Modelo cinético para la reacción de epoxidación de aceite vegetal usado
dc.contributor.advisor | Cadavid Estrada, Juan Guillermo | spa |
dc.contributor.author | Ramírez Jiménez, Luis Miguel | spa |
dc.contributor.researchgroup | Procesos químicos y bioquímicos | spa |
dc.date.accessioned | 2020-07-21T13:58:12Z | spa |
dc.date.available | 2020-07-21T13:58:12Z | spa |
dc.date.issued | 2020-06-07 | spa |
dc.description.abstract | En este trabajo se estudió la producción de aceite epoxidado a partir de aceite vegetal usado mediante la formación de ácido peracético in situ. Los experimentos para la cinética se realizaron evaluando el efecto de la temperatura, entre 323 y 353 K, y el efecto del exceso molar del peróxido de hidrógeno, entre 25 y 45 % (p/p), usando ácido sulfúrico como catalizador, 2 % (p/p), y ácido acético, 5 % (p/p); ambos porcentajes con respecto a la masa de aceite. Las muestras de reacción fueron analizadas por medio del método de oxígeno oxirano (NTC 2366) y número ácido (ASTM D-664). Se implementó un modelo cinético de dos fases que involucra las reacciones de formación del perácido, la formación del epóxido, la degradación del epóxido por acción del ácido acético y la transferencia de masa del ácido carboxílico y el perácido entre las fases. El modelo de error fue minimizado mediante los métodos ODE15s, Fminsearch y GA Genetic Algorithm de Matlab ®. Se identifica que el sistema reactivo presenta una elevada dependencia con la temperatura, y que las energías de activación son en promedio inferiores a los valores reportados por estudios previos para aceite de soya. Usando aceite vegetal usado como materia prima, se obtuvo un contenido de oxígeno oxirano máximo de 4.15% a 353K, con 45% de exceso de peróxido de hidrógeno en un tiempo de 30 minutos. Las predicciones del modelo presentan el mejor ajuste para los ensayos a bajas temperaturas; así mismo, las desviaciones del modelo son mayores después de alcanzar el máximo porcentaje de oxígeno oxirano. El modelo obtenido puede ser usado para el diseño y análisis de procesos a pesar de las desviaciones respecto a la degradación del epóxido. | spa |
dc.description.abstract | This work studied the epoxidation kinetic from used cooking oil UCO through the formation of peracetic acid in situ. The experiments for the kinetics were carried out evaluating the effect of temperature (323-353k) and the effect of the molar excess of hydrogen peroxide (25-45%) using sulfuric acid as a catalyst (2%) and acetic acid (5%). The reaction samples were analyzed by modified oxirane oxygen method (NTC 2366). It is identified that the reactive system has a high dependence on temperature, and that activation energies are lower than the values reported for refined soybean oil. The Activation energy from the epoxidized oil formation is 72% lower than the value reported for refined soybean oil. A maximum oxirane oxygen content of 4.15% at 353K and 45% excess hydrogen peroxide is obtained in a time of 30 minutes. A two-phase kinetic model was implemented whose error was minimized using the ODE15s Fminsearch, and GA Genetic Algorithm methods from Matlab ®. Modeling of the reactive system involves peracid formation reactions, epoxide formation, epoxide degradation by acetic acid action and mass transfer between the phases of the carboxylic acid and the peracid. The deviation of the model is greater after reaching the maximum percentage of oxirane oxygen because for that region. The obtained model can be used for the design and analysis of processes despite the deviations from the degradation of the epoxide. | spa |
dc.description.additional | Línea de Investigación: Oleoquímica | spa |
dc.description.degreelevel | Maestría | spa |
dc.format.extent | 155 | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/77805 | |
dc.language.iso | spa | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.program | Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Química | spa |
dc.relation.references | M. D. Juárez and N. Sammán, “El deterioro de los aceites durante la fritura,” Rev. Esp. Nutr. Comunitaria, vol. 13, no. 2, pp. 82–94, 2007. | spa |
dc.relation.references | A. Orjuela, “Explotation and valorization of used Cooking Oils,” 2019, pp. 1–29. | spa |
dc.relation.references | L. Á. Rincón Vija, “Reutilización de aceites de cocina usados en la producción de aceites epoxidados,” p. 162, 2018. | spa |
dc.relation.references | G. Howard and J. Bartram, “Domestic Water Quantity, Service Level and Health,” 2003. [Online]. Available: https://www.who.int/water_sanitation_health/diseases/WSH03.02.pdf. [Accessed: 22-Nov-2019] | spa |
dc.relation.references | Ministerio de Ambiente Vivienda y Desarrollo Territorial, Decreto Número 3930 de 2010. 1993 | spa |
dc.relation.references | Ministerio de salud y protección social, Resolucion 2154 de 2012. 2012 | spa |
dc.relation.references | L. A. Boyacá and Á. A. Beltrán, “Soybean epoxide production with in situ peracetic acid using homogeneous catalysis,” Ing. e Investig., vol. 30, no. 1, pp. 136–140, 2010. | spa |
dc.relation.references | ICONTEC, “Norma técnica colombiana NTC 2366 plásticos. Aceites vegetales epoxidados de soya y linaza.” p. 11, 2000. | spa |
dc.relation.references | H. Sanli, M. Canakci, and E. Alptekin, “Characterization of Waste Frying Oils Obtained from Different Facilities,” Proc. World Renew. Energy Congr. – Sweden, 8–13 May, 2011, Linköping, Sweden, vol. 57, pp. 479–485, 2011. | spa |
dc.relation.references | A. Suaterna Hurtado, “La fritura de los alimentos: el aceite de fritura,” Perspect. en Nutr. Humana, vol. 11, no. 1, pp. 39–53, 200 | spa |
dc.relation.references | C. Ramírez Botero, B. Gómez Ramírez, A. Suaterna Hurtado, J. Martínez Galán, L. Cardona Zuleta, and B. Alberto Rojano, “Content of total polar compounds in previously used cooking oils most marketed in Medellin (Colombia),” Perspect. en Nutr. Humana, vol. 14, no. 1, pp. 59–69, 2012. | spa |
dc.relation.references | D. C. Panadare and V. K. Rathod, “Applications of Waste Cooking Oil Other Than Biodiesel: A Review,” Iran. J. Chem. Eng., vol. 12, no. 3, pp. 55–76, 2015. | spa |
dc.relation.references | M. J. Ayala Ramírez, “Evaluación de la calidad del aceite de mezclas vegetales utilizado en doce frituras sucesivas empleado para freír platano hartón verde,” 2011 | spa |
dc.relation.references | E. Choe and D. B. Min, “Chemistry of deep-fat frying oils,” J. Food Sci., vol. 72, no. 5, 2007. | spa |
dc.relation.references | M. Guillermo, “Caracterización de grasas y aceites,” 2018. [Online]. Available: https://www.slideshare.net/MarioMoralesShevky/grasas-y-aceites-85620007. [Accessed: 24-Nov-2019]. | spa |
dc.relation.references | A. Esquivel Ramírez, A. Castañeda Ovando, and J. Ramírez Godínez, “Cambios químicos de los aceites comestibles durante el proceso de fritura. Riesgos en la salud,” Pädi Boletín Científico Ciencias Básicas e Ing. del ICBI, vol. 2, 2014 | spa |
dc.relation.references | L. M. Lewis-McCrea and S. P. Lall, “Effects of moderately oxidized dietary lipid and the role of vitamin E on the development of skeletal abnormalities in juvenile Atlantic halibut (Hippoglossus hippoglossus),” Aquaculture, vol. 262, no. 1, pp. 142–155, 2007. | spa |
dc.relation.references | I. Aidos, N. Kreb, M. Boonman, J. B. Luten, R. M. Boom, and A. Padt, “Influence of Production Process Parameters on Fish Oil Quality in a Pilot Plant,” J. Food Sci., vol. 68, no. 2, pp. 581–586, 2003. | spa |
dc.relation.references | M. C. Dobarganes and G. Márquez-Ruiz, Formation and Analysis of Oxidized Monomeric, Dimeric, and Higher Oligomeric Triglycerides, Second Edi., no. 5. AOCS Press, 2007. | spa |
dc.relation.references | Q. Zhang, A. S. M. Saleh, J. Chen, and Q. Shen, “Chemical alterations taken place during deep-fat frying based on certain reaction products: A review,” Chem. Phys. Lipids, vol. 165, no. 6, pp. 662–681, 2012. | spa |
dc.relation.references | Fedepalma, “Entorno económico y desempeño del sector palmero en 2016 y perspectivas 2017,” 2017. | spa |
dc.relation.references | DANE, “Contenido Anexos Encuesta Anual Manufacturera 2016,” Bogotá, 2016 | spa |
dc.relation.references | J. C. Lombana, J. J. Vega, E. A. Britton, and S. V. Herrera, Análisis del sector biodiésel en Colombia y su cadena de suministro. 2015. | spa |
dc.relation.references | G. Toop, S. Alberci, M. Spolettle, H. Van Steen, and U. Weddige, “Trends in the UCO market,” 2014. | spa |
dc.relation.references | United states department of agriculture, “Stocks Shrink as China ’ s Veg Oil Complex Changes,” 2019. [Online]. Available: https://apps.fas.usda.gov/psdonline/circulars/oilseeds.pdf. [Accessed: 22-Nov-2019]. | spa |
dc.relation.references | Concejo de Bogotá, Proyecto de acuerdo 030 de 2012. 2012. | spa |
dc.relation.references | A. Chhetri, K. Watts, and M. Islam, “Waste Cooking Oil as an Alternate Feedstock for Biodiesel Production,” Energies, vol. 1, no. 1, pp. 3–18, 2008. | spa |
dc.relation.references | Greenea, “Greenea - Análisis y mercados,” 2019. [Online]. Available: https://www.greenea.com/es/analisis-mercados/. [Accessed: 22-Nov-2019]. | spa |
dc.relation.references | S. K. Bardhan, S. Gupta, M. E. Gorman, and M. A. Haider, “Biorenewable chemicals: Feedstocks, technologies and the conflict with food production,” Renew. Sustain. Energy Rev., vol. 51, pp. 506–520, 2015. | spa |
dc.relation.references | M. Patel, “Surfactants Based on Renewable Raw Materials.,” J. Ind. Ecol., vol. 7, no. 3–4, pp. 47–62, 2003. | spa |
dc.relation.references | C. S. K. Lin et al., “Food waste as a valuable resource for the production of chemicals, materials and fuels. Current situation and global perspective,” Energy Environ. Sci., vol. 6, no. 2, pp. 426–464, 2013. | spa |
dc.relation.references | A. S. A. Hazmi, M. M. Aung, L. C. Abdullah, M. Z. Salleh, and M. H. Mahmood, “Producing Jatropha oil-based polyol via epoxidation and ring opening,” Ind. Crops Prod., vol. 50, pp. 563–567, 2013 | spa |
dc.relation.references | F. I. Lafargue-Pérez, M. I. Díaz-Velázquez, I. I. Leiva-Aguilar, J. Sánchez-Hechavarría III, and O. I. Salazar-Avila, “Epoxidación del aceite vegetal de Jatropha curcas L con ácido perfórmico Epoxidation of Jatropha curcas L Vegetable oil with Performic Acid,” Tecnol. Quim., vol. XXXV, no. 3, pp. 334–341, 2015 | spa |
dc.relation.references | P. K. Gamage, M. O’Brien, and L. Karunanayake, “Epoxidation of some vegetable oils and their hydrolysed products with peroxyformic acid - Optimised to industrial scale,” J. Natl. Sci. Found. Sri Lanka, vol. 37, no. 4, pp. 229–240, 2009 | spa |
dc.relation.references | V. V. Coud, N. C. Pradhan, and A. V. Patwardhan, “Epoxidation of karanja (Pongamia glabra) oil by H2O2,” JAOCS, J. Am. Oil Chem. Soc., vol. 83, no. 7, pp. 635–640, 2006 | spa |
dc.relation.references | V. V. Goud, A. V. Patwardhan, and N. C. Pradhan, “Studies on the epoxidation of mahua oil (Madhumica indica) by hydrogen peroxide,” Bioresour. Technol., vol. 97, no. 12, pp. 1365–1371, 2006. | spa |
dc.relation.references | V. B. Borugadda and V. V. Goud, “Physicochemical and Rheological Characterization of Waste Cooking Oil Epoxide and Their Blends,” Waste and Biomass Valorization, vol. 7, no. 1, pp. 23–30, 2016. | spa |
dc.relation.references | C. Cai et al., “Studies on the kinetics of in situ epoxidation of vegetable oils,” Eur. J. Lipid Sci. Technol., vol. 110, no. 4, pp. 341–346, 2008. | spa |
dc.relation.references | P. R. L. Flor, “Evaluación de cuatro temperaturas de prensado en la calidad del aceite virgen de sacha inchi (plukenetia volubilis l.),” 2015. | spa |
dc.relation.references | K. Tiefenbacher, Wafer and Waffle Processing and Manufacturing. San Diego, 2017 | spa |
dc.relation.references | B. M. Abdullah and J. Salimon, “Epoxidation of vegetable oils and fatty acids: Catalysts, methods and advantages,” Journal of Applied Sciences, vol. 10, no. 15. pp. 1545–1553, 2010 | spa |
dc.relation.references | E. Zuleta, M. Mantilla, I. Avendaño, and L. Diaz, “Epoxidación de oleína de palma con ácido peroxiacético formado in situ,” Biotecnol. en el Sect. Agropecu. y Agroindustrial BSAA, vol. 11, no. 1, pp. 235–244, 2013. | spa |
dc.relation.references | A. Campanella, C. Fontanini, and M. A. Baltanás, “High yield epoxidation of fatty acid methyl esters with performic acid generated in situ,” Chem. Eng. J., vol. 144, no. 3, pp. 466–475, 2008. | spa |
dc.relation.references | M. B. M. S, “Obtención De Polioles a Partir De Aceites Vegetales Para La Fabricación De Poliuretano,” p. 96, 2008. | spa |
dc.relation.references | S. Dinda, A. V. Patwardhan, V. V. Goud, and N. C. Pradhan, “Epoxidation of cottonseed oil by aqueous hydrogen peroxide catalysed by liquid inorganic acids,” Bioresour. Technol., vol. 99, no. 9, pp. 3737–3744, 2008. | spa |
dc.relation.references | I. L. Valdez, O. Farfan, O. Sterner, and A. G. Turba, “Estudios preliminares de la caracterización química de ácidos grasos del aceite de frutos de Bertholletia excelsa por cromatografia de gases,” Biofarbo, vol. 17, no. 1, pp. 47–53, 2009 | spa |
dc.relation.references | I. Global Market Insights, “Epoxidized Soybean Oil Market worth $650mn by 2024: Global Market Insights, Inc,” 2018. [Online]. Available: https://www.globenewswire.com/news-release/2018/12/06/1662879/0/en/Epoxidized-Soybean-Oil-Market-worth-650mn-by-2024-Global-Market-Insights-Inc.html. [Accessed: 24-Nov-2019]. | spa |
dc.relation.references | MARKETS AND MARKETS, “Epoxidized Soybean Oil Market,” 2015. [Online]. Available: https://www.marketsandmarkets.com/Market-Reports/epoxidized-soybean-oil-market-27777113.html. [Accessed: 25-Nov-2019]. | spa |
dc.relation.references | I. Global Market Insights, “EPOXIDIZED SOYBEAN OIL MARKET SIZE BY RAW MATERIAL,” 2018. [Online]. Available: https://www.gminsights.com/industry-analysis/epoxidized-soybean-oil-market?utm_source=globenewswire.com&utm_medium=referral&utm_campaign=Paid_globenewswire. [Accessed: 26-Nov-2019] | spa |
dc.relation.references | ARKEMA, “Vikoflex® 7170 Epoxidized Sybean Oil Data Sheet,” 2014. [Online]. Available: http://www.arkemaepoxides.com/export/sites/epoxides/.content/medias/downloads/literature/vikoflex-7170.pdf. [Accessed: 24-Nov-2019]. | spa |
dc.relation.references | ARKEMA, “Vikoflex® 7190 Epoxidized Linseed Oil Data Sheet,” Data sheet, 2014. [Online]. Available: http://www.arkemaepoxides.com/export/sites/epoxides/.content/medias/downloads/literature/vikoflex-7190.pdf. [Accessed: 24-Nov-2019]. | spa |
dc.relation.references | The Chemical Company’s, “ChemFlexx Epoxidized Soybean Oil (ESO),” ChemFlexx Epoxidized Soybean Oil (ESO), 2019. [Online]. Available: https://thechemco.com/chemical/epoxidized-soybean-oil/. | spa |
dc.relation.references | VALTRIS, “Plas-Chek® 775,” 2019. [Online]. Available: http://www.valtris.com/product/plas-chek-775/?cn-reloaded=1. | spa |
dc.relation.references | buyersguidechem, “Epoxidized soya bean oil,” 2019. [Online]. Available: https://www.buyersguidechem.com/chemical_supplier/Epoxidized_soya_bean_oil. | spa |
dc.relation.references | Acme Hardesty, “Jenkinol® 680 (ESO = Epoxidized Soybean Oil),” 2019. [Online]. Available: https://www.acme-hardesty.com/product/jenkinol-680-eso-epoxidized-soybean-oil/. | spa |
dc.relation.references | Makwell Plastisizers Private Limited, “Epoxidised Soybean Oil,” 2019. [Online]. Available: https://www.makwellplastisizers.com/. [Accessed: 24-Nov-2019]. | spa |
dc.relation.references | Chemodex, “Epoxidized linseed oil,” 2019. [Online]. Available: https://www.chemodex.com/products/epoxidized-linseed-oil/. [Accessed: 24-Nov-2019]. | spa |
dc.relation.references | Polar Foods INC, “HiOmega® 70% Flaxoil,” 2019. [Online]. Available: https://www.polarfoods.com/productDesc.html. [Accessed: 24-Nov-2019]. | spa |
dc.relation.references | Unipox, “Nuestros Productos Aceites Vegetales Epoxidados,” 2017. [Online]. Available: https://unipoxpvc.com.ar/aceites-vegetales-epoxidados/. [Accessed: 24-Nov-2019]. | spa |
dc.relation.references | INBRA, “PRODUCTOS,” 2016. [Online]. Available: http://www.inbra.com.br/home/produtos/. [Accessed: 24-Nov-2019]. | spa |
dc.relation.references | C. Ruiz, S. T. Kenny, T. Narancic, R. Babu, and K. O. Connor, “Conversion of waste cooking oil into medium chain polyhydroxyalkanoates in a high cell density fermentation,” J. Biotechnol., vol. 306, no. August, pp. 9–15, 2019. | spa |
dc.relation.references | M. Dehghani, B. Ghobadian, S. Mohammad, G. Naja, and J. Aubin, “Valorization of waste cooking oil based biodiesel for biolubricant production in a vertical pulsed column : Energy ef fi cient process approach,” no. xxxx, 2019. | spa |
dc.relation.references | Y. Xiong et al., “Solid alcohol based on waste cooking oil : Synthesis , properties , micromorphology and simultaneous synthesis of biodiesel,” Waste Manag., vol. 85, pp. 295–303, 2019. | spa |
dc.relation.references | S. Nanda, R. Rana, H. N. Hunter, Z. Fang, A. K. Dalai, and J. A. Kozinski, “Hydrothermal catalytic processing of waste cooking oil for hydrogen-rich syngas production,” Chem. Eng. Sci., vol. 195, pp. 935–945, 2019. | spa |
dc.relation.references | R. B. Ahmed and K. Hossain, “Waste cooking oil as an asphalt rejuvenator : A state-of-the-art review,” Constr. Build. Mater., vol. 230, p. 116985, 202 | spa |
dc.relation.references | Y. Xingyu, D. Ruikun, and T. Naipeng, “Development of a novel binder rejuvenator composed by waste cooking oil and crumb tire rubber,” Constr. Build. Mater., vol. 236, p. 117621, 2020 | spa |
dc.relation.references | G. Danha, E. Muzenda, and T. Maotsela, “ScienceDirect ScienceDirect ScienceDirect ScienceDirect Utilization of Waste Cooking Oil and Tallow for Production of Utilization of Waste Cooking Oil and Tallow for Production of Toilet ‘ Bath ’ Soap . Toilet ‘ Bath ’ of Waste Cooking Oil and Tallow for ,” Procedia Manuf., vol. 35, pp. 541–545, 2019. | spa |
dc.relation.references | W. Dubitzky, O. Wolkenhauer, K.-H. Cho, and H. Yokota, “Kinetic Modeling and Simulation,” Encyclopedia of Systems Biology, 2013. [Online]. Available: https://link.springer.com/referenceworkentry/10.1007%2F978-1-4419-9863-7_1088. [Accessed: 26-Nov-2019]. | spa |
dc.relation.references | D. B. Shmoys, “Stochastic Optimization is ( almost ) as Easy as Deterministic Optimization ∗,” 2004. | spa |
dc.relation.references | M. Dyer, R. Kannan, and L. Stougie, “A simple randomised algorithm for convex optimisation,” Math. Progr., 2013. | spa |
dc.relation.references | M. Cavazzuti, “Deterministic Optimization,” in Optimization Methods: From Theory to Design, 2013, pp. 77–102. | spa |
dc.relation.references | Y. D. Sergeyev and D. E. Kvasov, Deterministic Global Optimization An Introduction to the Diagonal Approach. . | spa |
dc.relation.references | P. J. Martínez de la Cuesta, E. Rus Martínez, and V. Román Cortés, “Epoxidación de aceite de soja refinado mediante oxígeno molecular. Influencia de las variables. Estudio cinético,” Grasas y Aceites, vol. 42, no. 1, pp. 38–45, 1991. | spa |
dc.relation.references | Á. Aurora, B. Osuna, L. Alejandro, and B. Mendivelso, “Modelo cinético de dos fases para la epoxidación de aceite de soya Two-phase kinetic model for epoxidation of soybean oil,” vol. 30, no. 2, pp. 188–196, 2010. | spa |
dc.relation.references | B. Rangarajan, A. Havey, E. A. Grulke, and P. D. Culnan, “Kinetic parameters of a two-phase model for in situ epoxidation of soybean oil,” J. Am. Oil Chem. Soc., vol. 72, no. 10, pp. 1161–1169, 1995. | spa |
dc.relation.references | A. Campanella and M. A. Baltanás, “Degradation of the oxirane ring of epoxidized vegetable oils in liquid–liquid heterogeneous reaction system,” Chem. Eng. J., vol. 118, no. 3, pp. 141–152, 2006. | spa |
dc.relation.references | A. Campanella and M. A. Baltanás, “Degradation of the oxirane ring of epoxidized vegetable oils in liquid-liquid systems: II. Reactivity with solvated acetic and peracetic acids,” Lat. Am. Appl. Res., vol. 35, no. 3, pp. 211–216, 2005. | spa |
dc.relation.references | E. Garcia Araque and L. A. Boyacá Mendivelso, “Evaluación de la producción de polioles poliéster a partir de aceite de palma,” Universidad Nacional de Colombia, 2008. | spa |
dc.relation.references | A. Campanella and M. A. Baltanás, “Degradation of the oxirane ring of epoxidized vegetable oils in a liquid-liquid-solid heterogeneous reaction system,” Chem. Eng. Process. Process Intensif., vol. 46, no. 3, pp. 210–221, 2007 | spa |
dc.relation.references | A. Campanella and M. A. Baltanás, “Degradation of the oxirane ring of epoxidized vegetable oils with hydrogen peroxide using an ion exchange resin,” Catal. Today, vol. 107–108, pp. 208–214, 200 | spa |
dc.relation.references | Á. A. B. Osuna and L. A. B. Mendivelso, “Modelo cinético de dos fases para la epoxidación de aceite de soya,” Ing. e Investig., vol. 30, no. 2, pp. 188–196, 2010. | spa |
dc.relation.references | M. F. Gutierrez and A. Orjuela, “Sucrose esters production in a solvent-free reaction system by transesterification of sucrose and fatty acid methyl esters,” Universidad Nacional de Colombia Sede Bogotá, 2019. | spa |
dc.rights | Derechos reservados - Universidad Nacional de Colombia | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-SinDerivadas 4.0 Internacional | spa |
dc.rights.spa | Acceso abierto | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nd/4.0/ | spa |
dc.subject.ddc | 660 - Ingeniería química | spa |
dc.subject.proposal | Epoxidación | spa |
dc.subject.proposal | Epoxidation | eng |
dc.subject.proposal | Used Cooking Oil | eng |
dc.subject.proposal | Aceite vegetal usado | spa |
dc.subject.proposal | Epoxidized oil | eng |
dc.subject.proposal | Aceites epoxidados | spa |
dc.title | Modelo cinético para la reacción de epoxidación de aceite vegetal usado | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |