds. The main objective is to analyze how geographical distance and climatic dissimilarity influence the genetic differentiation of these populations. Contrary to previous beliefs regarding the predominance of ecological factors, the findings underscore the crucial relevance of geographic isolation in the studied populations. Despite accounting for geographical distance, the persistence of environmental isolation is seen, indicating possible local adaptations, likely attributable to divergent natural selection or reproductive barriers. The influence of climatic resistance on genetic differentiation is examined in detail, emphasizing the cost of movement between populations as a potential determinant of these genetic differences. The complex interaction between geographical and environmental factors highlights the need for a comprehensive approach in understanding these processes. From a conservation perspective, despite climate change, genetic resilience is clear, suggesting limited impact on these species, possibly due to their broad geographical distributions. The importance of preserving existing habitats and implementing conservation strategies is emphasized. In summary, this research significantly contributes to understanding the key factors driving genetic diversity in neotropical birds, emphasizing the importance of geography and geographic isolation, with significant implications for conservation and adaptability in an environment of environmental changes.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Biologíaspa
dc.description.researchareaGenética de poblacionesspa
dc.format.extentxix, 126 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86917
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Biologíaspa
dc.relation.referencesAiello-Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B., & Anderson, R. P. (2015). spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography, 38(5), 541–545. https://doi.org/https://doi.org/10.1111/ecog.01132spa
dc.relation.referencesAlcaide, M., Serrano, D., Negro, J. J., Tella, J. L., Laaksonen, T., Müller, C., Gal, A., & Korpimäki, E. (2009). Population fragmentation leads to isolation by distance but not genetic impoverishment in the philopatric Lesser Kestrel: A comparison with the widespread and sympatric Eurasian Kestrel. Heredity, 102(2), 190–198. https://doi.org/10.1038/hdy.2008.107spa
dc.relation.referencesAnderson, J. T., Inouye, D. W., McKinney, A. M., Colautti, R. I., & Mitchell-Olds, T. (2012). Phenotypic plasticity and adaptive evolution contribute to advancing flowering phenology in response to climate change. Proceedings of the Royal Society B: Biological Sciences, 279(1743), 3843–3852. https://doi.org/10.1098/RSPB.2012.1051spa
dc.relation.referencesAraújo, M. B., & New, M. (2007). Ensemble forecasting of species distributions. Trends in Ecology & Evolution, 22(1), 42–47. https://doi.org/10.1016/j.tree.2006.09.010spa
dc.relation.referencesArnold, M. L., Ballerini, E. S., & Brothers, A. N. (2012). Hybrid fitness, adaptation and evolutionary diversification: lessons learned from Louisiana Irises. Heredity, 108(3), 159. https://doi.org/10.1038/HDY.2011.65spa
dc.relation.referencesArslan, N. A., & Martin, T. E. (2019). Reproductive biology of Grey-breasted Wood-Wren (Henicorhina leucophrys): A comparative study of tropical and temperate wrens. The Wilson Journal of Ornithology, 131(1), 1–11. https://doi.org/10.1676/18-12spa
dc.relation.referencesAyala, F. J., Tracey, M. L., Hedgecock, D., & Richmond, R. C. (1974). Genetic Differentiation During the Speciation Process in Drosophila. Evolution, 28(4), 576–592. https://doi.org/10.2307/2407283spa
dc.relation.referencesBailey, L. D., van de Pol, M., Adriaensen, F., Arct, A., Barba, E., Bellamy, P. E., Bonamour, S., Bouvier, J. C., Burgess, M. D., Charmantier, A., Cusimano, C., Doligez, B., Drobniak, S. M., Dubiec, A., Eens, M., Eeva, T., Ferns, P. N., Goodenough, A. E., Hartley, I. R., … Visser, M. E. (2022). Bird populations most exposed to climate change are less sensitive to climatic variation. Nature Communications 2022 13:1, 13(1), 1–10. https://doi.org/10.1038/s41467-022-29635-4spa
dc.relation.referencesBaird, S. F. (1865). Review of American birds in the Museum of the Smithsonian Institution (Vol. 1).spa
dc.relation.referencesBalkenhol, N., Waits, L. P., & Dezzani, R. J. (2009). Statistical approaches in landscape genetics: An evaluation of methods for linking landscape and genetic data. Ecography, 32(5), 818–830. https://doi.org/10.1111/J.1600-0587.2009.05807.Xspa
dc.relation.referencesBarber, B. R., & Klicka, J. (2010). Two pulses of diversification across the Isthmus of Tehuantepec in a montane Mexican bird fauna. Proceedings of the Royal Society B: Biological Sciences, 277(1694), 2675–2681. https://doi.org/10.1098/rspb.2010.0343spa
dc.relation.referencesBarnagaud, J. Y., Barbaro, L., Hampe, A., Jiguet, F., & Archaux, F. (2013). Species’ thermal preferences affect forest bird communities along landscape and local scale habitat gradients. Ecography, 36(11), 1218–1226. https://doi.org/10.1111/J.1600-0587.2012.00227.Xspa
dc.relation.referencesBarnagaud, J. Y., Barbaro, L., Hampe, A., Jiguet, F., & Archaux, F. (2013). Species’ thermal preferences affect forest bird communities along landscape and local scale habitat gradients. Ecography, 36(11), 1218–1226. https://doi.org/10.1111/J.1600-0587.2012.00227.Xspa
dc.relation.referencesBarrier, E., Velasquillo, L., Chavez, M., & Gaulon, R. (1998). Neotectonic evolution of the Isthmus of Tehuantepec (southeastern Mexico). Tectonophysics, 287(1), 77–96. https://doi.org/https://doi.org/10.1016/S0040-1951(98)80062-0spa
dc.relation.referencesBates, J. M., Haffer, J., & Grismer, E. (2004). Avian mitochondrial DNA sequence divergence across a headwater stream of the Rio Tapajós, a major Amazonian River. Journal of Ornithology, 145(3), 199–205. https://doi.org/10.1007/S10336-004-0039-4/METRICSspa
dc.relation.referencesBay, R. A., Harrigan, R. J., Underwood, V. Le, Gibbs, H. L., Smith, T. B., & Ruegg, K. (2018). Genomic signals of selection predict climate-driven population declines in a migratory bird. Science, 359(6371), 83–86. https://doi.org/10.1126/science.aan4380spa
dc.relation.referencesBay, R. A., Karp, D. S., Saracco, J. F., Anderegg, W. R. L., Frishkoff, L. O., Wiedenfeld, D., Smith, T. B., & Ruegg, K. (2021). Genetic variation reveals individual-level climate tracking across the annual cycle of a migratory bird. Ecology Letters, 24(4), 819–828. https://doi.org/10.1111/ELE.13706spa
dc.relation.referencesBenítez-Benítez, C., Sanz-Arnal, M., Urbani, M., Jiménez-Mejías, P., & Martín-Bravo, S. (2022). Dramatic impact of future climate change on the genetic diversity and distribution of ecologically relevant Western Mediterranean Carex (Cyperaceae). PeerJ, 10. https://doi.org/10.7717/peerj.13464spa
dc.relation.referencesBlair, C., Weigel, D. E., Balazik, M., Keeley, A. T. H., Walker, F. M., Landguth, E., Cushman, S., Murphy, M., Waits, L., & Balkenhol, N. (2012). A simulation-based evaluation of methods for inferring linear barriers to gene flow. Molecular Ecology Resources, 12(5), 822–833. https://doi.org/10.1111/J.1755-0998.2012.03151.Xspa
dc.relation.referencesBohonak, A. (1999). Dispersal, Gee flow, and Population Structure. The Quarterly Review of Biology, 74(1), 21–45. http://www.journals.uchicago.edu/t-and-cspa
dc.relation.referencesBollen, K. A. (2002). Latent variables in psychology and the social sciences. Annual Review of Psychology, 53(1), 605–634.spa
dc.relation.referencesBolnick, D. I., & Otto, S. P. (2013). The magnitude of local adaptation under genotype‐dependent dispersal. Ecology and Evolution, 3(14), 4722–4735. https://doi.org/10.1002/ece3.850spa
dc.relation.referencesBonaccorso, E., Navarro-Sigüenza, A. G., Sánchez-González, L. A., Townsend Peterson, A., & García-Moreno, J. (2008). Genetic differentiation of the Chlorospingus ophthalmicus complex in Mexico and Central America. Journal of Avian Biology, 39(3), 311–321. https://doi.org/https://doi.org/10.1111/j.0908-8857.2008.04233.xspa
dc.relation.referencesBonamour, S., Chevin, L. M., Charmantier, A., & Teplitsky, C. (2019). Phenotypic plasticity in response to climate change: the importance of cue variation. Philosophical Transactions of the Royal Society B, 374(1768). https://doi.org/10.1098/RSTB.2018.0178spa
dc.relation.referencesBotero-Delgadillo, E., Quirici, V., Poblete, Y., Cuevas, É., Kuhn, S., Girg, A., Teltscher, K., Poulin, E., Kempenaers, B., & Vásquez, R. A. (2017). Variation in fine-scale genetic structure and local dispersal patterns between peripheral populations of a South American passerine bird. Ecology and Evolution, 7(20), 8363–8378. https://doi.org/10.1002/ece3.3342spa
dc.relation.referencesBradburd, G. S., Ralph, P. L., & Coop, G. M. (2013). Disentangling the effects of geographic and ecological isolation on genetic differentiation. Evolution, 67(11), 3258–3273. https://doi.org/10.1111/evo.12193spa
dc.relation.referencesBroquet, T., Ray, N., Petit, E., Fryxell, J. M., & Burel, F. (2006). Genetic isolation by distance and landscape connectivity in the American marten (Martes americana). Landscape Ecology, 21(6), 877–889. https://doi.org/10.1007/S10980-005-5956-Y/METRICSspa
dc.relation.referencesBrown, J. H., & Kodric-Brown, A. (1977). Turnover Rates in Insular Biogeography: Effect of Immigration on Extinction. Ecology, 58(2), 445–449. https://doi.org/10.2307/1935620spa
dc.relation.referencesBrown, J. L., & Yoder, A. D. (2015). Shifting ranges and conservation challenges for lemurs in the face of climate change. Ecology and Evolution, 5(6), 1131–1142. https://doi.org/10.1002/ECE3.1418spa
dc.relation.referencesBrown, L. M., Ramey, R. R., Tamburini, B., & Gavin, T. A. (2004). Population structure and mitochondrial DNA variation in sedentary Neotropical birds isolated by forest fragmentation. Conservation Genetics, 5(6), 743–757. https://doi.org/10.1007/S10592-004-1865-X/METRICSspa
dc.relation.referencesBruggeman, D. J., Wiegand, T., & FernÁndez, N. (2010). The relative effects of habitat loss and fragmentation on population genetic variation in the red-cockaded woodpecker (Picoides borealis). Molecular Ecology, 19(17), 3679–3691. https://doi.org/10.1111/J.1365-294X.2010.04659.Xspa
dc.relation.referencesBrumfield, R. T. (2012). Inferring the Origins of Lowland Neotropical Birds. The Auk, 129(3), 367–376. https://doi.org/10.1525/AUK.2012.129.3.367spa
dc.relation.referencesBründl, A. C., Sallé, L., Lejeune, L. A., Sorato, E., Thiney, A. C., Chaine, A. S., & Russell, A. F. (2020). Elevational Gradients as a Model for Understanding Associations Among Temperature, Breeding Phenology and Success. Frontiers in Ecology and Evolution, 8, 563377. https://doi.org/10.3389/FEVO.2020.563377/BIBTEXspa
dc.relation.referencesBurney, C. W., & Brumfield, R. T. (2009). Ecology Predicts Levels of Genetic Differentiation in Neotropical Birds. Https://Doi.Org/10.1086/603613, 174(3), 358–368. https://doi.org/10.1086/603613spa
dc.relation.referencesButterfield, J. E. L., & Coulson, J. C. (1997). Terrestrial invertebrates and climate change: Physiological and life-cycle adaptations. Past and Future Rapid Environmental Changes, 401–412. https://doi.org/10.1007/978-3-642-60599-4_31spa
dc.relation.referencesCab-Sulub, L., & Álvarez-Castañeda, S. T. (2022). Genetic isolation between conspecific populations and their relationship to climate heterogeneity. Acta Oecologica, 116. https://doi.org/10.1016/j.actao.2022.103847spa
dc.relation.referencesCadena, C. D., Klicka, J., & Ricklefs, R. E. (2007). Evolutionary differentiation in the Neotropical montane region: Molecular phylogenetics and phylogeography of Buarremon brush-finches (Aves, Emberizidae). Molecular Phylogenetics and Evolution, 44(3), 993–1016. https://doi.org/https://doi.org/10.1016/j.ympev.2006.12.012spa
dc.relation.referencesCadena, C. D., Pérez-Emán, J. L., Cuervo, A. M., Céspedes, L. N., Epperly, K. L., & Klicka, J. T. (2019). Extreme genetic structure and dynamic range evolution in a montane passerine bird: implications for tropical diversification. In Biological Journal of the Linnean Society (Vol. 126). https://academic.oup.com/biolinnean/article/126/3/487/5306478spa
dc.relation.referencesCaro, L. M., Caycedo-Rosales, P. C., Bowie, R. C. K., Slabbekoorn, H., & Cadena, C. D. (2013). Ecological speciation along an elevational gradient in a tropical passerine bird? Journal of Evolutionary Biology, 26(2), 357–374. https://doi.org/10.1111/jeb.12055spa
dc.relation.referencesCarvalho, S. B., Torres, J., Tarroso, P., & Velo‐Antón, G. (2019). Genes on the edge: A framework to detect genetic diversity imperiled by climate change. Global Change Biology, 25(12), 4034–4047. https://doi.org/10.1111/gcb.14740spa
dc.relation.referencesChan, K. O., Alexander, A. M., Grismer, L. L., Su, Y.-C., Grismer, J. L., Quah, E. S. H., & Brown, R. M. (2017). Species delimitation with gene flow: A methodological comparison and population genomics approach to elucidate cryptic species boundaries in Malaysian Torrent Frogs. Molecular Ecology, 26(20), 5435–5450. https://doi.org/https://doi.org/10.1111/mec.14296spa
dc.relation.referencesCharlesworth, B., Charlesworth, D., & Barton, N. H. (2003). The Effects of Genetic and Geographic Structure on Neutral Variation. Annual Review of Ecology, Evolution, and Systematics, 34, 99–125. https://doi.org/10.1146/annurev.ecolsys.34.011802.132359spa
dc.relation.referencesClaramunt, S., Derryberry, E. P., Remsen, J. V., & Brumfield, R. T. (2012). High dispersal ability inhibits speciation in a continental radiation of passerine birds. Proceedings of the Royal Society B: Biological Sciences, 279(1733), 1567–1574. https://doi.org/10.1098/rspb.2011.1922spa
dc.relation.referencesCoelho, M. T. P., Barreto, E., Rangel, T. F., Diniz-Filho, J. A. F., Wüest, R. O., Bach, W., Skeels, A., McFadden, I. R., Roberts, D. W., Pellissier, L., Zimmermann, N. E., & Graham, C. H. (2023). The geography of climate and the global patterns of species diversity. Nature 2023, 1–8. https://doi.org/10.1038/s41586-023-06577-5spa
dc.relation.referencesCortés-Rodríguez, N., Hernández-Baños, B. E., Navarro-Sigüenza, A. G., Townsend Peterson, A., & García-Moreno, J. (2008). Phylogeography and population genetics of the Amethyst-throated Hummingbird (Lampornis amethystinus). Molecular Phylogenetics and Evolution, 48(1), 1–11. https://doi.org/https://doi.org/10.1016/j.ympev.2008.02.005spa
dc.relation.referencesCosta, M. da S. G., Batista, R. de C., & Gurgel-Gonçalves, R. (2014). Predicting geographic distributions of Phacellodomus species (Aves: Furnariidae) in South America based on ecological niche modeling. Acta Scientiarum. Biological Sciences, 36(3), 299–306. https://doi.org/10.4025/actascibiolsci.v36i3.22165spa
dc.relation.referencesCoulon, A., Cosson, J. F., Angibault, J. M., Cargnelutti, B., Galan, M., Morellet, N., Petit, E., Aulagnier, S., & Hewison, A. J. M. (2004). Landscape connectivity influences gene flow in a roe deer population inhabiting a fragmented landscape: an individual–based approach. Molecular Ecology, 13(9), 2841–2850. https://doi.org/10.1111/J.1365-294X.2004.02253.Xspa
dc.relation.referencesCoulon, A., Guillot, G., Cosson, J. F., Angibault, J. M. A., Aulagnier, S., Cargnelutti, B., Galan, M., & Hewison, A. J. M. (2006). Genetic structure is influenced by landscape features: empirical evidence from a roe deer population. Molecular Ecology, 15(6), 1669–1679. https://doi.org/10.1111/J.1365-294X.2006.02861.Xspa
dc.relation.referencesCowley, E., & Siriwardena, G. M. (2005). Long-term variation in survival rates of Sand Martins Riparia riparia: dependence on breeding and wintering ground weather, age and sex, and their population consequences. Bird Study, 52(3), 237–251. https://doi.org/10.1080/00063650509461397spa
dc.relation.referencesCrispo, E., Bentzen, P., Reznick, D. N., Kinnison, M. T., & Hendry, A. P. (2006). The relative influence of natural selection and geography on gene flow in guppies. Molecular Ecology, 15(1), 49–62. https://doi.org/https://doi.org/10.1111/j.1365-294X.2005.02764.xspa
dc.relation.referencesCuervo, P. F., Flores, F. S., Venzal, J. M., & Nava, S. (2021). Niche divergence among closely related taxa provides insight on evolutionary patterns of ticks. Journal of Biogeography, 48(11), 2865–2876. https://doi.org/10.1111/JBI.14245spa
dc.relation.referencesCuervo, P. F., Flores, F. S., Venzal, J. M., & Nava, S. (2021). Niche divergence among closely related taxa provides insight on evolutionary patterns of ticks. Journal of Biogeography, 48(11), 2865–2876. https://doi.org/10.1111/JBI.14245spa
dc.relation.referencesCushman, S. A., McKelvey, K. S., Hayden, J., & Schwartz, M. K. (2006). Gene Flow in Complex Landscapes: Testing Multiple Hypotheses with Causal Modeling. The American Naturalist, 168(4), 486–499. https://doi.org/10.1086/506976spa
dc.relation.referencesCushman, S. A., Wasserman, T. N., Landguth, E. L., & Shirk, A. J. (2013). Re-Evaluating Causal Modeling with Mantel Tests in Landscape Genetics. Diversity 2013, Vol. 5, Pages 51-72, 5(1), 51–72. https://doi.org/10.3390/D5010051spa
dc.relation.referencesDattalo, P. (2013). Choosing among Procedures for the Analysis of Multiple Dependent Variables. Analysis of Multiple Dependent Variables, 149–156. https://doi.org/10.1093/ACPROF:OSO/9780199773596.003.0006spa
dc.relation.referencesDavis, J. M., & Stamps, J. A. (2004). The effect of natal experience on habitat preferences. Trends in Ecology & Evolution, 19(8), 411–416. https://doi.org/10.1016/j.tree.2004.04.006spa
dc.relation.referencesDavis, M. B., & Shaw, R. G. (2001). Range Shifts and Adaptive Responses to Quaternary Climate Change. Science, 292(5517), 673–679. https://doi.org/10.1126/SCIENCE.292.5517.673spa
dc.relation.referencesde Souza, M. S., Barcellos, S. A., Costa, A. L., Kretschmer, R., Garnero, A. D. V., & Gunski, R. J. (2019). Polymorphism of Sooty-fronted Spinetail (Synallaxis frontalis Aves: Furnariidae): Evidence of chromosomal rearrangements by pericentric inversion in autosomal macrochromosomes. Genetics and Molecular Biology, 42(1), 62–67. https://doi.org/10.1590/1678-4685-GMB-2018-0039spa
dc.relation.referencesDi Cola, V., Broennimann, O., Petitpierre, B., Breiner, F. T., D’Amen, M., Randin, C., Engler, R., Pottier, J., Pio, D., Dubuis, A., Pellissier, L., Mateo, R. G., Hordijk, W., Salamin, N., & Guisan, A. (2017). ecospat: an R package to support spatial analyses and modeling of species niches and distributions. Ecography, 40(6), 774–787. https://doi.org/https://doi.org/10.1111/ecog.02671spa
dc.relation.referencesDingle, C., Halfwerk, W., & Slabbekoorn, H. (2008). Habitat-dependent song divergence at subspecies level in the grey-breasted wood-wren. Journal of Evolutionary Biology, 21(4), 1079–1089. https://doi.org/10.1111/J.1420-9101.2008.01536.Xspa
dc.relation.referencesDingle, C., Lovette, I. J., Canaday, C., & Smith, T. B. (2006). Elevational Zonation and the Phylogenetic Relationships of the Henicorhina Wood-Wrens. The Auk, 123(1), 119–134. https://doi.org/10.1093/AUK/123.1.119spa
dc.relation.referencesDingle, C., Lovette, I. J., Canaday, C., & Smith, T. B. (2006). Elevational Zonation and the Phylogenetic Relationships of the Henicorhina Wood-Wrens. The Auk, 123(1), 119–134. https://doi.org/10.1093/AUK/123.1.119spa
dc.relation.referencesDupanloup, I., Schneider, S., & Excoffier, L. (2002). A simulated annealing approach to define the genetic structure of populations. Molecular Ecology, 11, 2571–2581.spa
dc.relation.referencesDurant, S. E., Hopkins, W. A., Hepp, G. R., & Walters, J. R. (2013). Ecological, evolutionary, and conservation implications of incubation temperature-dependent phenotypes in birds. Biological Reviews, 88(2), 499–509. https://doi.org/10.1111/BRV.12015spa
dc.relation.referencesDurant, S. E., Hopkins, W. A., Wilson, A. F., & Hepp, G. R. (2012). Incubation temperature affects the metabolic cost of thermoregulation in a young precocial bird. Functional Ecology, 26(2), 416–422. https://doi.org/10.1111/J.1365-2435.2011.01945.Xspa
dc.relation.referencesEdelaar, P., & Bolnick, D. I. (2012). Non-random gene flow: An underappreciated force in evolution and ecology. Trends in Ecology and Evolution, 27(12), 659–665. https://doi.org/10.1016/j.tree.2012.07.009spa
dc.relation.referencesEdelaar, P., Siepielski, A. M., & Clobert, J. (2008). Matching habitat choice causes directed gene flow: A neglected dimension in evolution and ecology. In Evolution (Vol. 62, Issue 10, pp. 2462–2472). https://doi.org/10.1111/j.1558-5646.2008.00459.xspa
dc.relation.referencesEdwards, S. V., Jennings, W. B., & Shedlock, A. M. (2005). Phylogenetics of modern birds in the era of genomics. Proceedings of the Royal Society B: Biological Sciences, 272(1567), 979–992. https://doi.org/10.1098/rspb.2004.3035spa
dc.relation.referencesEpperson, B. K., McRae, B. H., Scribner, K., Cushman, S. A., Rosenberg, M. S., Fortin, M. J., James, P. M. A., Murphy, M., Manel, S., Legendre, P., & Dale, M. R. T. (2010). Utility of computer simulations in landscape genetics. Molecular Ecology, 19(17), 3549–3564. https://doi.org/10.1111/J.1365-294X.2010.04678.Xspa
dc.relation.referencesEspíndola, A., Pellissier, L., Maiorano, L., Hordijk, W., Guisan, A., & Alvarez, N. (2012). Predicting present and future intra-specific genetic structure through niche hindcasting across 24 millennia. Ecology Letters, 15(7), 649–657. https://doi.org/https://doi.org/10.1111/j.1461-0248.2012.01779.xspa
dc.relation.referencesEvanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the software structure: a simulation study. Molecular Ecology, 14(8), 2611–2620. https://doi.org/https://doi.org/10.1111/j.1365-294X.2005.02553.xspa
dc.relation.referencesExcoffier, L., & Lischer, H. (2010). Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10(3), 564–567. https://doi.org/https://doi.org/10.1111/j.1755-0998.2010.02847.xspa
dc.relation.referencesExcoffier, L., Smouse, P. E., & Quattro, J. M. (1992). Analysis of Molecular Variance Inferred From Metric Distances Among DNA Haplotypes: Application to Human Mitochondrial DNA Restriction Data. Genetics, 131, 479–491.spa
dc.relation.referencesFahrig, L., Pedlar, J. H., Pope, S. E., Taylor, P. D., & Wegner, J. F. (1995). Effect of road traffic on amphibian density. Biological Conservation, 73(3), 177–182. https://doi.org/10.1016/0006-3207(94)00102-Vspa
dc.relation.referencesFan, D., Lei, S., Liang, H., Yao, Q., Kou, Y., Cheng, S., Yang, Y., Qiu, Y., & Zhang, Z. (2022). More opportunities more species: Pleistocene differentiation and northward expansion of an evergreen broad-leaved tree species Machilus thunbergii (Lauraceae) in Southeast China. BMC Plant Biology, 22(1). https://doi.org/10.1186/s12870-021-03420-9spa
dc.relation.referencesFeder, J. L., Egan, S. P., & Nosil, P. (2012a). The genomics of speciation-with-gene-flow. Trends in Genetics, 28(7), 342–350. https://doi.org/10.1016/j.tig.2012.03.009spa
dc.relation.referencesFeder, J. L., & Forbes, A. A. (2007). Habitat avoidance and speciation for phytophagous insect specialists. Functional Ecology, 21(3), 585–597. https://doi.org/10.1111/j.1365-2435.2007.01232.xspa
dc.relation.referencesFeder, J. L., & Nosil, P. (2010). The efficacy of divergence hitchhiking in generating genomic islands during ecological speciation. Evolution; International Journal of Organic Evolution, 64(6), 1729–1747. https://doi.org/10.1111/j.1558-5646.2010.00943.xspa
dc.relation.referencesFernandes, A. M., Gonzalez, J., Wink, M., & Aleixo, A. (2013). Multilocus phylogeography of the Wedge-billed Woodcreeper Glyphorynchus spirurus (Aves, Furnariidae) in lowland Amazonia: Widespread cryptic diversity and paraphyly reveal a complex diversification pattern. Molecular Phylogenetics and Evolution, 66(1), 270–282. https://doi.org/10.1016/j.ympev.2012.09.033spa
dc.relation.referencesFick, S. E., & Hijmans, R. J. (2017). WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302–4315. https://doi.org/https://doi.org/10.1002/joc.5086spa
dc.relation.referencesFierro-Calderón, K., Estela, F. A., & Chacón-Ulloa, P. (2006). Observaciones sobre las dietas de algunas aves de la cordillera Oriental de Colombia a partir del análisis de contenidos estomacales. Ornitología Colombiana, 4, 6–15. https://asociacioncolombianadeornitologia.org/ojs/index.php/roc/article/view/89spa
dc.relation.referencesFlaxman, S. M., Feder, J. L., & Nosil, P. (2013). Genetic hitchhiking and the dynamic buildup of genomic divergence during speciation with gene flow. Evolution, 67(9), 2577–2591. https://doi.org/10.1111/EVO.12055spa
dc.relation.referencesFrancis, R. M. (2017). pophelper: an R package and web app to analyse and visualize population structure. Molecular Ecology Resources, 17(1), 27–32. https://doi.org/https://doi.org/10.1111/1755-0998.12509spa
dc.relation.referencesFunk, D. J., Egan, S. P., & Nosil, P. (2011). Isolation by adaptation in Neochlamisus leaf beetles: host-related selection promotes neutral genomic divergence. Molecular Ecology, 20(22), 4671–4682. https://doi.org/10.1111/J.1365-294X.2011.05311.Xspa
dc.relation.referencesFunk, D. J., Nosil, P., & Etges, W. J. (2006). Ecological divergence exhibits consistently positive associations with reproductive isolation across disparate taxa. Proceedings of the National Academy of Sciences of the United States of America, 103(9), 3209–3213. https://doi.org/10.1073/PNAS.0508653103/SUPPL_FILE/INDEX.HTMLspa
dc.relation.referencesGaitán, J. J., Oliva, G. E., Bran, D. E., Maestre, F. T., Aguiar, M. R., Jobbágy, E. G., Buono, G. G., Ferrante, D., Nakamatsu, V. B., Ciari, G., Salomone, J. M., & Massara, V. (2014). Vegetation structure is as important as climate for explaining ecosystem function across Patagonian rangelands. Journal of Ecology, 102(6), 1419–1428. https://doi.org/10.1111/1365-2745.12273spa
dc.relation.referencesGavrilets, S. (2003). Perspective: models of speciation: what have we learned in 40 years? Evolution, 57(10), 2197–2215. https://doi.org/10.1111/J.0014-3820.2003.TB00233.Xspa
dc.relation.referencesGibbs, J. P. (1998). Amphibian Movements in Response to Forest Edges, Roads, and Streambeds in Southern New England. The Journal of Wildlife Management, 62(2), 584. https://doi.org/10.2307/3802333spa
dc.relation.referencesGonzález, C., Ornelas, J. F., & Gutiérrez-Rodríguez, C. (2011). Selection and geographic isolation influence hummingbird speciation: genetic, acoustic and morphological divergence in the wedge-tailed sabrewing (Campylopterus curvipennis). BMC Evolutionary Biology, 11(1), 38. https://doi.org/10.1186/1471-2148-11-38spa
dc.relation.referencesGrace, J. B. (2006). Part I - A beginning. In Structural Equation Modeling and Natural Systems (pp. 3–33).spa
dc.relation.referencesGuan, B. cai, Liu, X., Gong, X., Cai, Q. ying, & Ge, G. (2019). Genetic landscape and landscape connectivity of Ceratopteris thalictroides, an endangered aquatic fern. Ecological Informatics, 53, 100973. https://doi.org/10.1016/J.ECOINF.2019.100973spa
dc.relation.referencesGuan, B., Gao, J., Chen, W., Gong, X., & Ge, G. (2021). The Effects of Climate Change on Landscape Connectivity and Genetic Clusters in a Small Subtropical and Warm-Temperate Tree. Frontiers in Plant Science, 12, 671336. https://doi.org/10.3389/FPLS.2021.671336/BIBTEXspa
dc.relation.referencesGuillot, G., & Rousset, F. (2013). Dismantling the Mantel tests. Methods in Ecology and Evolution, 4(4), 336–344. https://doi.org/https://doi.org/10.1111/2041-210x.12018spa
dc.relation.referencesGutiérrez-Pinto, N., Cuervo, A. M., Miranda, J., Pérez-Emán, J. L., Brumfield, R. T., & Cadena, C. D. (2012). Non-monophyly and deep genetic differentiation across low-elevation barriers in a Neotropical montane bird (Basileuterus tristriatus; Aves: Parulidae). Molecular Phylogenetics and Evolution, 64(1), 156–165. https://doi.org/https://doi.org/10.1016/j.ympev.2012.03.011spa
dc.relation.referencesHalffter, G. (1987). Biogeography of the Montane Entomofauna of Mexico and Central America. Annual Review of Entomology, 32(1), 95–114. https://doi.org/10.1146/annurev.en.32.010187.000523spa
dc.relation.referencesHarpending, H., & Rogers, A. (1987). On Wright’s Mechanism for Intergroup Selection. J. Theor. Biol, 127, 51–61.spa
dc.relation.referencesHarrison, S. (1991). Local extinction in a metapopulation context: an empirical evaluation. Biological Journal of the Linnean Society, 42(1–2), 73–88. https://doi.org/10.1111/j.1095-8312.1991.tb00552.xspa
dc.relation.referencesHarte, J., & Shaw, R. (1995). Shifting Dominance Within a Montane Vegetation Community: Results of a Climate-Warming Experiment. Science, 267(5199), 876–880. https://doi.org/10.1126/SCIENCE.267.5199.876spa
dc.relation.referencesHartl, D. L., & Clark, G. C. (1997). Principles of Population Genetics. Sinauer Associates.spa
dc.relation.referencesHartlaub, G. (1852). Descriptions de quelques nouvelles especes d’Oiseaux. In F.-É. Guérin-Méneville (Ed.), Revue et magasin de zoologie pure et appliquée (Vol. 2, p. 5). Bureau de la revue et magasin de zoologie.spa
dc.relation.referencesHausdorf, B., & Hennig, C. (2020). Species delimitation and geography. Molecular Ecology Resources, 20(4), 950–960. https://doi.org/https://doi.org/10.1111/1755-0998.13184spa
dc.relation.referencesHausfather, Z., & Peters, G. P. (2020a). Emissions – the ‘business as usual’ story is misleading. Nature 2021 577:7792, 577(7792), 618–620. https://doi.org/10.1038/d41586-020-00177-3spa
dc.relation.referencesHausfather, Z., & Peters, G. P. (2020b). RCP8.5 is a problematic scenario for near-term emissions. Proceedings of the National Academy of Sciences, 117(45), 27791–27792. https://doi.org/10.1073/pnas.2017124117spa
dc.relation.referencesHawkins, E., & Sutton, R. (2009). The Potential to Narrow Uncertainty in Regional Climate Predictions. Bulletin of the American Meteorological Society, 90(8), 1095–1108. https://doi.org/10.1175/2009BAMS2607.1spa
dc.relation.referencesHendry, A. P. (2004). Selection against migrants contributes to the rapid evolution of ecologically dependent reproductive isolation. Evolutionary Ecology Research, 6, 1219–1236.spa
dc.relation.referencesHendry, A. P. (2009). Ecological speciation! Or the lack thereof? Canadian Journal of Fisheries and Aquatic Sciences, 66(8), 1383–1398. https://doi.org/10.1139/F09-074spa
dc.relation.referencesHendry, A. P., Nosil, P., & Rieseberg, L. H. (2007). The speed of ecological speciation. Functional Ecology, 21(3), 455. https://doi.org/10.1111/J.1365-2435.2006.01240.Xspa
dc.relation.referencesHewitt, G. (1996). Some genetic consequences of ice ages, and their role in divergence and speciation. Biological Journal of the Linnean Society, 58(3), 247–276. https://doi.org/10.1006/BIJL.1996.0035spa
dc.relation.referencesHewitt, G. (2000). The genetic legacy of the Quaternary ice ages. Nature 2000 405:6789, 405(6789), 907–913. https://doi.org/10.1038/35016000spa
dc.relation.referencesHickling, R., Roy, D. B., Hill, J. K., Fox, R., & Thomas, C. D. (2006). The distributions of a wide range of taxonomic groups are expanding polewards. Global Change Biology, 12(3), 450–455. https://doi.org/10.1111/J.1365-2486.2006.01116.Xspa
dc.relation.referencesHidalgo Aranzamendi, N., Hall, M. L., Kingma, S. A., van de Pol, M., & Peters, A. (2019). Rapid plastic breeding response to rain matches peak prey abundance in a tropical savanna bird. Journal of Animal Ecology, 88(11), 1799–1811. https://doi.org/10.1111/1365-2656.13068spa
dc.relation.referencesHijmans, R. J., Van Etten, J., Cheng, J., Mattiuzzi, M., Sumner, M., Greenberg, J. A., Lamigueiro, O. P., Bevan, A., Racine, E. B., & Shortridge, A. (2015). Package ‘raster’. R Package, 734, 473.spa
dc.relation.referencesHoffmann, A. A., & Sgró, C. M. (2011). Climate change and evolutionary adaptation. Nature 2011 470:7335, 470(7335), 479–485. https://doi.org/10.1038/nature09670spa
dc.relation.referencesHolsinger, K. E. (2001). Natural Selection. In S. Brenner & J. H. Miller (Eds.), Encyclopedia of Genetics (pp. 1291–1297). Elsevier. https://doi.org/10.1006/rwgn.2001.1161spa
dc.relation.referencesHolt, R. D., & Gaines, M. S. (1992). Analysis of adaptation in heterogeneous landscapes: Implications for the evolution of fundamental niches. Evolutionary Ecology, 6(5), 433–447. https://doi.org/10.1007/BF02270702/METRICSspa
dc.relation.referencesHua, X., & Wiens, J. J. (2013). How does climate influence speciation? American Naturalist, 182(1), 1–12. https://doi.org/10.1086/670690spa
dc.relation.referencesHuang, Q., Wu, L.-Y., & Zhang, X.-S. (2013). Corbi: a new R package for biological network alignment and querying. BMC Systems Biology, 7(2), S6. https://doi.org/10.1186/1752-0509-7-S2-S6spa
dc.relation.referencesHuidobro, L., Morrone, J. J., Villalobos, J. L., & Álvarez, F. (2006). Distributional patterns of freshwater taxa (fishes, crustaceans and plants) from the Mexican Transition Zone. Journal of Biogeography, 33(4), 731–741. https://doi.org/https://doi.org/10.1111/j.1365-2699.2005.01400.xspa
dc.relation.referencesHutchison, D. W., & Templeton, A. R. (1999). Correlation of pairwise genetic and geographic distance measures: inferring the relative influences of gene flow and drift on the distribution of genetic variability. Evolution, 53(6), 1898–1914. https://doi.org/10.1111/J.1558-5646.1999.TB04571.Xspa
dc.relation.referencesInoue, K., & Berg, D. J. (2017). Predicting the effects of climate change on population connectivity and genetic diversity of an imperiled freshwater mussel, Cumberlandia monodonta (Bivalvia: Margaritiferidae), in riverine systems. Global Change Biology, 23(1), 94–107. https://doi.org/10.1111/GCB.13369spa
dc.relation.referencesJanes, J. K., & Batista, P. D. (2016). The Role of Population Genetic Structure in Understanding and Managing Pine Beetles. In Advances in Insect Physiology (Vol. 50, pp. 75–100). Academic Press Inc. https://doi.org/10.1016/bs.aiip.2016.01.001spa
dc.relation.referencesJenkins, D. G., Carey, M., Czerniewska, J., Fletcher, J., Hether, T., Jones, A., Knight, S., Knox, J., Long, T., Mannino, M., Mcguire, M., Riffle, A., Segelsky, S., Shappell, L., Sterner, A., Strickler, T., Tursi, R., Jenkins, D. G., Carey, M., … Tursi, R. (2010). A meta-analysis of isolation by distance: relic or reference standard for landscape genetics? Ecography, 33(2), 315–320. https://doi.org/10.1111/J.1600-0587.2010.06285.Xspa
dc.relation.referencesJiménez-Valverde, A. (2012). Insights into the area under the receiver operating characteristic curve (AUC) as a discrimination measure in species distribution modelling. Global Ecology and Biogeography, 21(4), 498–507. https://doi.org/https://doi.org/10.1111/j.1466-8238.2011.00683.xspa
dc.relation.referencesJohnson, J. S., Gaddis, K. D., Cairns, D. M., Konganti, K., & Krutovsky, K. V. (2017). Landscape genomic insights into the historic migration of mountain hemlock in response to Holocene climate change. American Journal of Botany, 104(3), 439–450. https://doi.org/10.3732/AJB.1600262spa
dc.relation.referencesJombart, T., Devillard, S., & Balloux, F. (2010). Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genetics, 11. https://doi.org/10.1186/1471-2156-11-94spa
dc.relation.referencesJorgensen, T. H., Richardson, D. S., & Andersson, S. (2006). Comparative Analyses of Population Structure in Two Subspecies of Nigella degenii: Evidence for Diversifying Selection on Pollen-Color Dimorphisms. Evolution, 60(3), 518–528. http://www.jstor.org/stable/4095314spa
dc.relation.referencesKarl, S. A., Toonen, R. J., Grant, W. S., & Bowen, B. W. (2012). Common misconceptions in molecular ecology: echoes of the modern synthesis. Molecular Ecology, 21(17), 4171–4189. https://doi.org/10.1111/J.1365-294X.2012.05576.Xspa
dc.relation.referencesKass, J. M., Muscarella, R., Galante, P. J., Bohl, C. L., Pinilla-Buitrago, G. E., Boria, R. A., Soley-Guardia, M., & Anderson, R. P. (2021). ENMeval 2.0: Redesigned for customizable and reproducible modeling of species’ niches and distributions. Methods in Ecology and Evolution, 12(9), 1602–1608. https://doi.org/https://doi.org/10.1111/2041-210X.13628spa
dc.relation.referencesKessler Rios, M., Londoño, G., & Biancucci, A. (2008). Notes on birds that follow army ants in the northern Andes. ORNITOLOGIA NEOTROPICAL, 19.spa
dc.relation.referencesKim, D., Taylor, A. T., & Near, T. J. (2022). Phylogenomics and species delimitation of the economically important Black Basses (Micropterus). Scientific Reports, 12(1), 9113. https://doi.org/10.1038/s41598-022-11743-2spa
dc.relation.referencesKimura, M., & Weisss, G. H. (1964). The stepping stone model of population structure and the decrease of genetic correlation with distance. Genetics, 49, 561–576.spa
dc.relation.referencesKozakiewicz, C. P., Carver, S., & Burridge, C. P. (2018). Under-representation of avian studies in landscape genetics. Ibis, 160(1), 1–12. https://doi.org/10.1111/ibi.12532spa
dc.relation.referencesKremer, A., Ronce, O., Robledo-Arnuncio, J. J., Guillaume, F., Bohrer, G., Nathan, R., Bridle, J. R., Gomulkiewicz, R., Klein, E. K., Ritland, K., Kuparinen, A., Gerber, S., & Schueler, S. (2012). Long-distance gene flow and adaptation of forest trees to rapid climate change. Ecology Letters, 15(4), 378–392. https://doi.org/10.1111/J.1461-0248.2012.01746.Xspa
dc.relation.referencesLandguth, E. L., & Cushman, S. A. (2010). cdpop: A spatially explicit cost distance population genetics program. Molecular Ecology Resources, 10(1), 156–161. https://doi.org/10.1111/J.1755-0998.2009.02719.Xspa
dc.relation.referencesLee, C. R., & Mitchell-Olds, T. (2011). Quantifying effects of environmental and geographical factors on patterns of genetic differentiation. Molecular Ecology, 20(22), 4631–4642. https://doi.org/10.1111/j.1365-294X.2011.05310.xspa
dc.relation.referencesLegendre, P., & Fortin, M.-J. (2010). Comparison of the Mantel test and alternative approaches for detecting complex multivariate relationships in the spatial analysis of genetic data. Molecular Ecology Resources, 10(5), 831–844. https://doi.org/https://doi.org/10.1111/j.1755-0998.2010.02866.xspa
dc.relation.referencesLegendre, P., & Troussellier, M. (1988). Aquatic heterotrophic bacteria: Modeling in the presence of spatial autocorrelation. Limnology and Oceanography, 33(5), 1055–1067. https://doi.org/10.4319/lo.1988.33.5.1055spa
dc.relation.referencesLenoir, J., Gégout, J. C., Marquet, P. A., De Ruffray, P., & Brisse, H. (2008). A significant upward shift in plant species optimum elevation during the 20th century. Science, 320(5884), 1768–1771. https://doi.org/10.1126/SCIENCE.1156831/SUPPL_FILE/LENOIR.SOM.PDFspa
dc.relation.referencesLeonardi, S., Gentilesca, T., Guerrieri, R., Ripullone, F., Magnani, F., Mencuccini, M., Noije, T. V., & Borghetti, M. (2012). Assessing the effects of nitrogen deposition and climate on carbon isotope discrimination and intrinsic water-use efficiency of angiosperm and conifer trees under rising CO2 conditions. Global Change Biology, 18(9), 2925–2944. https://doi.org/10.1111/J.1365-2486.2012.02757.Xspa
dc.relation.referencesLobo, J. M., Jiménez-Valverde, A., & Real, R. (2008). AUC: a misleading measure of the performance of predictive distribution models. Global Ecology and Biogeography, 17(2), 145–151. https://doi.org/https://doi.org/10.1111/j.1466-8238.2007.00358.xspa
dc.relation.referencesLovette, I. J., Pérez-Emán, J. L., Sullivan, J. P., Banks, R. C., Fiorentino, I., Córdoba-Córdoba, S., Echeverry-Galvis, M., Barker, F. K., Burns, K. J., Klicka, J., Lanyon, S. M., & Bermingham, E. (2010). A comprehensive multilocus phylogeny for the wood-warblers and a revised classification of the Parulidae (Aves). Molecular Phylogenetics and Evolution, 57(2), 753–770. https://doi.org/10.1016/j.ympev.2010.07.018spa
dc.relation.referencesLozano-Fuentes, S., Fernandez-Salas, I., de Lourdes Munoz, M., Garcia-Rejon, J., Olson, K. E., Beaty, B. J., & Black IV, W. C. (2009). The Neovolcanic Axis Is a Barrier to Gene Flow among Aedes aegypti Populations in Mexico That Differ in Vector Competence for Dengue 2 Virus. PLOS Neglected Tropical Diseases, 3(6), e468-. https://doi.org/10.1371/journal.pntd.0000468spa
dc.relation.referencesLu, G., & Bernatchez, L. (1999). Correlated trophic specialization and genetic divergence in sympatric lake whitefish ecotypes (Coregonus clupeaformis): support for the ecological speciation hypothesis. Evolution, 53(5), 1491–1505. https://doi.org/10.1111/j.1558-5646.1999.tb05413.xspa
dc.relation.referencesLurwanu, Y., Wang, Y. P., Wu, E. J., He, D. C., Waheed, A., Nkurikiyimfura, O., Wang, Z., Shang, L. P., Yang, L. N., & Zhan, J. (2021). Increasing temperature elevates the variation and spatial differentiation of pesticide tolerance in a plant pathogen. Evolutionary Applications, 14(5), 1274–1285. https://doi.org/10.1111/EVA.13197spa
dc.relation.referencesMaassen, G. H., & Bakker, A. B. (2001). Suppressor Variables in Path Models: Definitions and Interpretations. Sociological Methods & Research, 30(2), 241–270. https://doi.org/10.1177/0049124101030002004spa
dc.relation.referencesMachado-Stredel, F., & Pérez-Emán, J. L. (2017). Using morphometrics to determine sex in a neotropical passerine: the gray‐breasted wood‐wren (Henicorhina leucophrys). Ornitología Neotropical, 28, 147–153. https://doi.org/10.58843/ornneo.v28i0.240spa
dc.relation.referencesMainwaring, M. C., Nord, A., & Sharp, S. P. (2021). Editorial: The Impact of Weather on the Behavior and Ecology of Birds. In Frontiers in Ecology and Evolution (Vol. 9). Frontiers Media S.A. https://doi.org/10.3389/fevo.2021.777478spa
dc.relation.referencesMallet, J. (1995). A species definition for the modern synthesis. Trends in Ecology & Evolution, 10(7), 294–299. https://doi.org/https://doi.org/10.1016/0169-5347(95)90031-4spa
dc.relation.referencesMantel, N. (1967). The detection of disease clustering and a generalized regression approach. Cancer Research.spa
dc.relation.referencesManthey, J. D., & Moyle, R. G. (2015). Isolation by environment in White‐breasted Nuthatches ( Sitta carolinensis ) of the Madrean Archipelago sky islands: a landscape genomics approach. Molecular Ecology, 24(14), 3628–3638. https://doi.org/10.1111/mec.13258spa
dc.relation.referencesMapelli, F. J., Mora, M. S., Mirol, P. M., & Kittlein, M. J. (2012). Population structure and landscape genetics in the endangered subterranean rodent Ctenomys porteousi. Conservation Genetics, 13(1), 165–181. https://doi.org/10.1007/S10592-011-0273-2/METRICSspa
dc.relation.referencesMarcondes, R. S., & Brumfield, R. T. (2019). Fifty shades of brown: Macroevolution of plumage brightness in the Furnariida, a large clade of drab Neotropical passerines. Evolution, 73(4), 704–719. https://doi.org/10.1111/evo.13707spa
dc.relation.referencesMarcondes, R. S., Nations, J. A., Seeholzer, G. F., & Brumfield, R. T. (2021). Rethinking Gloger’s Rule: Climate, Light Environments, and Color in a Large Family of Tropical Birds (Furnariidae). Https://Doi.Org/10.1086/713386, 197(5), 592–606. https://doi.org/10.1086/713386spa
dc.relation.referencesMartin, T. E., Oteyza, J. C., Boyce, A. J., Lloyd, P., & Ton, R. (2015). Adult Mortality Probability and Nest Predation Rates Explain Parental Effort in Warming Eggs with Consequences for Embryonic Development Time. Https://Doi.Org/10.1086/681986, 186(2), 223–236. https://doi.org/10.1086/681986spa
dc.relation.referencesMartínez-Cruz, B., Godoy, J. A., & Negro, J. J. (2007). Population fragmentation leads to spatial and temporal genetic structure in the endangered Spanish imperial eagle. Molecular Ecology, 16(3), 477–486. https://doi.org/10.1111/j.1365-294X.2007.03147.xspa
dc.relation.referencesMcBride, C. S., & Singer, M. C. (2010). Field Studies Reveal Strong Postmating Isolation between Ecologically Divergent Butterfly Populations. PLoS Biology, 8(10), e1000529. https://doi.org/10.1371/journal.pbio.1000529spa
dc.relation.referencesMcCairns, R. J. S., & Bernatchez, L. (2008). Landscape genetic analyses reveal cryptic population structure and putative selection gradients in a large-scale estuarine environment. Molecular Ecology, 17(17), 3901–3916. https://doi.org/10.1111/J.1365-294X.2008.03884.Xspa
dc.relation.referencesMcDonald, P. G., Olsen, P. D., & Cockburn, A. (2004). Weather dictates reproductive success and survival in the Australian brown falcon Falco berigora. Journal of Animal Ecology, 73(4), 683–692. https://doi.org/10.1111/J.0021-8790.2004.00842.Xspa
dc.relation.referencesMcGowan, A., Sharp, S. P., & Hatchwell, B. J. (2004). The Structure and Function of Nests of Long-Tailed Tits Aegithalos caudatus. Functional Ecology, 18(4), 578–583. http://www.jstor.org/stable/3599074spa
dc.relation.referencesMcIntyre, N. E., Wright, C. K., Swain, S., Hayhoe, K., Liu, G., Schwartz, F. W., & Henebry, G. M. (2014). Climate forcing of wetland landscape connectivity in the Great Plains. Frontiers in Ecology and the Environment, 12(1), 59–64. https://doi.org/10.1890/120369spa
dc.relation.referencesMcRae, B. H. (2006). Isolation by resistance. Evolution, 60(8), 1551. https://doi.org/10.1554/05-321.1spa
dc.relation.referencesMcRae, B. H., & Beier, P. (2007). Circuit theory predicts gene flow in plant and animal populations. Proceedings of the National Academy of Sciences, 104(50), 19885–19890. https://doi.org/10.1073/pnas.0706568104spa
dc.relation.referencesMendoza, A. M., Bolívar-García, W., Vázquez-Domínguez, E., Ibáñez, R., & Parra Olea, G. (2019). The role of Central American barriers in shaping the evolutionary history of the northernmost glassfrog, Hyalinobatrachium fleischmanni (Anura: Centrolenidae). PeerJ, 7, e6115. https://doi.org/10.7717/peerj.6115spa
dc.relation.referencesMichels, E., Cottenie, K., Neys, L., De Gelas, K., Coppin, P., & De Meester, L. (2001). Geographical and genetic distances among zooplankton populations in a set of interconnected ponds: a plea for using GIS modelling of the effective geographical distance. Molecular Ecology, 10(8), 1929–1938. https://doi.org/10.1046/J.1365-294X.2001.01340.Xspa
dc.relation.referencesMira, S., Arnaud-Haond, S., Palma, L., Cancela, M. L., & Beja, P. (2013). Large-scale population genetic structure in Bonelli’s Eagle Aquila fasciata. Ibis, 155(3), 485–498. https://doi.org/10.1111/ibi.12065spa
dc.relation.referencesMonge, O., Maggini, I., Schulze, C. H., Dullinger, S., & Fusani, L. (2023). Physiologically vulnerable or resilient? Tropical birds, global warming, and redistributions. Ecology and Evolution, 13(4), e9985. https://doi.org/10.1002/ECE3.9985spa
dc.relation.referencesMoreno-Contreras, I., Sánchez-González, L. A., Arizmendi, M. del C., Prieto-Torres, D. A., & Navarro-Sigüenza, A. G. (2020). Climatic Niche Evolution in the Arremon brunneinucha Complex (Aves: Passerellidae) in a Mesoamerican Landscape. Evolutionary Biology, 47(2), 123–132. https://doi.org/10.1007/s11692-020-09498-7spa
dc.relation.referencesMoritz, C. (1994). Defining ‘Evolutionarily Significant Units’ for conservation. Trends in Ecology & Evolution, 9(10), 373–375. https://doi.org/10.1016/0169-5347(94)90057-4spa
dc.relation.referencesMosca, E., Eckert, A. J., Di Pierro, E. A., Rocchini, D., La Porta, N., Belletti, P., & Neale, D. B. (2012). The geographical and environmental determinants of genetic diversity for four alpine conifers of the European Alps. Molecular Ecology, 21(22), 5530–5545. https://doi.org/10.1111/MEC.12043spa
dc.relation.referencesMoss, R., Babiker, M., Brinkman, S., Calvo, E., Carter, T., Edmonds, J., Elgizouli, I., Emori, S., Erda, L., Hibbard, K., Jones, R., Kainuma, M., Kelleher, J., Lamarque, J. F., Manning, M., Matthews, B., Meehl, J., Meyer, L., Mitchell, J., … Zurek, M. (2008). Towards New Scenarios for Analysis of Emissions, Climate Change, Impacts and Response Strategies. https://archive.ipcc.ch/pdf/supporting-material/expert-meeting-report-scenarios.pdfspa
dc.relation.referencesMumme, R. L. (2002). Scare tactics in a neotropical warbler: white tail feathers enhance flush-pursuit foraging performance in the slate-throated redstart (Myioborus miniatus). The Auk, 119(4), 1024–1035. https://academic.oup.com/auk/article/119/4/1024/5562101spa
dc.relation.referencesMumme, R. L. (2015). Demography of Slate-throated Redstarts (Myioborus miniatus): A non-migratory Neotropical warbler. Journal of Field Ornithology, 86(2), 89–102. https://doi.org/10.1111/jofo.12093spa
dc.relation.referencesMuscarella, R., Galante, P. J., Soley-Guardia, M., Boria, R. A., Kass, J. M., Uriarte, M., & Anderson, R. P. (2014). ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods in Ecology and Evolution, 5(11), 1198–1205. https://doi.org/https://doi.org/10.1111/2041-210X.12261spa
dc.relation.referencesNaimi, B., Hamm, N. A. S., Groen, T. A., Skidmore, A. K., & Toxopeus, A. G. (2014). Where is positional uncertainty a problem for species distribution modelling? Ecography, 37(2), 191–203. https://doi.org/10.1111/j.1600-0587.2013.00205.xspa
dc.relation.referencesNanninga, G., Saenz-Agudelo, P., Manica, A., & Berumen, M. (2013). Environmental gradients predict the genetic structure of a coral reef fish in the Red Sea. Molecular Ecology, 23. https://doi.org/10.1111/mec.12623spa
dc.relation.referencesNei, M., & Nozawa, M. (2011). Roles of Mutation and Selection in Speciation: From Hugo de Vries to the Modern Genomic Era. Genome Biology and Evolution, 3(1), 812–829. https://doi.org/10.1093/GBE/EVR028spa
dc.relation.referencesNilsson, A. L. K., Reitan, T., Skaugen, T., L’Abée-Lund, J. H., Gamelon, M., Jerstad, K., Røstad, O. W., Slagsvold, T., Stenseth, N. C., Vøllestad, L. A., & Walseng, B. (2020). Location Is Everything, but Climate Gets a Share: Analyzing Small-Scale Environmental Influences on Breeding Success in the White-Throated Dipper. Frontiers in Ecology and Evolution, 8, 542846. https://doi.org/10.3389/FEVO.2020.542846/BIBTEXspa
dc.relation.referencesNosil, P. (2004). Reproductive isolation caused by visual predation on migrants between divergent environments. Proceedings of the Royal Society B: Biological Sciences, 271(1547), 1521–1528. https://doi.org/10.1098/rspb.2004.2751spa
dc.relation.referencesNyári, Á. S., & Reddy, S. (2013). Comparative Phyloclimatic Analysis and Evolution of Ecological Niches in the Scimitar Babblers (Aves: Timaliidae: Pomatorhinus). PLOS ONE, 8(2), e55629. https://doi.org/10.1371/JOURNAL.PONE.0055629spa
dc.relation.referencesÖberg, M., Arlt, D., Pärt, T., Laugen, A. T., Eggers, S., & Low, M. (2015). Rainfall during parental care reduces reproductive and survival components of fitness in a passerine bird. Ecology and Evolution, 5(2), 345. https://doi.org/10.1002/ECE3.1345spa
dc.relation.referencesO’donnell, M. S., & Ignizio, D. A. (2012). Bioclimatic Predictors for Supporting Ecological Applications in the Conterminous United States. http://www.usgs.gov/pubprodspa
dc.relation.referencesOksanen, J. (2013). Vegan: ecological diversity. R Project, 368, 1–11.spa
dc.relation.referencesOrnelas, J. F., González, C., Hernández-Baños, B. E., & García-Moreno, J. (2016). Molecular and iridescent feather reflectance data reveal recent genetic diversification and phenotypic differentiation in a cloud forest hummingbird. Ecology and Evolution, 6(4), 1104–1127. https://doi.org/https://doi.org/10.1002/ece3.1950spa
dc.relation.referencesOrsini, L., Vanoverbeke, J., Swillen, I., Mergeay, J., & De Meester, L. (2013). Drivers of population genetic differentiation in the wild: Isolation by dispersal limitation, isolation by adaptation and isolation by colonization. Molecular Ecology, 22(24), 5983–5999. https://doi.org/10.1111/mec.12561spa
dc.relation.referencesOrtiz-Rodriguez, A. E., Licona-Vera, Y., Vásquez-Aguilar, A. A., Hernández-Soto, M., López-Huicochea, E. A., & Ornelas, J. F. (2020). Genetic differentiation among Psittacanthus rhynchanthus (Loranthaceae) populations: novel phylogeographic patterns in the Mesoamerican tropical lowlands. Plant Systematics and Evolution, 306(1), 10. https://doi.org/10.1007/s00606-020-01638-yspa
dc.relation.referencesParding, K. M., Dobler, A., McSweeney, C. F., Landgren, O. A., Benestad, R., Erlandsen, H. B., Mezghani, A., Gregow, H., Räty, O., Viktor, E., El Zohbi, J., Christensen, O. B., & Loukos, H. (2020). GCMeval – An interactive tool for evaluation and selection of climate model ensembles. Climate Services, 18, 100167. https://doi.org/10.1016/J.CLISER.2020.100167spa
dc.relation.referencesParisod, C., & Christin, P. A. (2008). Genome-wide association to fine-scale ecological heterogeneity within a continuous population of Biscutella laevigata (Brassicaceae). New Phytologist, 178(2), 436–447. https://doi.org/10.1111/J.1469-8137.2007.02361.Xspa
dc.relation.referencesParker, T. H., Becker, C. D., Sandercock, B. K., & Agreda, A. E. (2006). Apparent Survival Estimates for Five Species of Tropical Birds in an Endangered Forest Habitat in Western Ecuador. Biotropica, 38(6), 764–769. https://doi.org/10.1111/j.1744-7429.2006.00210.xspa
dc.relation.referencesParmesan, C. (2006). Ecological and Evolutionary Responses to Recent Climate Change. Https://Doi.Org/10.1146/Annurev.Ecolsys.37.091305.110100, 37, 637–669. https://doi.org/10.1146/ANNUREV.ECOLSYS.37.091305.110100spa
dc.relation.referencesPaulo, P., Teófilo, F. H., Bertuol, C., Polo, É., Moncrieff, A. E., Bandeira, L. N., Nuñez-Penichet, C., Fernandes, I. Y., Bosholn, M., Machado, A. F., Luna, L. W., Peçanha, W. T., Rampini, A. P., Hashimoto, S., Dias, C., Araripe, J., Aleixo, A., do Rêgo, P. S., Hrbek, T., … Anciães, M. (2023). Geographic Drivers of Genetic and Plumage Color Diversity in the Blue-Crowned Manakin. Evolutionary Biology 2023, 1–19. https://doi.org/10.1007/S11692-023-09613-4spa
dc.relation.referencesPeakall, R., Ruibal, M., & Lindenmayer, D. B. (2003). Spatial Autocorrelation Analysis Offers New Insights into Gene Flow in the Australian Bush Rat, Rattus fuscipes. In Source: Evolution (Vol. 57, Issue 5).spa
dc.relation.referencesPeakall, R., & Smouse, P. E. (2012). GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics, 28(19), 2537–2539. https://doi.org/10.1093/bioinformatics/bts460spa
dc.relation.referencesPearson, R. G., & Dawson, T. P. (2003). Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecology and Biogeography, 12(5), 361–371. https://doi.org/10.1046/J.1466-822X.2003.00042.Xspa
dc.relation.referencesPease, K. M., Freedman, A. H., Pollinger, J. P., McCormack, J. E., Buermann, W., Rodzen, J., Banks, J., Meredith, E., Bleich, V. C., Schaefer, R. J., Jones, K., & Wayne, R. K. (2009). Landscape genetics of California mule deer (Odocoileus hemionus): The roles of ecological and historical factors in generating differentiation. Molecular Ecology, 18(9), 1848–1862. https://doi.org/10.1111/j.1365-294X.2009.04112.xspa
dc.relation.referencesPérez-Emán, J. L. (2005). Molecular phylogenetics and biogeography of the Neotropical redstarts (Myioborus; Aves, Parulinae). Molecular Phylogenetics and Evolution, 37(2), 511–528. https://doi.org/10.1016/j.ympev.2005.04.013spa
dc.relation.referencesPérez-Emán, J. L., Mumme, R. L., & Jabłonński, P. G. (2010). Phylogeography and Adaptive Plumage Evolution in Central American Subspecies of the Slate-Throated Redstart (Myioborus miniatus). Ornithological Monographs, 67(1), 90–102. https://doi.org/10.1525/om.2010.67.1.90spa
dc.relation.referencesPérez-Rodríguez, R., Esquivel-Bobadilla, S., Orozco-Ruíz, A. M., Olivas-Hernández, J. L., & García-De León, F. J. (2021). Genetic structure and historical and contemporary gene flow of Astyanax mexicanus in the Gulf of Mexico slope: a microsatellite-based analysis. PeerJ, 9, e10784. https://doi.org/10.7717/peerj.10784spa
dc.relation.referencesPetkova, D., Novembre, J., & Stephens, M. (2015). Visualizing spatial population structure with estimated effective migration surfaces. Nature Genetics, 48(1), 94–100. https://doi.org/10.1038/ng.3464spa
dc.relation.referencesPhillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E., & Blair, M. E. (2017). Opening the black box: an open-source release of Maxent. Ecography, 40(7), 887–893. https://doi.org/10.1111/ecog.03049spa
dc.relation.referencesPhillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3–4), 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026spa
dc.relation.referencesPhillips, S. J., & Dudík, M. (2008). Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography, 31(2), 161–175. https://doi.org/10.1111/j.0906-7590.2008.5203.xspa
dc.relation.referencesPilot, M., Jedrzejewski, W., Branicki, W., Sidorovich, V. E., Jedrzejewska, B., Stachura, K., & Funk, S. M. (2006). Ecological factors influence population genetic structure of European grey wolves. Molecular Ecology, 15(14), 4533–4553. https://doi.org/10.1111/J.1365-294X.2006.03110.Xspa
dc.relation.referencesPollock, H. S., Brawn, J. D., & Cheviron, Z. A. (2021). Heat tolerances of temperate and tropical birds and their implications for susceptibility to climate warming. Functional Ecology, 35(1), 93–104. https://doi.org/10.1111/1365-2435.13693/SUPPINFOspa
dc.relation.referencesPopovic, D., Acanski, J., Djan, M., Obreht, D., Vujic, A., & Radenkovic, S. (2015). Sibling species delimitation and nomenclature of the Merodon avidus complex (Diptera: Syrphidae). Europuean Journal of Entomology, 112(4), 790–809. https://www.eje.cz/artkey/eje-201504-0025.phpspa
dc.relation.referencesPorter, A. H. (1990). Testing Nominal Species Boundaries Using Gene Flow Statistics: The Taxonomy of Two Hybridizing Admiral Butterflies (Limenitis: Nymphalidae). Systematic Zoology, 39(2), 131–147. https://doi.org/10.2307/2992451spa
dc.relation.referencesPritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of Population Structure Using Multilocus Genotype Data. Genetics, 945–959. http://www.stats.ox.ac.uk/pritch/home.html.spa
dc.relation.referencesProvan, J., & Bennett, K. D. (2008). Phylogeographic insights into cryptic glacial refugia. Trends in Ecology & Evolution, 23(10), 564–571. https://doi.org/10.1016/J.TREE.2008.06.010spa
dc.relation.referencesQuiroga-Carmona, M., & D’Elía, G. (2022). Climate influences the genetic structure and niche differentiation among populations of the olive field mouse Abrothrix olivacea (Cricetidae: Abrotrichini). Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-26937-xspa
dc.relation.referencesRalston, J., & Kirchman, J. J. (2013). Predicted range shifts in North American boreal forest birds and the effect of climate change on genetic diversity in blackpoll warblers (Setophaga striata). Conservation Genetics, 14(2), 543–555. https://doi.org/10.1007/s10592-012-0418-yspa
dc.relation.referencesRancilhac, L., Miralles, A., Geniez, P., Mendez-Aranda, D., Beddek, M., Brito, J. C., Leblois, R., & Crochet, P.-A. (2023). Phylogeographic breaks and how to find them: An empirical attempt at separating vicariance from isolation by distance in a lizard with restricted dispersal. BioRxiv, 2022.09.30.510256. https://doi.org/10.1101/2022.09.30.510256spa
dc.relation.referencesRannala, B. (2015). The art and science of species delimitation. Current Zoology, 61(5), 846–853. https://doi.org/10.1093/czoolo/61.5.846spa
dc.relation.referencesRäsänen, K., & Hendry, A. P. (2008). Disentangling interactions between adaptive divergence and gene flow when ecology drives diversification. Ecology Letters, 11(6), 624–636. https://doi.org/10.1111/J.1461-0248.2008.01176.Xspa
dc.relation.referencesReh, W., & Seitz, A. (1990). The influence of land use on the genetic structure of populations of the common frog Rana temporaria. Biological Conservation, 54(3), 239–249. https://doi.org/10.1016/0006-3207(90)90054-Sspa
dc.relation.referencesReneerkens, J., Schmidt, N. M., Gilg, O., Hansen, J., Hansen, L. H., Moreau, J., & Piersma, T. (2016). Effects of food abundance and early clutch predation on reproductive timing in a high Arctic shorebird exposed to advancements in arthropod abundance. Ecology and Evolution, 6(20), 7375–7386. https://doi.org/10.1002/ECE3.2361spa
dc.relation.referencesRizvanovic, M., Kennedy, J. D., Nogués-Bravo, D., & Marske, K. A. (2019). Persistence of genetic diversity and phylogeographic structure of three New Zealand forest beetles under climate change. Diversity and Distributions, 25(1), 142–153. https://doi.org/https://doi.org/10.1111/ddi.12834spa
dc.relation.referencesRonce, O. (2007). How does it feel to be like a rolling stone? Ten questions about dispersal evolution. Annual Review of Ecology, Evolution, and Systematics, 38, 231–253. https://doi.org/10.1146/annurev.ecolsys.38.091206.095611spa
dc.relation.referencesRosseel, Y. (2012). lavaan: An R Package for Structural Equation Modeling. Journal of Statistical Software, 48(2), 1–36. https://doi.org/10.18637/jss.v048.i02spa
dc.relation.referencesRovito, S. M., Parra-Olea, G., Recuero, E., & Wake, D. B. (2015). Diversification and biogeographical history of Neotropical plethodontid salamanders. Zoological Journal of the Linnean Society, 175(1), 167–188. https://doi.org/10.1111/zoj.12271spa
dc.relation.referencesRueda-M, N., Salgado-Roa, F. C., Gantiva-Q, C. H., Pardo-Díaz, C., & Salazar, C. (2021). Environmental Drivers of Diversification and Hybridization in Neotropical Butterflies. Frontiers in Ecology and Evolution, 9. https://doi.org/10.3389/fevo.2021.750703spa
dc.relation.referencesRuiz Miñano, M., While, G. M., Yang, W., Burridge, C. P., Salvi, D., & Uller, T. (2022). Population genetic differentiation and genomic signatures of adaptation to climate in an abundant lizard. Heredity 2022 128:4, 128(4), 271–278. https://doi.org/10.1038/s41437-022-00518-0spa
dc.relation.referencesRuiz-Sanchez, E., & Ornelas, J. F. (2014). Phylogeography of Liquidambar styraciflua (Altingiaceae) in Mesoamerica: survivors of a Neogene widespread temperate forest (or cloud forest) in North America? Ecology and Evolution, 4(4), 311–328. https://doi.org/https://doi.org/10.1002/ece3.938spa
dc.relation.referencesRundle, H. D., & Nosil, P. (2005). Ecological speciation. Ecology Letters, 8(3), 336–352. https://doi.org/10.1111/j.1461-0248.2004.00715.xspa
dc.relation.referencesSampson, J., & Byrne, M. (2022). Genetic Differentiation among Subspecies of Banksia nivea (Proteaceae) Associated with Expansion and Habitat Specialization. Diversity 2022, Vol. 14, Page 98, 14(2), 98. https://doi.org/10.3390/D14020098spa
dc.relation.referencesSasaki, M. C., & Dam, H. G. (2020). Genetic differentiation underlies seasonal variation in thermal tolerance, body size, and plasticity in a short-lived copepod. Ecology and Evolution, 10(21), 12200–12210. https://doi.org/10.1002/ECE3.6851spa
dc.relation.referencesSchluter, D. (2009). Evidence for ecological speciation and its alternative. Science, 323(5915), 737–741. https://doi.org/10.1126/SCIENCE.1160006/SUPPL_FILE/SCHLUTER.SOM.PDFspa
dc.relation.referencesSchluter, D. (2000). The ecology of adaptive radiation. Oxford University Press. https://global.oup.com/academic/product/the-ecology-of-adaptive-radiation-9780198505228spa
dc.relation.referencesSchoener, T. W. (1968). The Anolis Lizards of Bimini: Resource Partitioning in a Complex Fauna. Ecology, 49(4), 704–726. https://doi.org/https://doi.org/10.2307/1935534spa
dc.relation.referencesSchwartz, M. K., & McKelvey, K. S. (2009). Why sampling scheme matters: The effect of sampling scheme on landscape genetic results. Conservation Genetics, 10(2), 441–452. https://doi.org/10.1007/S10592-008-9622-1/METRICSspa
dc.relation.referencesScotta, M. I., Margris, L., Sellier, N., Warot, S., Gatti, F., Siccardi, F., Gibert, P., Vercken, E., & Ris, N. (2021). Genetic variability, population differentiation, and correlations for thermal tolerance indices in the minute wasp, trichogramma cacoeciae. Insects, 12(11), 1013. https://doi.org/10.3390/INSECTS12111013/S1spa
dc.relation.referencesSeeholzer, G. F., Claramunt, S., & Brumfield, R. T. (2017). Niche evolution and diversification in a Neotropical radiation of birds (Aves: Furnariidae). Evolution, 71(3), 702–715. https://doi.org/10.1111/EVO.13177spa
dc.relation.referencesSemlitsch, R. D., & Bodie, J. R. (1998). Are Small, Isolated Wetlands Expendable? Conservation Biology, 12(5), 1129–1133. https://doi.org/10.1046/j.1523-1739.1998.98166.xspa
dc.relation.referencesSexton, J. P., Hangartner, S. B., & Hoffmann, A. A. (2014). Genetic isolation by environment or distance: which pattern of gene flow is most common? Evolution, 68(1), 1–15. https://doi.org/10.1111/evo.12258spa
dc.relation.referencesShafer, A. B. A., Côté, S. D., & Coltman, D. W. (2011a). Hot spots of genetic diversity descended from multiple pleistocene refugia in an alpine ungulate. Evolution, 65(1), 125–138. http://www.jstor.org/stable/27920037spa
dc.relation.referencesShafer, A. B. A., Côté, S. D., & Coltman, D. W. (2011b). Hot spots of genetic diversity descended from multiple pleistocene refugia in an alpine ungulate. Evolution, 65(1), 125–138. https://doi.org/10.1111/j.1558-5646.2010.01109.xspa
dc.relation.referencesShafer, A. B. A., & Wolf, J. B. W. (2013). Widespread evidence for incipient ecological speciation: A meta-analysis of isolation-by-ecology. Ecology Letters, 16(7), 940–950. https://doi.org/10.1111/ele.12120spa
dc.relation.referencesSheffield, J., & Wood, E. F. (2008). Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations. Climate Dynamics, 31(1), 79–105. https://doi.org/10.1007/S00382-007-0340-Z/METRICSspa
dc.relation.referencesShi, M. M., Michalski, S. G., Chen, X. Y., & Durka, W. (2011). Isolation by Elevation: Genetic Structure at Neutral and Putatively Non-Neutral Loci in a Dominant Tree of Subtropical Forests, Castanopsis eyrei. PLOS ONE, 6(6), e21302. https://doi.org/10.1371/JOURNAL.PONE.0021302spa
dc.relation.referencesShirk, A. J., & Cushman, S. A. (2011). sGD: software for estimating spatially explicit indices of genetic diversity. Molecular Ecology Resources, 11(5), 922–934. https://doi.org/10.1111/j.1755-0998.2011.03035.xspa
dc.relation.referencesShirk, A. J., & Cushman, S. A. (2014). Spatially-explicit estimation of Wright’s neighborhood size in continuous populations. Frontiers in Ecology and Evolution, 2(OCT), 101846. https://doi.org/10.3389/FEVO.2014.00062/BIBTEXspa
dc.relation.referencesSiepielski, A. M., Morrissey, M. B., Buoro, M., Carlson, S. M., Caruso, C. M., Clegg, S. M., Coulson, T., DiBattista, J., Gotanda, K. M., Francis, C. D., Hereford, J., Kingsolver, J. G., Augustine, K. E., Kruuk, L. E. B., Martin, R. A., Sheldon, B. C., Sletvold, N., Svensson, E. I., Wade, M. J., & MacColl, A. D. C. (2017). Precipitation drives global variation in natural selection. Science, 355(6328), 959–962. https://doi.org/10.1126/SCIENCE.AAG2773/SUPPL_FILE/SIEPIELSKI.SM_CORRECTED.PDFspa
dc.relation.referencesSlatkin, M. (1987). Gene Flow and the Geographic Structure of Natural Populations. Science, 236, 787–792. http://science.sciencemag.org/spa
dc.relation.referencesSmith, B. T., McCormack, J. E., Cuervo, A. M., Hickerson, M. J., Aleixo, A., Cadena, C. D., Pérez-Emán, J., Burney, C. W., Xie, X., Harvey, M. G., Faircloth, B. C., Glenn, T. C., Derryberry, E. P., Prejean, J., Fields, S., & Brumfield, R. T. (2014). The drivers of tropical speciation. Nature, 515(7527), 406–409. https://doi.org/10.1038/nature13687spa
dc.relation.referencesSmouse, P. E., Long, J. C., & Sokal, R. R. (1986). Multiple Regression and Correlation Extensions of the Mantel Test of Matrix Correspondence. Systematic Biology, 35(4), 627–632. https://doi.org/10.2307/2413122spa
dc.relation.referencesSmouse, P. E., & Peakall, R. (1999). Spatial autocorrelation analysis of individual multiallele and multilocus genetic structure. Heredity, 82, 561–573.spa
dc.relation.referencesSobel, J. M., Chen, G. F., Watt, L. R., & Schemske, D. W. (2010). The biology of speciation. Evolution, 64(2), 295–315. https://doi.org/10.1111/J.1558-5646.2009.00877.Xspa
dc.relation.referencesSpear, S. F., Balkenhol, N., Fortin, M. J., McRae, B. H., & Scribner, K. (2010). Use of resistance surfaces for landscape genetic studies: considerations for parameterization and analysis. Molecular Ecology, 19(17), 3576–3591. https://doi.org/10.1111/J.1365-294X.2010.04657.Xspa
dc.relation.referencesSpringer, C. J., & Ward, J. K. (2007). Flowering time and elevated atmospheric CO2. New Phytologist, 176(2), 243–255. https://doi.org/10.1111/J.1469-8137.2007.02196.Xspa
dc.relation.referencesSrikanthan, P., & Burg, T. (2023). Environmental drivers behind the genetic differentiation in mountain chickadees (Poecile gambeli). BioRxiv, 2023.02.25.529994. https://doi.org/10.1101/2023.02.25.529994spa
dc.relation.referencesStech, M., Veldman, S., Larraín, J., Muñoz, J., Quandt, D., Hassel, K., & Kruijer, H. (2013). Molecular Species Delimitation in the Racomitrium canescens Complex (Grimmiaceae) and Implications for DNA Barcoding of Species Complexes in Mosses. PLOS ONE, 8(1), e53134-. https://doi.org/10.1371/journal.pone.0053134spa
dc.relation.referencesStevens, V. M., Polus, E., Wesselingh, R. A., Schtickzelle, N., & Baguette, M. (2004). Quantifying functional connectivity: experimental evidence for patch-specific resistance in the Natterjack toad (Bufo calamita). Landscape Ecology, 19(8), 829–842. https://doi.org/10.1007/s10980-004-0166-6spa
dc.relation.referencesStevens, V. M., Verkenne, C., Vandewoestijne, S., Wesselingh, R. A., & Baguette, M. (2006). Gene flow and functional connectivity in the natterjack toad. Molecular Ecology, 15(9), 2333–2344. https://doi.org/10.1111/J.1365-294X.2006.02936.Xspa
dc.relation.referencesStokke, B. G., Møller, A. P., Sæther, B.-E., Rheinwald, G., & Gutscher, H. (2005). Weather in The Breeding Area and During Migration Affects the Demography of a Small Long-Distance Passerine Migrant. The Auk, 122(2), 637–647. https://doi.org/10.1093/AUK/122.2.637spa
dc.relation.referencesStorfer, A., Murphy, M. A., Evans, J. S., Goldberg, C. S., Robinson, S., Spear, S. F., Dezzani, R., Delmelle, E., Vierling, L., & Waits, L. P. (2006). Putting the ‘landscape’ in landscape genetics. Heredity 2007 98:3, 98(3), 128–142. https://doi.org/10.1038/sj.hdy.6800917spa
dc.relation.referencesStorfer, A., Murphy, M. A., Spear, S. F., Holderegger, R., & Waits, L. P. (2010). Landscape genetics: where are we now? Molecular Ecology, 19(17), 3496–3514. https://doi.org/10.1111/J.1365-294X.2010.04691.Xspa
dc.relation.referencesSurget-Groba, Y., Johansson, H., & Thorpe, R. S. (2012). Synergy between Allopatry and Ecology in Population Differentiation and Speciation. International Journal of Ecology, 2012, 1–10. https://doi.org/10.1155/2012/273413spa
dc.relation.referencesSwainson, W. (1827). A synopsis of the Birds discovered in Mexico by W. Bullock, F.L.S. and H.S. and Mr. William Bullock. In R. Taylor & R. Phillips (Eds.), The Philosophical magazine : or Annals of chemistry, mathematics, astronomy, natural history and general science (p. 368). Richard Taylor and Co. https://www.biodiversitylibrary.org/bibliography/58331spa
dc.relation.referencesTaberlet, P., Fumagalli, L., Wust-Saucy, A. G., & Cosson, J. F. (1998). Comparative phylogeography and postglacial colonization routes in Europe. Molecular Ecology, 7(4), 453–464. https://doi.org/10.1046/J.1365-294X.1998.00289.Xspa
dc.relation.referencesTamura, K., & Nei, M. (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution, 10(3), 512–526. https://doi.org/10.1093/OXFORDJOURNALS.MOLBEV.A040023spa
dc.relation.referencesTamura, K., Stecher, G., & Kumar, S. (2021). MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution, 38(7), 3022–3027. https://doi.org/10.1093/molbev/msab120spa
dc.relation.referencesTaubmann, J., Theissinger, K., Feldheim, K. A., Laube, I., Graf, W., Haase, P., Johannesen, J., & Pauls, S. U. (2011). Modelling range shifts and assessing genetic diversity distribution of the montane aquatic mayfly Ameletus inopinatus in Europe under climate change scenarios. Conservation Genetics, 12(2), 503–515. https://doi.org/10.1007/S10592-010-0157-X/METRICSspa
dc.relation.referencesTemunović, M., Franjić, J., Satovic, Z., Grgurev, M., Frascaria-Lacoste, N., & Fernández-Manjarrés, J. F. (2012). Environmental Heterogeneity Explains the Genetic Structure of Continental and Mediterranean Populations of Fraxinus angustifolia Vahl. PLOS ONE, 7(8), e42764. https://doi.org/10.1371/JOURNAL.PONE.0042764spa
dc.relation.referencesThibert-Plante, X., & Hendry, A. P. (2010). When can ecological speciation be detected with neutral loci? Molecular Ecology, 19(11), 2301–2314. https://doi.org/10.1111/j.1365-294X.2010.04641.xspa
dc.relation.referencesThibert-Plante, X., & Hendry, A. P. (2011). The consequences of phenotypic plasticity for ecological speciation. Journal of Evolutionary Biology, 24(2), 326–342. https://doi.org/10.1111/J.1420-9101.2010.02169.Xspa
dc.relation.referencesThomas, C. D., Cameron, A., Green, R. E., Bakkenes, M., Beaumont, L. J., Collingham, Y. C., Erasmus, B. F. N., Ferreira De Siqueira, M., Grainger, A., Hannah, L., Hughes, L., Huntley, B., Van Jaarsveld, A. S., Midgley, G. F., Miles, L., Ortega-Huerta, M. A., Peterson, A. T., Phillips, O. L., & Williams, S. E. (2004). Extinction risk from climate change. Nature 2003 427:6970, 427(6970), 145–148. https://doi.org/10.1038/nature02121spa
dc.relation.referencesThorpe, R. S., Surget-Groba, Y., & Johansson, H. (2008). The relative importance of ecology and geographic isolation for speciation in anoles. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1506), 3071–3081. https://doi.org/10.1098/rstb.2008.0077spa
dc.relation.referencesVaissi, S., & Rezaei, S. (2022). Niche Divergence at Intraspecific Level in the Hyrcanian Wood Frog, Rana pseudodalmatina: A Phylogenetic, Climatic, and Environmental Survey. Frontiers in Ecology and Evolution, 10, 774481. https://doi.org/10.3389/FEVO.2022.774481/BIBTEXspa
dc.relation.referencesVallely, A. (2001). Foraging at army ant swarms by fifty bird species in the highlands of Costa Rica. Ornitologia Neotropical, 12.spa
dc.relation.referencesVan Buskirk, J., & Jansen van Rensburg, A. (2020). Relative importance of isolation-by-environment and other determinants of gene flow in an alpine amphibian. Evolution; International Journal of Organic Evolution, 74(5), 962–978. https://doi.org/10.1111/evo.13955spa
dc.relation.referencesvan Etten, J. (2017). R Package gdistance: Distances and Routes on Geographical Grids. Journal of Statistical Software, 76(1), 1–21. https://doi.org/10.18637/JSS.V076.I13spa
dc.relation.referencesVia, S., & Hawthorne, D. J. (2002). The Genetic Architecture of Ecological Specialization: Correlated Gene Effects on Host Use and Habitat Choice in Pea Aphids. Https://Doi.Org/10.1086/338374, 159(S3), S76–S88. https://doi.org/10.1086/338374spa
dc.relation.referencesVisser, M. E., & Gienapp, P. (2019). Evolutionary and demographic consequences of phenological mismatches. Nature Ecology & Evolution 2019 3:6, 3(6), 879–885. https://doi.org/10.1038/s41559-019-0880-8spa
dc.relation.referencesWagner, C. E., & McCune, A. R. (2009). Contrasting Patterns of Spatial Genetic Structure in Sympatric Rock-Dwelling Cichlid Fishes. Evolution, 63(5), 1312–1326. http://www.jstor.org/stable/25483678spa
dc.relation.referencesWalther, G. R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T. J. C., Fromentin, J. M., Hoegh-Guldberg, O., & Bairlein, F. (2002). Ecological responses to recent climate change. Nature 2002 416:6879, 416(6879), 389–395. https://doi.org/10.1038/416389aspa
dc.relation.referencesWan, H. Y., Cushman, S. A., & Ganey, J. L. (2018). Habitat Fragmentation Reduces Genetic Diversity and Connectivity of the Mexican Spotted Owl: A Simulation Study Using Empirical Resistance Models. Genes 2018, Vol. 9, Page 403, 9(8), 403. https://doi.org/10.3390/GENES9080403spa
dc.relation.referencesWang, I. J. (2013). Examining the full effects of landscape heterogeneity on spatial genetic variation: A multiple matrix regression approach for quantifying geographic and ecological isolation. Evolution, 67(12), 3403–3411. https://doi.org/10.1111/evo.12134spa
dc.relation.referencesWang, I. J., & Bradburd, G. S. (2014). Isolation by environment. Molecular Ecology, 23(23), 5649–5662. https://doi.org/10.1111/mec.12938spa
dc.relation.referencesWang, I. J., Glor, R. E., & Losos, J. B. (2013). Quantifying the roles of ecology and geography in spatial genetic divergence. Ecology Letters, 16(2), 175–182. https://doi.org/10.1111/ele.12025spa
dc.relation.referencesWang, I. J., Savage, W. K., & Bradley Shaffer, H. (2009). Landscape genetics and least-cost path analysis reveal unexpected dispersal routes in the California tiger salamander (Ambystoma californiense). Molecular Ecology, 18(7), 1365–1374. https://doi.org/10.1111/J.1365-294X.2009.04122.Xspa
dc.relation.referencesWang, I. J., & Summers, K. (2010). Genetic structure is correlated with phenotypic divergence rather than geographic isolation in the highly polymorphic strawberry poison-dart frog. Molecular Ecology, 19(3), 447–458. https://doi.org/10.1111/j.1365-294X.2009.04465.xspa
dc.relation.referencesWang, P., Liu, Y., Liu, Y., Chang, Y., Wang, N., & Zhang, Z. (2017). The role of niche divergence and geographic arrangement in the speciation of Eared Pheasants (Crossoptilon, Hodgson 1938). Molecular Phylogenetics and Evolution, 113, 1–8. https://doi.org/10.1016/J.YMPEV.2017.05.003spa
dc.relation.referencesWaples, R. S., & England, P. R. (2011). Estimating Contemporary Effective Population Size on the Basis of Linkage Disequilibrium in the Face of Migration. Genetics, 189(2), 633–644. https://doi.org/10.1534/GENETICS.111.132233spa
dc.relation.referencesWaples, R. S., Luikart, G., Faulkner, J. R., & Tallmon, D. A. (2013). Simple life-history traits explain key effective population size ratios across diverse taxa. Proceedings of the Royal Society B: Biological Sciences, 280(1768). https://doi.org/10.1098/RSPB.2013.1339spa
dc.relation.referencesWarren, D. L., Glor, R. E., & Turelli, M. (2008). Environmental niche equivalency versus conservatism: Quantitative approaches to niche evolution. Evolution, 62(11), 2868–2883. https://doi.org/https://doi.org/10.1111/j.1558-5646.2008.00482.xspa
dc.relation.referencesWasserman, T. N., Cushman, S. A., Littell, J. S., Shirk, A. J., & Landguth, E. L. (2013). Population connectivity and genetic diversity of American marten (Martes americana) in the United States northern Rocky Mountains in a climate change context. Conservation Genetics, 14(2), 529–541. https://doi.org/10.1007/s10592-012-0336-zspa
dc.relation.referencesWasserman, T. N., Cushman, S. A., Schwartz, M. K., & Wallin, D. O. (2010). Spatial scaling and multi-model inference in landscape genetics: Martes americana in northern Idaho. Landscape Ecology, 25(10), 1601–1612. https://doi.org/10.1007/s10980-010-9525-7spa
dc.relation.referencesWasserman, T. N., Cushman, S. A., Shirk, A. S., Landguth, E. L., & Littell, J. S. (2012). Simulating the effects of climate change on population connectivity of American marten (Martes americana) in the northern Rocky Mountains, USA. Landscape Ecology, 27(2), 211–225. https://doi.org/10.1007/s10980-011-9653-8spa
dc.relation.referencesWeir, J. T. (2006). Divergent timing and patterns of species accumulation in lowland and highland neotropical birds. Evolution; International Journal of Organic Evolution, 60(4), 842–855. http://www.ncbi.nlm.nih.gov/pubmed/16739464spa
dc.relation.referencesWeir, J. T., Bermingham, E., & Schluter, D. (2009). The Great American Biotic Interchange in birds. Proceedings of the National Academy of Sciences of the United States of America, 106(51), 21737–21742. https://doi.org/10.1073/PNAS.0903811106/SUPPL_FILE/SD1.XLSspa
dc.relation.referencesWeir, J. T., Faccio, M. S., Pulido-Santacruz, P., Barrera-Guzmán, A. O., & Aleixo, A. (2015). Hybridization in headwater regions, and the role of rivers as drivers of speciation in Amazonian birds. Evolution, 69(7), 1823–1834. https://doi.org/10.1111/EVO.12696spa
dc.relation.referencesWeir, J. T., & Price, M. (2011). Andean uplift promotes lowland speciation through vicariance and dispersal in Dendrocincla woodcreepers. Molecular Ecology, 20(21), 4550–4563. https://doi.org/10.1111/J.1365-294X.2011.05294.Xspa
dc.relation.referencesWetmore, A. (1942). Descriptions of three additional Birds from southern Vera Cruz. Proceedings of The Biological Society of Washington, 55, 105–108.spa
dc.relation.referencesWetmore, A. (1944). A collection of birds from northern Guanacaste, Costa Rica. Proceedings of the United States National Museum, 95(3179), 25–80, 4 pls. https://doi.org/10.5479/SI.00963801.95-3179.25spa
dc.relation.referencesWhite, T. A., Stamford, J., & Rus Hoelzel, A. (2010). Local selection and population structure in a deep-sea fish, the roundnose grenadier (Coryphaenoides rupestris). Molecular Ecology, 19(2), 216–226. https://doi.org/10.1111/J.1365-294X.2009.04446.Xspa
dc.relation.referencesWhitlock, M. C. (2004). Selection and Drift in Metapopulations. In I. Hanski & O. E. Gaggiotti (Eds.), Ecology, Genetics and Evolution of Metapopulations (pp. 153–173). Elsevier. https://doi.org/10.1016/B978-012323448-3/50009-Xspa
dc.relation.referencesWickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis Second Edition. http://www.springer.com/series/6991spa
dc.relation.referencesWiens, J. J. (2004). Speciation and ecology revisited: Pylogenetic niche conservatism and the origin of species. Evolution, 58(1), 193–197. https://doi.org/10.1111/j.0014-3820.2004.tb01586.xspa
dc.relation.referencesWiens, J. J., Ackerly, D. D., Allen, A. P., Anacker, B. L., Buckley, L. B., Cornell, H. V, Damschen, E. I., Jonathan Davies, T., Grytnes, J.-A., Harrison, S. P., Hawkins, B. A., Holt, R. D., McCain, C. M., & Stephens, P. R. (2010). Niche conservatism as an emerging principle in ecology and conservation biology. Ecology Letters, 13(10), 1310–1324. https://doi.org/10.1111/j.1461-0248.2010.01515.xspa
dc.relation.referencesWiens, J. J., & Graham, C. H. (2005). Niche Conservatism: Integrating Evolution, Ecology, and Conservation Biology. Annual Review of Ecology, Evolution, and Systematics, 36(1), 519–539. https://doi.org/10.1146/annurev.ecolsys.36.102803.095431spa
dc.relation.referencesWiley, E. M., & Ridley, A. R. (2016). The effects of temperature on offspring provisioning in a cooperative breeder. Animal Behaviour, 117, 187–195. https://doi.org/10.1016/J.ANBEHAV.2016.05.009spa
dc.relation.referencesWilliams, J. B., & Tieleman, B. I. (2005). Physiological Adaptation in Desert Birds. BioScience, 55(5), 416–425. https://doi.org/10.1641/0006-3568(2005)055[0416:PAIDB]2.0.CO;2spa
dc.relation.referencesWillis, C. G., Ruhfel, B., Primack, R. B., Miller-Rushing, A. J., & Davis, C. C. (2008). Phylogenetic patterns of species loss in Thoreau’s woods are driven by climate change. Proceedings of the National Academy of Sciences of the United States of America, 105(44), 17029–17033. https://doi.org/10.1073/PNAS.0806446105/SUPPL_FILE/0806446105SI.PDFspa
dc.relation.referencesWilson, P. J., & Provan, J. (2003). Effect of habitat fragmentation on levels and patterns of genetic diversity in natural populations of the peat moss Polytrichum commune. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270(1517), 881–886. https://doi.org/10.1098/RSPB.2002.2324spa
dc.relation.referencesWoodward, F. I. (1988). Temperature and the distribution of plant species. Symposia of the Society for Experimental Biology, 42, 59–75. https://europepmc.org/article/med/3270209spa
dc.relation.referencesWright, L. I., Tregenza, T., & Hosken, D. J. (2008). Inbreeding, inbreeding depression and extinction. Conservation Genetics, 9(4), 833–843. https://doi.org/10.1007/S10592-007-9405-0/METRICSspa
dc.relation.referencesWright, S. (1943). Isolation by distance. Genetics, 28(114), 114–138. https://academic.oup.com/genetics/article/28/2/114/6033172spa
dc.relation.referencesWróblewska, A., & Mirski, P. (2018). From past to future: impact of climate change on range shifts and genetic diversity patterns of circumboreal plants. Regional Environmental Change, 18(2), 409–424. https://doi.org/10.1007/S10113-017-1208-3/FIGURES/3spa
dc.relation.referencesWu, C. I., & Ting, C. T. (2004). Genes and speciation. Nature Reviews Genetics 2004 5:2, 5(2), 114–122. https://doi.org/10.1038/nrg1269spa
dc.relation.referencesWu, Y., Colwell, R. K., Rahbek, C., Zhang, C., Quan, Q., Wang, C., & Lei, F. (2013). Explaining the species richness of birds along a subtropical elevational gradient in the Hengduan Mountains. Journal of Biogeography, 40(12), 2310–2323. https://doi.org/10.1111/JBI.12177spa
dc.relation.referencesYoungblut, J. M. (1994). A consumer’s guide to causal modeling: Part I. Journal of Pediatric Nursing, 9(4), 268–271. http://www.ncbi.nlm.nih.gov/pubmed/7965594spa
dc.relation.referencesYuan, S., Ma, L., Guo, C., & Wang, R. (2016). What drives phenotypic divergence in Leymus chinensis (Poaceae) on large-scale gradient, climate or genetic differentiation? Scientific Reports 2016 6:1, 6(1), 1–11. https://doi.org/10.1038/srep26288spa
dc.relation.referencesZamudio-Beltrán, L. E., Ornelas, J. F., Malpica, A., & Hernández-Baños, B. E. (2020). Genetic and morphological differentiation among populations of the Rivoli’s Hummingbird (Eugenes fulgens) species complex (Aves: Trochilidae). The Auk, 137(4), ukaa032. https://doi.org/10.1093/auk/ukaa032spa
dc.relation.referencesZhang, G., Li, C., Li, Q., Li, B., Larkin, D. M., Lee, C., Storz, J. F., Antunes, A., Greenwold, M. J., Meredith, R. W., Ödeen, A., Cui, J., Zhou, Q., Xu, L., Pan, H., Wang, Z., Jin, L., Zhang, P., Hu, H., … Wang, J. (2014). Comparative genomics reveals insights into avian genome evolution and adaptation. Science, 346(6215), 1311–1320. www.sciencemag.orgspa
dc.relation.referencesZhang, Y. H., Wang, I. J., Comes, H. P., Peng, H., & Qiu, Y. X. (2016). Contributions of historical and contemporary geographic and environmental factors to phylogeographic structure in a Tertiary relict species, Emmenopterys henryi (Rubiaceae). Scientific Reports 2016 6:1, 6(1), 1–14. https://doi.org/10.1038/srep24041spa
dc.relation.referencesZink, R. M., & Barrowclough, G. F. (2008). Mitochondrial DNA under siege in avian phylogeography. Molecular Ecology, 17(9), 2107–2121. https://doi.org/10.1111/J.1365-294X.2008.03737.Xspa
dc.relation.referencesZizka, A., Silvestro, D., Andermann, T., Azevedo, J., Duarte Ritter, C., Edler, D., Farooq, H., Herdean, A., Ariza, M., Scharn, R., Svantesson, S., Wengström, N., Zizka, V., & Antonelli, A. (2019). CoordinateCleaner: Standardized cleaning of occurrence records from biological collection databases. Methods in Ecology and Evolution, 10(5), 744–751. https://doi.org/https://doi.org/10.1111/2041-210X.13152spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/spa
dc.subject.ddc570 - Biología::576 - Genética y evoluciónspa
dc.subject.lembMECANISMOS DE AISLAMIENTO (BIOLOGIA)spa
dc.subject.lembIsolating mechanismseng
dc.subject.proposalDiversidad genéticaspa
dc.subject.proposalAves neotropicalesspa
dc.subject.proposalAislamiento geográficospa
dc.subject.proposalResistencia climáticaspa
dc.subject.proposalGenetic Diversityeng
dc.subject.proposalNeotropical Birdseng
dc.subject.proposalGeographic Isolationeng
dc.subject.proposalClimatic Resistanceeng
dc.subject.proposalConservationeng
dc.subject.wikidataClimate change and ecosystemseng
dc.subject.wikidatacambio climático y ecosistemasspa
dc.subject.wikidatacell differentiationeng
dc.subject.wikidatadiferenciación celularspa
dc.titleCuantificación del efecto del clima en el aislamiento poblacional de especies de aves neotropicales (Orden Paseriformes)spa
dc.title.translatedQuantification of the effect of climate on population isolation of neotropical bird species (Order Passeriformes)eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1144101977.2024.pdf
Tamaño:
2.89 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias Biología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: