Modelo cinético para la reacción de epoxidación de aceite vegetal usado

dc.contributor.advisorCadavid Estrada, Juan Guillermospa
dc.contributor.authorRamírez Jiménez, Luis Miguelspa
dc.contributor.researchgroupProcesos químicos y bioquímicosspa
dc.date.accessioned2020-07-21T13:58:12Zspa
dc.date.available2020-07-21T13:58:12Zspa
dc.date.issued2020-06-07spa
dc.description.abstractEn este trabajo se estudió la producción de aceite epoxidado a partir de aceite vegetal usado mediante la formación de ácido peracético in situ. Los experimentos para la cinética se realizaron evaluando el efecto de la temperatura, entre 323 y 353 K, y el efecto del exceso molar del peróxido de hidrógeno, entre 25 y 45 % (p/p), usando ácido sulfúrico como catalizador, 2 % (p/p), y ácido acético, 5 % (p/p); ambos porcentajes con respecto a la masa de aceite. Las muestras de reacción fueron analizadas por medio del método de oxígeno oxirano (NTC 2366) y número ácido (ASTM D-664). Se implementó un modelo cinético de dos fases que involucra las reacciones de formación del perácido, la formación del epóxido, la degradación del epóxido por acción del ácido acético y la transferencia de masa del ácido carboxílico y el perácido entre las fases. El modelo de error fue minimizado mediante los métodos ODE15s, Fminsearch y GA Genetic Algorithm de Matlab ®. Se identifica que el sistema reactivo presenta una elevada dependencia con la temperatura, y que las energías de activación son en promedio inferiores a los valores reportados por estudios previos para aceite de soya. Usando aceite vegetal usado como materia prima, se obtuvo un contenido de oxígeno oxirano máximo de 4.15% a 353K, con 45% de exceso de peróxido de hidrógeno en un tiempo de 30 minutos. Las predicciones del modelo presentan el mejor ajuste para los ensayos a bajas temperaturas; así mismo, las desviaciones del modelo son mayores después de alcanzar el máximo porcentaje de oxígeno oxirano. El modelo obtenido puede ser usado para el diseño y análisis de procesos a pesar de las desviaciones respecto a la degradación del epóxido.spa
dc.description.abstractThis work studied the epoxidation kinetic from used cooking oil UCO through the formation of peracetic acid in situ. The experiments for the kinetics were carried out evaluating the effect of temperature (323-353k) and the effect of the molar excess of hydrogen peroxide (25-45%) using sulfuric acid as a catalyst (2%) and acetic acid (5%). The reaction samples were analyzed by modified oxirane oxygen method (NTC 2366). It is identified that the reactive system has a high dependence on temperature, and that activation energies are lower than the values reported for refined soybean oil. The Activation energy from the epoxidized oil formation is 72% lower than the value reported for refined soybean oil. A maximum oxirane oxygen content of 4.15% at 353K and 45% excess hydrogen peroxide is obtained in a time of 30 minutes. A two-phase kinetic model was implemented whose error was minimized using the ODE15s Fminsearch, and GA Genetic Algorithm methods from Matlab ®. Modeling of the reactive system involves peracid formation reactions, epoxide formation, epoxide degradation by acetic acid action and mass transfer between the phases of the carboxylic acid and the peracid. The deviation of the model is greater after reaching the maximum percentage of oxirane oxygen because for that region. The obtained model can be used for the design and analysis of processes despite the deviations from the degradation of the epoxide.spa
dc.description.additionalLínea de Investigación: Oleoquímicaspa
dc.description.degreelevelMaestríaspa
dc.format.extent155spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77805
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Químicaspa
dc.relation.referencesM. D. Juárez and N. Sammán, “El deterioro de los aceites durante la fritura,” Rev. Esp. Nutr. Comunitaria, vol. 13, no. 2, pp. 82–94, 2007.spa
dc.relation.referencesA. Orjuela, “Explotation and valorization of used Cooking Oils,” 2019, pp. 1–29.spa
dc.relation.referencesL. Á. Rincón Vija, “Reutilización de aceites de cocina usados en la producción de aceites epoxidados,” p. 162, 2018.spa
dc.relation.referencesG. Howard and J. Bartram, “Domestic Water Quantity, Service Level and Health,” 2003. [Online]. Available: https://www.who.int/water_sanitation_health/diseases/WSH03.02.pdf. [Accessed: 22-Nov-2019]spa
dc.relation.referencesMinisterio de Ambiente Vivienda y Desarrollo Territorial, Decreto Número 3930 de 2010. 1993spa
dc.relation.referencesMinisterio de salud y protección social, Resolucion 2154 de 2012. 2012spa
dc.relation.referencesL. A. Boyacá and Á. A. Beltrán, “Soybean epoxide production with in situ peracetic acid using homogeneous catalysis,” Ing. e Investig., vol. 30, no. 1, pp. 136–140, 2010.spa
dc.relation.referencesICONTEC, “Norma técnica colombiana NTC 2366 plásticos. Aceites vegetales epoxidados de soya y linaza.” p. 11, 2000.spa
dc.relation.referencesH. Sanli, M. Canakci, and E. Alptekin, “Characterization of Waste Frying Oils Obtained from Different Facilities,” Proc. World Renew. Energy Congr. – Sweden, 8–13 May, 2011, Linköping, Sweden, vol. 57, pp. 479–485, 2011.spa
dc.relation.referencesA. Suaterna Hurtado, “La fritura de los alimentos: el aceite de fritura,” Perspect. en Nutr. Humana, vol. 11, no. 1, pp. 39–53, 200spa
dc.relation.referencesC. Ramírez Botero, B. Gómez Ramírez, A. Suaterna Hurtado, J. Martínez Galán, L. Cardona Zuleta, and B. Alberto Rojano, “Content of total polar compounds in previously used cooking oils most marketed in Medellin (Colombia),” Perspect. en Nutr. Humana, vol. 14, no. 1, pp. 59–69, 2012.spa
dc.relation.referencesD. C. Panadare and V. K. Rathod, “Applications of Waste Cooking Oil Other Than Biodiesel: A Review,” Iran. J. Chem. Eng., vol. 12, no. 3, pp. 55–76, 2015.spa
dc.relation.referencesM. J. Ayala Ramírez, “Evaluación de la calidad del aceite de mezclas vegetales utilizado en doce frituras sucesivas empleado para freír platano hartón verde,” 2011spa
dc.relation.referencesE. Choe and D. B. Min, “Chemistry of deep-fat frying oils,” J. Food Sci., vol. 72, no. 5, 2007.spa
dc.relation.referencesM. Guillermo, “Caracterización de grasas y aceites,” 2018. [Online]. Available: https://www.slideshare.net/MarioMoralesShevky/grasas-y-aceites-85620007. [Accessed: 24-Nov-2019].spa
dc.relation.referencesA. Esquivel Ramírez, A. Castañeda Ovando, and J. Ramírez Godínez, “Cambios químicos de los aceites comestibles durante el proceso de fritura. Riesgos en la salud,” Pädi Boletín Científico Ciencias Básicas e Ing. del ICBI, vol. 2, 2014spa
dc.relation.referencesL. M. Lewis-McCrea and S. P. Lall, “Effects of moderately oxidized dietary lipid and the role of vitamin E on the development of skeletal abnormalities in juvenile Atlantic halibut (Hippoglossus hippoglossus),” Aquaculture, vol. 262, no. 1, pp. 142–155, 2007.spa
dc.relation.referencesI. Aidos, N. Kreb, M. Boonman, J. B. Luten, R. M. Boom, and A. Padt, “Influence of Production Process Parameters on Fish Oil Quality in a Pilot Plant,” J. Food Sci., vol. 68, no. 2, pp. 581–586, 2003.spa
dc.relation.referencesM. C. Dobarganes and G. Márquez-Ruiz, Formation and Analysis of Oxidized Monomeric, Dimeric, and Higher Oligomeric Triglycerides, Second Edi., no. 5. AOCS Press, 2007.spa
dc.relation.referencesQ. Zhang, A. S. M. Saleh, J. Chen, and Q. Shen, “Chemical alterations taken place during deep-fat frying based on certain reaction products: A review,” Chem. Phys. Lipids, vol. 165, no. 6, pp. 662–681, 2012.spa
dc.relation.referencesFedepalma, “Entorno económico y desempeño del sector palmero en 2016 y perspectivas 2017,” 2017.spa
dc.relation.referencesDANE, “Contenido Anexos Encuesta Anual Manufacturera 2016,” Bogotá, 2016spa
dc.relation.referencesJ. C. Lombana, J. J. Vega, E. A. Britton, and S. V. Herrera, Análisis del sector biodiésel en Colombia y su cadena de suministro. 2015.spa
dc.relation.referencesG. Toop, S. Alberci, M. Spolettle, H. Van Steen, and U. Weddige, “Trends in the UCO market,” 2014.spa
dc.relation.referencesUnited states department of agriculture, “Stocks Shrink as China ’ s Veg Oil Complex Changes,” 2019. [Online]. Available: https://apps.fas.usda.gov/psdonline/circulars/oilseeds.pdf. [Accessed: 22-Nov-2019].spa
dc.relation.referencesConcejo de Bogotá, Proyecto de acuerdo 030 de 2012. 2012.spa
dc.relation.referencesA. Chhetri, K. Watts, and M. Islam, “Waste Cooking Oil as an Alternate Feedstock for Biodiesel Production,” Energies, vol. 1, no. 1, pp. 3–18, 2008.spa
dc.relation.referencesGreenea, “Greenea - Análisis y mercados,” 2019. [Online]. Available: https://www.greenea.com/es/analisis-mercados/. [Accessed: 22-Nov-2019].spa
dc.relation.referencesS. K. Bardhan, S. Gupta, M. E. Gorman, and M. A. Haider, “Biorenewable chemicals: Feedstocks, technologies and the conflict with food production,” Renew. Sustain. Energy Rev., vol. 51, pp. 506–520, 2015.spa
dc.relation.referencesM. Patel, “Surfactants Based on Renewable Raw Materials.,” J. Ind. Ecol., vol. 7, no. 3–4, pp. 47–62, 2003.spa
dc.relation.referencesC. S. K. Lin et al., “Food waste as a valuable resource for the production of chemicals, materials and fuels. Current situation and global perspective,” Energy Environ. Sci., vol. 6, no. 2, pp. 426–464, 2013.spa
dc.relation.referencesA. S. A. Hazmi, M. M. Aung, L. C. Abdullah, M. Z. Salleh, and M. H. Mahmood, “Producing Jatropha oil-based polyol via epoxidation and ring opening,” Ind. Crops Prod., vol. 50, pp. 563–567, 2013spa
dc.relation.referencesF. I. Lafargue-Pérez, M. I. Díaz-Velázquez, I. I. Leiva-Aguilar, J. Sánchez-Hechavarría III, and O. I. Salazar-Avila, “Epoxidación del aceite vegetal de Jatropha curcas L con ácido perfórmico Epoxidation of Jatropha curcas L Vegetable oil with Performic Acid,” Tecnol. Quim., vol. XXXV, no. 3, pp. 334–341, 2015spa
dc.relation.referencesP. K. Gamage, M. O’Brien, and L. Karunanayake, “Epoxidation of some vegetable oils and their hydrolysed products with peroxyformic acid - Optimised to industrial scale,” J. Natl. Sci. Found. Sri Lanka, vol. 37, no. 4, pp. 229–240, 2009spa
dc.relation.referencesV. V. Coud, N. C. Pradhan, and A. V. Patwardhan, “Epoxidation of karanja (Pongamia glabra) oil by H2O2,” JAOCS, J. Am. Oil Chem. Soc., vol. 83, no. 7, pp. 635–640, 2006spa
dc.relation.referencesV. V. Goud, A. V. Patwardhan, and N. C. Pradhan, “Studies on the epoxidation of mahua oil (Madhumica indica) by hydrogen peroxide,” Bioresour. Technol., vol. 97, no. 12, pp. 1365–1371, 2006.spa
dc.relation.referencesV. B. Borugadda and V. V. Goud, “Physicochemical and Rheological Characterization of Waste Cooking Oil Epoxide and Their Blends,” Waste and Biomass Valorization, vol. 7, no. 1, pp. 23–30, 2016.spa
dc.relation.referencesC. Cai et al., “Studies on the kinetics of in situ epoxidation of vegetable oils,” Eur. J. Lipid Sci. Technol., vol. 110, no. 4, pp. 341–346, 2008.spa
dc.relation.referencesP. R. L. Flor, “Evaluación de cuatro temperaturas de prensado en la calidad del aceite virgen de sacha inchi (plukenetia volubilis l.),” 2015.spa
dc.relation.referencesK. Tiefenbacher, Wafer and Waffle Processing and Manufacturing. San Diego, 2017spa
dc.relation.referencesB. M. Abdullah and J. Salimon, “Epoxidation of vegetable oils and fatty acids: Catalysts, methods and advantages,” Journal of Applied Sciences, vol. 10, no. 15. pp. 1545–1553, 2010spa
dc.relation.referencesE. Zuleta, M. Mantilla, I. Avendaño, and L. Diaz, “Epoxidación de oleína de palma con ácido peroxiacético formado in situ,” Biotecnol. en el Sect. Agropecu. y Agroindustrial BSAA, vol. 11, no. 1, pp. 235–244, 2013.spa
dc.relation.referencesA. Campanella, C. Fontanini, and M. A. Baltanás, “High yield epoxidation of fatty acid methyl esters with performic acid generated in situ,” Chem. Eng. J., vol. 144, no. 3, pp. 466–475, 2008.spa
dc.relation.referencesM. B. M. S, “Obtención De Polioles a Partir De Aceites Vegetales Para La Fabricación De Poliuretano,” p. 96, 2008.spa
dc.relation.referencesS. Dinda, A. V. Patwardhan, V. V. Goud, and N. C. Pradhan, “Epoxidation of cottonseed oil by aqueous hydrogen peroxide catalysed by liquid inorganic acids,” Bioresour. Technol., vol. 99, no. 9, pp. 3737–3744, 2008.spa
dc.relation.referencesI. L. Valdez, O. Farfan, O. Sterner, and A. G. Turba, “Estudios preliminares de la caracterización química de ácidos grasos del aceite de frutos de Bertholletia excelsa por cromatografia de gases,” Biofarbo, vol. 17, no. 1, pp. 47–53, 2009spa
dc.relation.referencesI. Global Market Insights, “Epoxidized Soybean Oil Market worth $650mn by 2024: Global Market Insights, Inc,” 2018. [Online]. Available: https://www.globenewswire.com/news-release/2018/12/06/1662879/0/en/Epoxidized-Soybean-Oil-Market-worth-650mn-by-2024-Global-Market-Insights-Inc.html. [Accessed: 24-Nov-2019].spa
dc.relation.referencesMARKETS AND MARKETS, “Epoxidized Soybean Oil Market,” 2015. [Online]. Available: https://www.marketsandmarkets.com/Market-Reports/epoxidized-soybean-oil-market-27777113.html. [Accessed: 25-Nov-2019].spa
dc.relation.referencesI. Global Market Insights, “EPOXIDIZED SOYBEAN OIL MARKET SIZE BY RAW MATERIAL,” 2018. [Online]. Available: https://www.gminsights.com/industry-analysis/epoxidized-soybean-oil-market?utm_source=globenewswire.com&utm_medium=referral&utm_campaign=Paid_globenewswire. [Accessed: 26-Nov-2019]spa
dc.relation.referencesARKEMA, “Vikoflex® 7170 Epoxidized Sybean Oil Data Sheet,” 2014. [Online]. Available: http://www.arkemaepoxides.com/export/sites/epoxides/.content/medias/downloads/literature/vikoflex-7170.pdf. [Accessed: 24-Nov-2019].spa
dc.relation.referencesARKEMA, “Vikoflex® 7190 Epoxidized Linseed Oil Data Sheet,” Data sheet, 2014. [Online]. Available: http://www.arkemaepoxides.com/export/sites/epoxides/.content/medias/downloads/literature/vikoflex-7190.pdf. [Accessed: 24-Nov-2019].spa
dc.relation.referencesThe Chemical Company’s, “ChemFlexx Epoxidized Soybean Oil (ESO),” ChemFlexx Epoxidized Soybean Oil (ESO), 2019. [Online]. Available: https://thechemco.com/chemical/epoxidized-soybean-oil/.spa
dc.relation.referencesVALTRIS, “Plas-Chek® 775,” 2019. [Online]. Available: http://www.valtris.com/product/plas-chek-775/?cn-reloaded=1.spa
dc.relation.referencesbuyersguidechem, “Epoxidized soya bean oil,” 2019. [Online]. Available: https://www.buyersguidechem.com/chemical_supplier/Epoxidized_soya_bean_oil.spa
dc.relation.referencesAcme Hardesty, “Jenkinol® 680 (ESO = Epoxidized Soybean Oil),” 2019. [Online]. Available: https://www.acme-hardesty.com/product/jenkinol-680-eso-epoxidized-soybean-oil/.spa
dc.relation.referencesMakwell Plastisizers Private Limited, “Epoxidised Soybean Oil,” 2019. [Online]. Available: https://www.makwellplastisizers.com/. [Accessed: 24-Nov-2019].spa
dc.relation.referencesChemodex, “Epoxidized linseed oil,” 2019. [Online]. Available: https://www.chemodex.com/products/epoxidized-linseed-oil/. [Accessed: 24-Nov-2019].spa
dc.relation.referencesPolar Foods INC, “HiOmega® 70% Flaxoil,” 2019. [Online]. Available: https://www.polarfoods.com/productDesc.html. [Accessed: 24-Nov-2019].spa
dc.relation.referencesUnipox, “Nuestros Productos Aceites Vegetales Epoxidados,” 2017. [Online]. Available: https://unipoxpvc.com.ar/aceites-vegetales-epoxidados/. [Accessed: 24-Nov-2019].spa
dc.relation.referencesINBRA, “PRODUCTOS,” 2016. [Online]. Available: http://www.inbra.com.br/home/produtos/. [Accessed: 24-Nov-2019].spa
dc.relation.referencesC. Ruiz, S. T. Kenny, T. Narancic, R. Babu, and K. O. Connor, “Conversion of waste cooking oil into medium chain polyhydroxyalkanoates in a high cell density fermentation,” J. Biotechnol., vol. 306, no. August, pp. 9–15, 2019.spa
dc.relation.referencesM. Dehghani, B. Ghobadian, S. Mohammad, G. Naja, and J. Aubin, “Valorization of waste cooking oil based biodiesel for biolubricant production in a vertical pulsed column : Energy ef fi cient process approach,” no. xxxx, 2019.spa
dc.relation.referencesY. Xiong et al., “Solid alcohol based on waste cooking oil : Synthesis , properties , micromorphology and simultaneous synthesis of biodiesel,” Waste Manag., vol. 85, pp. 295–303, 2019.spa
dc.relation.referencesS. Nanda, R. Rana, H. N. Hunter, Z. Fang, A. K. Dalai, and J. A. Kozinski, “Hydrothermal catalytic processing of waste cooking oil for hydrogen-rich syngas production,” Chem. Eng. Sci., vol. 195, pp. 935–945, 2019.spa
dc.relation.referencesR. B. Ahmed and K. Hossain, “Waste cooking oil as an asphalt rejuvenator : A state-of-the-art review,” Constr. Build. Mater., vol. 230, p. 116985, 202spa
dc.relation.referencesY. Xingyu, D. Ruikun, and T. Naipeng, “Development of a novel binder rejuvenator composed by waste cooking oil and crumb tire rubber,” Constr. Build. Mater., vol. 236, p. 117621, 2020spa
dc.relation.referencesG. Danha, E. Muzenda, and T. Maotsela, “ScienceDirect ScienceDirect ScienceDirect ScienceDirect Utilization of Waste Cooking Oil and Tallow for Production of Utilization of Waste Cooking Oil and Tallow for Production of Toilet ‘ Bath ’ Soap . Toilet ‘ Bath ’ of Waste Cooking Oil and Tallow for ,” Procedia Manuf., vol. 35, pp. 541–545, 2019.spa
dc.relation.referencesW. Dubitzky, O. Wolkenhauer, K.-H. Cho, and H. Yokota, “Kinetic Modeling and Simulation,” Encyclopedia of Systems Biology, 2013. [Online]. Available: https://link.springer.com/referenceworkentry/10.1007%2F978-1-4419-9863-7_1088. [Accessed: 26-Nov-2019].spa
dc.relation.referencesD. B. Shmoys, “Stochastic Optimization is ( almost ) as Easy as Deterministic Optimization ∗,” 2004.spa
dc.relation.referencesM. Dyer, R. Kannan, and L. Stougie, “A simple randomised algorithm for convex optimisation,” Math. Progr., 2013.spa
dc.relation.referencesM. Cavazzuti, “Deterministic Optimization,” in Optimization Methods: From Theory to Design, 2013, pp. 77–102.spa
dc.relation.referencesY. D. Sergeyev and D. E. Kvasov, Deterministic Global Optimization An Introduction to the Diagonal Approach. .spa
dc.relation.referencesP. J. Martínez de la Cuesta, E. Rus Martínez, and V. Román Cortés, “Epoxidación de aceite de soja refinado mediante oxígeno molecular. Influencia de las variables. Estudio cinético,” Grasas y Aceites, vol. 42, no. 1, pp. 38–45, 1991.spa
dc.relation.referencesÁ. Aurora, B. Osuna, L. Alejandro, and B. Mendivelso, “Modelo cinético de dos fases para la epoxidación de aceite de soya Two-phase kinetic model for epoxidation of soybean oil,” vol. 30, no. 2, pp. 188–196, 2010.spa
dc.relation.referencesB. Rangarajan, A. Havey, E. A. Grulke, and P. D. Culnan, “Kinetic parameters of a two-phase model for in situ epoxidation of soybean oil,” J. Am. Oil Chem. Soc., vol. 72, no. 10, pp. 1161–1169, 1995.spa
dc.relation.referencesA. Campanella and M. A. Baltanás, “Degradation of the oxirane ring of epoxidized vegetable oils in liquid–liquid heterogeneous reaction system,” Chem. Eng. J., vol. 118, no. 3, pp. 141–152, 2006.spa
dc.relation.referencesA. Campanella and M. A. Baltanás, “Degradation of the oxirane ring of epoxidized vegetable oils in liquid-liquid systems: II. Reactivity with solvated acetic and peracetic acids,” Lat. Am. Appl. Res., vol. 35, no. 3, pp. 211–216, 2005.spa
dc.relation.referencesE. Garcia Araque and L. A. Boyacá Mendivelso, “Evaluación de la producción de polioles poliéster a partir de aceite de palma,” Universidad Nacional de Colombia, 2008.spa
dc.relation.referencesA. Campanella and M. A. Baltanás, “Degradation of the oxirane ring of epoxidized vegetable oils in a liquid-liquid-solid heterogeneous reaction system,” Chem. Eng. Process. Process Intensif., vol. 46, no. 3, pp. 210–221, 2007spa
dc.relation.referencesA. Campanella and M. A. Baltanás, “Degradation of the oxirane ring of epoxidized vegetable oils with hydrogen peroxide using an ion exchange resin,” Catal. Today, vol. 107–108, pp. 208–214, 200spa
dc.relation.referencesÁ. A. B. Osuna and L. A. B. Mendivelso, “Modelo cinético de dos fases para la epoxidación de aceite de soya,” Ing. e Investig., vol. 30, no. 2, pp. 188–196, 2010.spa
dc.relation.referencesM. F. Gutierrez and A. Orjuela, “Sucrose esters production in a solvent-free reaction system by transesterification of sucrose and fatty acid methyl esters,” Universidad Nacional de Colombia Sede Bogotá, 2019.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/spa
dc.subject.ddc660 - Ingeniería químicaspa
dc.subject.proposalEpoxidaciónspa
dc.subject.proposalEpoxidationeng
dc.subject.proposalUsed Cooking Oileng
dc.subject.proposalAceite vegetal usadospa
dc.subject.proposalEpoxidized oileng
dc.subject.proposalAceites epoxidadosspa
dc.titleModelo cinético para la reacción de epoxidación de aceite vegetal usadospa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1030592608.2020.pdf
Tamaño:
2.28 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.9 KB
Formato:
Item-specific license agreed upon to submission
Descripción: