Interacción de emisores cuánticos inmersos en cristales fotónicos

dc.contributor.advisorVinck Posada, Herbert
dc.contributor.advisorGonzález Tudela, Alejandro
dc.contributor.authorNavarro Barón, Erik Petrovish
dc.contributor.cvlacNAVARRO BARÓN, ERIK PETROVISH [0001493647]spa
dc.contributor.googlescholarNavarro-Baron, Erik Petrovish [epnavarrob]spa
dc.contributor.orcidNavarro-Baron, Erik Petrovish [0000-0002-9985-3841]spa
dc.contributor.researchgateNavarro Barón, Eerik Peetrovish [Erik-Petrovish-Navarro-Baron]spa
dc.contributor.researchgroupGrupo de Superconductividad y Nuevos Materialesspa
dc.contributor.researchgroupGrupo de Óptica E Información Cuánticaspa
dc.contributor.scopusNavarro-Barón, Erik Petrovish [57189043120]spa
dc.date.accessioned2024-02-02T19:25:39Z
dc.date.available2024-02-02T19:25:39Z
dc.date.issued2023
dc.descriptionIlustracionesspa
dc.description.abstractPhotonic crystals are periodic arrays of materials with different refractive indices. This modulation of refractive indices allows controlling the flow of light, leading to the development of different technological applications, such as the design of lasers, waveguides, and optical sensors. In particular, these materials have been used to improve the radiation-matter interaction meaningful in applications of quantum mechanics in the transport, processing, and storage of information and development of light sources with quantum properties. All these developments are based on two essential factors, which are the manipulation of the dispersion relation of light, that is, the allowed and disallowed wave frequencies inside this type of structures, and the possibility of confining electromagnetic fields in tiny regions of the order of the wavelength, and of controlling the degrees of freedom of these fields. Recent advances in radiation-matter interaction in nanophotonic systems, such as photonic crystals, have led to the discovery of unconventional phenomena that may become an engine for new protocols in quantum information processing. It has opened the door to exploring new physics in these systems, making it a current topic of great scientific interest. This thesis studies the properties of electromagnetic fields inside photonic crystals. From the development of different numerical, semianalytical, and analytical methods, Maxwell’s equations in these materials are solved, with which the band structure (allowed and not allowed wave frequencies) and the distribution of electromagnetic fields of different photonic crystal systems with periodicity in one and two dimensions are obtained. Based on the characteristics of these fields, the emission and interaction properties of emitters inside these photonic crystal structures are studied. In 1D crystals, the guided mode expansion (GME) method is adapted for calculating photonic bands in micropillars; using this method, it is possible to consider the effects that the finite dimensions of the structure have on the allowed and disallowed frequencies. A transfer matrix formalism is also used to implement an analytical method that evaluates the single-point Green’s function; this allows calculating the local density of states (LDOS) for a structure of periodic multilayers (1D photonic crystal) finite with a localized defect. Through the LDOS, we identified the defective mode of the structure and calculated the decay rates of emitters within the structure. In the case of two-dimensional photonic crystal slabs, two studies were performed. First, a semianalytical method was developed that combines the k.p approximation and the GME method to obtain an analytical expression of the photonic crystal modes, which is used to evaluate the Green’s function at frequencies close to a Dirac cone-like dispersion relation. Employing the two-point Green’s function, the properties of the interaction between dipolar emitters mediated by photons are studied; it was found that the interactions in these frequency regions are of long-range (decay with the distance between emitters as 1/r^γ) and also identified a trade-off mechanism between the range and magnitude of the interaction according to the positions of the emitters. In turn, it was found that the polarization of the dipole moment of the emitters plays an essential role in the interaction nature, being coherent (conservative) if the dipoles have linear polarization and being incoherent (dissipative) in almost the whole unit cell if the emitters have circular polarization. Second, a region of frequencies within the frequency bands of a photonic crystal slab that allows directional emission was considered; this region of frequencies is associated with van Hove singularities. Through the GME method, a description of the band and mode structure that explains the directionality by means of what is known as self-collimation was carried out. The effects of the position and polarization of the emitter in the selection of the directionality were studied, finding that utilizing these two parameters makes it possible to control the emission directions and the polarization of the emitted fields.eng
dc.description.abstractPhotonic crystals are periodic arrays of materials with different refractive indices. This modulation of refractive indices allows controlling the flow of light, leading to the development of different technological applications, such as the design of lasers, waveguides, and optical sensors. In particular, these materials have been used to improve the radiation-matter interaction meaningful in applications of quantum mechanics in the transport, processing, and storage of information and development of light sources with quantum properties. All these developments are based on two essential factors, which are the manipulation of the dispersion relation of light, that is, the allowed and disallowed wave frequencies inside this type of structures, and the possibility of confining electromagnetic fields in tiny regions of the order of the wavelength, and of controlling the degrees of freedom of these fields. Recent advances in radiation-matter interaction in nanophotonic systems, such as photonic crystals, have led to the discovery of unconventional phenomena that may become an engine for new protocols in quantum information processing. It has opened the door to exploring new physics in these systems, making it a current topic of great scientific interest. This thesis studies the properties of electromagnetic fields inside photonic crystals. From the development of different numerical, semianalytical, and analytical methods, Maxwell’s equations in these materials are solved, with which the band structure (allowed and not allowed wave frequencies) and the distribution of electromagnetic fields of different photonic crystal systems with periodicity in one and two dimensions are obtained. Based on the characteristics of these fields, the emission and interaction properties of emitters inside these photonic crystal structures are studied. In 1D crystals, the guided mode expansion (GME) method is adapted for calculating photonic bands in micropillars; using this method, it is possible to consider the effects that the finite dimensions of the structure have on the allowed and disallowed frequencies. A transfer matrix formalism is also used to implement an analytical method that evaluates the single-point Green’s function; this allows calculating the local density of states (LDOS) for a structure of periodic multilayers (1D photonic crystal) finite with a localized defect. Through the LDOS, we identified the defective mode of the structure and calculated the decay rates of emitters within the structure. In the case of two-dimensional photonic crystal slabs, two studies were performed. First, a semianalytical method was developed that combines the k.p approximation and the GME method to obtain an analytical expression of the photonic crystal modes, which is used to evaluate the Green’s function at frequencies close to a Dirac cone-like dispersion relation. Employing the two-point Green’s function, the properties of the interaction between dipolar emitters mediated by photons are studied; it was found that the interactions in these frequency regions are of long-range (decay with the distance between emitters as 1/r^γ) and also identified a trade-off mechanism between the range and magnitude of the interaction according to the positions of the emitters. In turn, it was found that the polarization of the dipole moment of the emitters plays an essential role in the interaction nature, being coherent (conservative) if the dipoles have linear polarization and being incoherent (dissipative) in almost the whole unit cell if the emitters have circular polarization. Second, a region of frequencies within the frequency bands of a photonic crystal slab that allows directional emission was considered; this region of frequencies is associated with van Hove singularities. Through the GME method, a description of the band and mode structure that explains the directionality by means of what is known as self-collimation was carried out. The effects of the position and polarization of the emitter in the selection of the directionality were studied, finding that utilizing these two parameters makes it possible to control the emission directions and the polarization of the emitted fields.
dc.description.curricularareaÁrea Curricular en Físicaspa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ciencias - Físicaspa
dc.description.methodsEl presente proyecto realiza un estudio teórico que considera tres etapas para alcanzar los objetivos propuestos: Descripción de los campos electromagnéticos en nanoestructuras: en esta etapa se hizo uso de las leyes de la electrodinámica clásica para dar lugar al estudio y diseño de estructuras fotónicas con relaciones de dispersión tipo conos de Dirac y singularidades de van Hove. Se estudiarón las propiedades electromagnéticas desde dos enfoques: uno basado en las relaciones de dispersión en sistemas periódicos para lo cual se usan métodos semianalíticos y numéricos como Expansión en Modos Guiados y Expansión en Ondas Planas, estos métodos son implementados usando lenguajes de programación como Mathematica, Python y C++, así mismo se hace uso del software libre MPB desarrollado para el cálculo de relaciones de dispersión. Por otro lado, se considera un enfoque de estructuras finitas por medio de algoritmos de diferencias fi nitas en el dominio del tiempo y en el dominio de la frecuencia para lo cual se cuenta con el software Meep del MIT y el software comercial Lumerical de Ansys, en este caso se estudia la respuesta que tengan las nanoestructuras a fuentes en su interior. Estos dos enfoques conllevan al cálculo de funciones de Green para los campos electromagnéticos, lo cual se usa como insumo básico en la descripción de la interacción radiación materia y la dinámica cuántica de emisores interaccionando por medio de la luz. Esto permite caracterizar el papel de los campos en la interacci on entre emisores, particularmente evidenciar el rol que juegan la polarización, el alcance y dirección de propagación de los campos; esto hace posible abordar desde un primer frente los objetivos 1-3. Dinámica cuántica de emisores interaccionando con fotones: esta etapa pretende caracterizar las interacciones emergentes de uno o varios emisores con la nanoestructura, permitiendo el desarrollo de los objetivos 1-3. Se prestó principal atención a sintonizar parámetros de los emisores como posición, polarización y frecuencia, que modi quen propiedades de la interacción emisor-emisor, como pueden ser: alcance de las interacciones, lo cual está relacionado al objetivo 1; distribución espacial de la emisión, relacionado al objetivo 2 y rol de la polarización de la luz, que daría cumplimiento al objetivo 3. Para esta caracterización se tiene en cuenta inicialmente técnicas perturbativas tradicionalmente usadas en óptica cuántica, como ecuaciones maestras; para después realizar un análisis no-perturbativo de la dinámica usando técnicas más avanzadas, como el uso de funciones de Green para el cálculo analítico de la dinámica. Diseño de aplicaciones: esta etapa final está enfocada a dar cumplimiento al objetivo 4, que pretende elucidar el desarrollo de aplicaciones para explotar las interacciones emergentes caracterizadas en las etapas anteriores. Algunas aplicaciones plausibles pueden ser el desarrollo de protocolos para generar entrelazamiento a larga distancia, control de la interacción entre emisores por medio de la polarización o dirección de la emisión de luz y la generación de transiciones de fase que permitan observar fenómenos no locales.spa
dc.description.researchareaMateria Condensadaspa
dc.description.researchareaCristales Fotónicosspa
dc.description.researchareaInteracción radiación materiaspa
dc.description.researchareaComputación y simulación cuánticaspa
dc.description.sponsorshipConsejo Superior de Investigaciones Científicas (CSIC) - Españaspa
dc.format.extent104 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85606
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Físicaspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAndreani, L. C. and Gerace, D. (2006). Photonic-crystal slabs with a triangular lattice of triangular holes investigated using a guided-mode expansion method. Physical Review B - Condensed Matter and Materials Physics, 73(23):1–16.spa
dc.relation.referencesAoki, T., Dayan, B., Wilcut, E., Bowen, W. P., Parkins, A. S., Kippenberg, T. J., Vahala, K. J., and Kimble, H. J. (2006). Observation of strong coupling between one atom and a monolithic microresonator. Nature, 443(7112):671–674.spa
dc.relation.referencesAsenjo-Garcia, A., Hood, J. D., Chang, D. E., and Kimble, H. J. (2017). Atom-light interactions in quasi-one-dimensional nanostructures: A Green’s-function perspective. Physical Review A, 95(3):033818.spa
dc.relation.referencesBerenger, J.-P. (1994). A perfectly matched layer for the absorption of electromagnetic waves. Journal of Computational Physics, 114(2):185–200.spa
dc.relation.referencesBloch, F. (1929). Über die Quantenmechanik der Elektronen in Kristallgittern. Zeitschriftfür Physik, 52(7-8):555–600.spa
dc.relation.referencesBrune, M., Hagley, E., Dreyer, J., MaˆItre, X., Maali, A., Wunderlich, C., Raimond, J. M., and Haroche, S. (1996). Observing the progressive decoherence of the “meter” in a quantum measurement. Physical Review Letters, 77(24):4887–4890.spa
dc.relation.referencesBuhmann, S. Y. andWelsch, D. G. (2007). Dispersion forces in macroscopic quantum electrodynamics. Progress in Quantum Electronics, 31(2):51–130.spa
dc.relation.referencesCahuzac, P., Sontag, H., and Toschek, P. E. (1979). Visible superfluorescence from atomic europium. Optics Communications, 31(1):37–41.spa
dc.relation.referencesChanelière, T., Matsukevich, D. N., Jenkins, S. D., Lan, S. Y., Kennedy, T. A., and Kuzmich, A. (2005). Storage and retrieval of single photons transmitted between remote quantum memories. Nature, 438(7069):833–836.spa
dc.relation.referencesChang, D. E., Douglas, J. S., González-Tudela, A., Hung, C.-L., and Kimble, H. J. (2018). Colloquium: Quantum matter built from nanoscopic lattices of atoms and photons. Reviews of Modern Physics, 90(3):031002.spa
dc.relation.referencesChang, D. E., Jiang, L., Gorshkov, A. V., and Kimble, H. J. (2012). Cavity QED with atomic mirrors. New Journal of Physics, 14.spa
dc.relation.referencesChang, W.-H., Chen, W.-Y., Chang, H.-S., Hsieh, T.-P., Chyi, J.-I., and Hsu, T.-M. (2006). Efficient Single-Photon Sources Based on Low-Density Quantum Dots in Photonic-Crystal Nanocavities. Phys. Rev. Lett., 96:117401.spa
dc.relation.referencesCheng, B., Deng, X.-h., Gu, X., He, Y., Hu, G., Huang, P., Li, J., Lin, B.-c., Lu, D., Lu, Y., Qiu, C., Wang, H., Xin, T., Yu, S., Yung, M.-H., Zeng, J., Zhang, S., Zhong, Y., Peng, X., Nori, F., and Yu, D. (2023). Noisy intermediate-scale quantum computers. Frontiers of Physics, 18(2):21308.spa
dc.relation.referencesChoi, K. S., Deng, H., Laurat, J., and Kimble, H. J. (2008). Mapping photonic entanglement into and out of a quantum memory. Nature, 452(7183):67–71.spa
dc.relation.referencesChow, E., Lin, S. Y., Johnson, S. G., Villeneuve, P. R., Joannopoulos, J. D., Wendt, J. R., Vawter, G. A., Zubrzycki, W., Hou, H., and Alleman, A. (2000). Three dimensional control of light in a two-dimensional photonic crystal slab. Nature, 407(6807):983–986.spa
dc.relation.referencesDaraei, A., Tahraoui, A., Sanvitto, D., Timpson, J. A., Fry, P. W., Hopkinson, M., Guimar˜aes, P. S., Vinck, H., Whittaker, D. M., Skolnick, M. S., and Fox, A. M. (2006). Control of polarized single quantum dot emission in high-quality-factor microcavity pillars. Applied Physics Letters, 88(5):1–3.spa
dc.relation.referencesDarquié, B., Jones, M. P. A., Dingjan, J., Beugnon, J., Bergamini, S., Sortais, Y., Messin, G., Browaeys, A., and Grangier, P. (2005). Controlled Single-Photon Emission from a Single Trapped Two-Level Atom. Science, 309(5733):454–456.spa
dc.relation.referencesde Vries, P., van Coevorden, D. V., and Lagendijk, A. (1998). Point scatterers for classical waves. Reviews of Modern Physics, 70(2):447–466.spa
dc.relation.referencesDicke, R. H. (1954). Coherence in spontaneous radiation processes. Physical Review, 93(1):99–110.spa
dc.relation.referencesDung, H. T., Knöll, L., and Welsch, D. G. (2002). Resonant dipole-dipole interaction in the presence of dispersing and absorbing surroundings. Physical Review A - Atomic, Molecular, and Optical Physics, 66(6):16.spa
dc.relation.referencesFerioli, G., Glicenstein, A., Robicheaux, F., Sutherland, R. T., Browaeys, A., and Ferrier-Barbut, I. (2021). Laser-Driven Superradiant Ensembles of Two-Level Atoms near Dicke Regime. Physical Review Letters, 127(24):243602.spa
dc.relation.referencesFrazão, O., Santos, J. L., Araújo, F. M., and Ferreira, L. A. (2008). Optical sensing with photonic crystal fibers. Laser and Photonics Reviews, 2(6):449–459.spa
dc.relation.referencesGhindani, D. (2023). Tailoring Light-Matter Interaction via Advanced Nanophotonic Structures. PhD thesis, Tampere University.spa
dc.relation.referencesGoban, A., Hung, C. L., Hood, J. D., Yu, S. P., Muniz, J. A., Painter, O., and Kimble, H. J. (2015). Superradiance for Atoms Trapped along a Photonic Crystal Waveguide. Physical Review Letters, 115(6):1–5.spa
dc.relation.referencesGonzález-Tudela, A. and Cirac, J. I. (2017). Markovian and non-Markovian dynamics of quantum emitters coupled to two-dimensional structured reservoirs. Physical Review A, 96(4):043811.spa
dc.relation.referencesGonzález-Tudela, A. and Cirac, J. I. (2018). Exotic quantum dynamics and purely long-range coherent interactions in Dirac conelike baths. Physical Review A, 97(4):1–14.spa
dc.relation.referencesGonzález-Tudela, A., Hung, C.-L., Chang, D. E., Cirac, J. I., and Kimble, H. J. (2015a). Subwavelength vacuum lattices and atom–atom interactions in two-dimensional photonic crystals. Nature Photonics, 9(5):320–325.spa
dc.relation.referencesGonzález-Tudela, A., Paulisch, V., Chang, D. E., Kimble, H. J., and Cirac, J. I. (2015b). Deterministic Generation of Arbitrary Photonic States Assisted by Dissipation. Physical Review Letters, 115(16):1–6.spa
dc.relation.referencesGorniaczyk, H., Tresp, C., Schmidt, J., Fedder, H., and Hofferberth, S. (2014). Single-Photon Transistor Mediated by Interstate Rydberg Interactions. Physical Review Letters, 113(5):053601.spa
dc.relation.referencesGrishina, D. A., Harteveld, C. A., Woldering, L. A., and Vos, W. L. (2015). Method for making a single-step etch mask for 3D monolithic nanostructures. Nanotechnology, 26(50).spa
dc.relation.referencesGruner, T. and Welsch, D. G. (1996). Green-function approach to the radiation-field quantization for homogeneous and inhomogeneous Kramers-Kronig dielectrics. Phys. Rev. A, 53(3):1818–1829.spa
dc.relation.referencesHammerer, K., Sorensen, A. S., and Polzik, E. S. (2010). Quantum interface between light and atomic ensembles. Reviews of Modern Physics, 82(2):1041–1093.spa
dc.relation.referencesHétet, G., Slodička, L., Hennrich, M., and Blatt, R. (2011). Single Atom as a Mirror of an Optical Cavity. Physical Review Letters, 107(13):133002.spa
dc.relation.referencesHuang, M. (2003). Stress effects on the performance of optical waveguides. International Journal of Solids and Structures, 40(7):1615–1632.spa
dc.relation.referencesHung, C. L., Meenehan, S. M., Chang, D. E., Painter, O., and Kimble, H. J. (2013). Trapped atoms in one-dimensional photonic crystals. New Journal of Physics, 15.spa
dc.relation.referencesJaksch, D., Bruder, C., Cirac, J. I., Gardiner, C. W., and Zoller, P. (1998). Cold Bosonic Atoms in Optical Lattices. Phys. Rev. Lett., 81:3108.spa
dc.relation.referencesJamois, C.,Wehrspohn, R. B., Andreani, L. C., Hermann, C., Hess, O., and Gösele, U. (2003). Silicon-based two-dimensional photonic crystal waveguides. Photonics and Nanostructures - Fundamentals and Applications, 1(1):1–13.spa
dc.relation.referencesJoannopoulos, J. D., Johnson, S. G., Winn, J. N., Meade, R. D., and Sjödahl, C. J. (2011). Photonic crystals: molding the flow of light. Number 24. 2a edition.spa
dc.relation.referencesJohn, S. (1987). Strong localization of photons in certain disordered dielectric superlattices. Physical Review Letters, 58(23):2486–2489.spa
dc.relation.referencesJohn, S. and Wang, J. (1990). Quantum electrodynamics near a photonic band gap: Photon bound states and dressed atoms. Physical Review Letters, 64(20):2418–2421.spa
dc.relation.referencesKato, S. and Aoki, T. (2015). Strong Coupling between a Trapped Single Atom and an All-Fiber Cavity. Physical Review Letters, 115(9):1–5.spa
dc.relation.referencesKittel, C. (2004). Introduction to Solid State Physics. Jhon Wiley & Sons, Inc, Berkeley, California, 8th edition.spa
dc.relation.referencesKouwenhoven, L. P., Austing, D. G., and Tarucha, S. (2001). Few-electron quantum dots. Reports on Progress in Physics, 64(6):701–736.spa
dc.relation.referencesKuzmich, A., Molmer, K., and Polzik, E. S. (1997). Spin squeezing in an ensemble of atoms illuminated with squeezed light. Physical Review Letters, 79(24):4782–4785.spa
dc.relation.referencesLadd, T. D., Jelezko, F., Laflamme, R., Nakamura, Y., Monroe, C., and O’Brien, J. L. (2010). Quantum computers. Nature, 464(7285):45–53.spa
dc.relation.referencesLee, W. M. (1994). Theory of Photonic Band Gap Materials. Mphil thesis, Chinese University of Hong Kong.spa
dc.relation.referencesLodahl, P., Mahmoodian, S., and Stobbe, S. (2015). Interfacing single photons and single quantum dots with photonic nanostructures. Reviews of Modern Physics, 87(2):347–400.spa
dc.relation.referencesLodahl, P., Mahmoodian, S., Stobbe, S., Rauschenbeutel, A., Schneeweiss, P., Volz, J., Pichler, H., and Zoller, P. (2017). Chiral quantum optics. Nature, 541(7638):473–480.spa
dc.relation.referencesLounis, B. and Orrit, M. (2005). Single-photon sources. Reports on Progress in Physics, 68(5):1129–1179.spa
dc.relation.referencesLu, L., Fu, L., Joannopoulos, J. D., and Soljacic, M. (2013). Weyl points and line nodes in gyroid photonic crystals. Nature Photonics, 7(4):294–299.spa
dc.relation.referencesLund-Hansen, T., Stobbe, S., Julsgaard, B., Thyrrestrup, H., Sünner, T., Kamp, M., Forchel, A., and Lodahl, P. (2008). Experimental Realization of Highly Efficient Broadband Coupling of Single Quantum Dots to a Photonic CrystalWaveguide. Physical Review Letters, 101(11):113903.spa
dc.relation.referencesMei, J., Wu, Y., Chan, C. T., and Zhang, Z. Q. (2012). First-principles study of Dirac and Dirac-like cones in phononic and photonic crystals. Physical Review B - Condensed Matter and Materials Physics, 86(3):1–7.spa
dc.relation.referencesMiller, R., Northup, T. E., Birnbaum, K. M., Boca, A., Boozer, A. D., and Kimble, H. J. (2005). Trapped atoms in cavity QED: Coupling quantized light and matter. Journal of Physics B: Atomic, Molecular and Optical Physics, 38(9).spa
dc.relation.referencesMuniz Silva, J. A. (2017). Nanoscopic atomic lattices with light-mediated interactions Thesis by. PhD thesis, California Institute of Technologyspa
dc.relation.referencesNavarro-Barón, E. P., Vinck-Posada, H., and González-Tudela, A. (2021a). Photon-Mediated Interactions near a Dirac Photonic Crystal Slab. ACS Photonics.spa
dc.relation.referencesNavarro-Barón, E. P., Vinck-Posada, H., and González-Tudela, A. (2021b). Supporting Information: Photon-Mediated Interactions near a Dirac Photonic Crystal Slab. ACS Photonics, 8(11):3209–3217.spa
dc.relation.referencesNayak, K. P., Melentiev, P. N., Morinaga, M., Kien, F. L., Balykin, V. I., and Hakuta, K. (2007). Optical nanofiber as an efficient tool for manipulating and probing atomic Fluorescence. Optics Express, 15(9):5431.spa
dc.relation.referencesNeuman, T., Wang, D. S., and Narang, P. (2020). Nanomagnonic Cavities for Strong Spin-Magnon Coupling and Magnon-Mediated Spin-Spin Interactions. Phys. Rev. Lett., 125(24):247702.spa
dc.relation.referencesOhta, R., Ota, Y., Nomura, M., Kumagai, N., Ishida, S., Iwamoto, S., and Arakawa, Y. (2011). Strong coupling between a photonic crystal nanobeam cavity and a single quantum dot. Applied Physics Letters, 98(17):2009–2012.spa
dc.relation.referencesPan, J., Sandhu, S., Huo, Y., Stuhrmann, N., Povinelli, M. L., Harris, J. S., Fejer, M. M., and Fan, S. (2010). Experimental demonstration of an all-optical analogue to the superradiance effect in an on-chip photonic crystal resonator system. Physical Review B - Condensed Matter and Materials Physics, 81(4):3–6.spa
dc.relation.referencesPaulauskas, A., Tumenas, S., Selskis, A., Tolenis, T., Valavicius, A., and Balevicius, Z. (2018). Hybrid Tamm-surface plasmon polaritons mode for detection of mercury adsorption on 1D photonic crystal/gold nanostructures by total internal reflection ellipsometry. Optics Express, 26(23):30400.spa
dc.relation.referencesPaulisch, V., Kimble, H. J., and González-Tudela, A. (2016). Universal quantum computation in waveguide QED using decoherence free subspaces. New Journal of Physics, 18(4):043041.spa
dc.relation.referencesPedraza Caballero, L. E. and Vilela Neto, O. P. (2021). A review on photonic crystal logic gates. Journal of Integrated Circuits and Systems, 16(1):1–13.spa
dc.relation.referencesPerczel, J. and Lukin, M. D. (2020). Theory of dipole radiation near a Dirac photonic crystal. Physical Review A, 101(3):033822.spa
dc.relation.referencesPolino, E., Valeri, M., Spagnolo, N., and Sciarrino, F. (2020). Photonic quantum metrology. AVS Quantum Science, 2(2).spa
dc.relation.referencesRaghu, S. and Haldane, F. D. M. (2008). Analogs of quantum-Hall-effect edge states in photonic crystals. Physical Review A - Atomic, Molecular, and Optical Physics, 78(3):1–21.spa
dc.relation.referencesRaimond, J. M., Brune, M., and Haroche, S. (2001). Colloquium: Manipulating quantum entanglement with atoms and photons in a cavity. Reviews of Modern Physics, 73(3):565–582.spa
dc.relation.referencesSakoda, K. (2005). Optical properties of photonic crystals. Springer-Verlag, Berlin, Heidelberg, 2nd edition.spa
dc.relation.referencesSamara, G. A. (1983). Temperature and pressure dependences of the dielectric constants of semiconductors. Physical Review B, 27(6):3494–3505.spa
dc.relation.referencesSantori, C., Barclay, P. E., Fu, K.-M. C., Beausoleil, R. G., Spillane, S., and Fisch, M. (2010). Nanophotonics for quantum optics using nitrogen-vacancy centers in diamond. Nanotechnology, 21(27):274008.spa
dc.relation.referencesSayrin, C., Junge, C., Mitsch, R., Albrecht, B., O’Shea, D., Schneeweiss, P., Volz, J., and Rauschenbeutel, A. (2015). Nanophotonic Optical Isolator Controlled by the Internal State of Cold Atoms. Phys. Rev. X, 5(4):41036.spa
dc.relation.referencesSchilke, A., Zimmermann, C., Courteille, P. W., and Guerin, W. (2011). Photonic band gaps in one-dimensionally ordered cold atomic vapors. Physical Review Letters, 106(22):2–5.spa
dc.relation.referencesSegovia-Chaves, F., Navarro-Barón, E., and Vinck-Posada, H. (2020a). Photonic band structure in a one-dimensional distributed Bragg reflector pillar. Materials Research Express, 7(12).spa
dc.relation.referencesSegovia-Chaves, F., Navarro-Barón, E., and Vinck-Posada, H. (2021). Photonic band structure in a two-dimensional photonic crystal with a Sierpinski triangle structure. Physica Scripta, 96(12):125503.spa
dc.relation.referencesSegovia-Chaves, F., Vinck-Posada, H., and Navarro-Barón, E. (2020b). Linear defect in two-dimensional photonic crystals of equilateral triangles. Optik, 200:163320.spa
dc.relation.referencesSegovia-Chaves, F., Vinck-Posada, H., and Navarro-Barón, E. (2020c). TE band structure in a photonic waveguide with triangular holes. Optik, 200 (June2019):163436.spa
dc.relation.referencesSegovia-Chaves, F., Vinck-Posada, H., and Navarro-Barón, E. (2020d). TM band diagram of a waveguide in a honeycomb photonic lattice composed by triangular shaped rods. Optik, 202(July 2019):163595.spa
dc.relation.referencesSegovia-Chaves, F., Vinck-Posada, H., and Navarro-Barón, E. P. (2022a). Local density of states in a one-dimensional photonic crystal with a semiconducting cavity. Results in Physics, 33:105129.spa
dc.relation.referencesSegovia-Chaves, F., Vinck-Posada, H., and Navarro-Barón, E. P. (2022b). Photonic band structure behavior in a lattice with a star defect. Physica B: Condensed Matter, 640(May):414071.spa
dc.relation.referencesShomroni, I., Rosenblum, S., Lovsky, Y., Bechler, O., Guendelman, G., and Dayan, B. (2014). All-optical routing of single photons by a one-atom switch controlled by a single photon. Science, 345(6199):903–906.spa
dc.relation.referencesShumpert, J. D. (2001). Modeling of periodic dielectric structures (electromagnetic crystals). PhD thesis, University of Michigan.spa
dc.relation.referencesSigov, A., Ratkin, L., and Ivanov, L. A. (2022). Quantum Information Technology. Journal of Industrial Information Integration, 28(May):100365.spa
dc.relation.referencesSingh, J. (2008). Quantum Mechanics: Fundamentals and applications to technology. John Wiley & Sons.spa
dc.relation.referencesSöllner, I., Mahmoodian, S., Hansen, S. L., Midolo, L., Javadi, A., Kiršansk\.e, G., Pregnolato, T., El-Ella, H., Lee, E. H., Song, J. D., and Others (2015). Deterministic photon–emitter coupling in chiral photonic circuits. Nature nanotechnology, 10(9):775–778.spa
dc.relation.referencesStannigel, K., Rabl, P., and Zoller, P. (2012). Driven-dissipative preparation of entangled states in cascaded quantum-optical networks. New Journal of Physics, 14.spa
dc.relation.referencesTaflove, A. and Hagness, S. C. (2005). The Finite-Difference Time-Domain Method Third Edition.spa
dc.relation.referencesValentim, P. T., Vasco, J. P., Luxmoore, I. J., Szymanski, D., Vinck-Posada, H., Fox, A. M., Whittaker, D. M., Skolnick, M. S., and Guimar˜aes, P. S. (2013). Asymmetry tuning of Fano resonances in GaAs photonic crystal cavities. Applied Physics Letters, 102(11).spa
dc.relation.referencesvan Enk, S. J. and Kimble, H. J. (2001). Strongly focused light beams interacting with single atoms in free space. Physical Review A, 63(2):023809.spa
dc.relation.referencesVigneron, J. P. and Simonis, P. (2012). Natural photonic crystals. Physica B: Condensed Matter, 407(20):4032–4036.spa
dc.relation.referencesVolz, J., Gehr, R., Dubois, G., Estève, J., and Reichel, J. (2011). Measurement of the internal state of a single atom without energy exchange. Nature, 475(7355):210–213.spa
dc.relation.referencesWiesmann, C., Bergenek, K., Linder, N., and Schwarz, U. T. (2009). Photonic crystal LEDs - Designing light extraction. Laser and Photonics Reviews, 3(3):262–286.spa
dc.relation.referencesWitzens, J., Lončar, M., and Scherer, A. (2002). Self-collimation in planar photonic crystals. IEEE Journal on Selected Topics in Quantum Electronics, 8(6):1246–1257.spa
dc.relation.referencesWu, S., Xia, H., Xu, J., Sun, X., and Liu, X. (2018). Manipulating Luminescence of Light Emitters by Photonic Crystals. Advanced Materials, 30(47):1–26.spa
dc.relation.referencesWu, Y., Liu, G., Li, H., Han, P., Cheng, J., and Zhou, L. (2020). Preparation and Application of Photonic Crystal Paints with Tunable Structural Colors. Physica Status Solidi (A) Applications and Materials Science, 217(9):1–10.spa
dc.relation.referencesXie, H.-Y. (2017). Construction of planar multilayer dyadic Green’s functions by Fourier expansion method-Part I: Isotropic media. pages 1–115.spa
dc.relation.referencesYablonovitch, E. (1987). Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Physical Review Letters, 58(20):2059–2062.spa
dc.relation.referencesYang, B., Guo, Q., Tremain, B., Liu, R., Barr, L. E., Yan, Q., Gao, W., Liu, H., Xiang, Y., Chen, J., Fang, C., Hibbins, A., Lu, L., and Zhang, S. (2018). Ideal Weyl points and helicoid surface states in artificial photonic crystal structures. Science, 359(6379):1013–1016.spa
dc.relation.referencesYariv, A. and Yeh, P. (2006). Photonics: optical electronics in modern communications (the oxford series in electrical and computer engineering). Oxford University Press, Inc, 231:232.spa
dc.relation.referencesYeh, P. (2005). Optical waves in layered media, volume 61. Wiley-Interscience.spa
dc.relation.referencesYoo, S. and Park, Q. H. (2015). Chiral Light-Matter Interaction in Optical Resonators. Physical Review Letters, 114(20):203003.spa
dc.relation.referencesYoshie, T., Scherer, A., Hendrickson, J., Khitrova, G., Gibbs, H. M., Rupper, G., Ell, C., Shchekin, O. B., and Deppe, D. G. (2004). Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature, 432(7014):200–203.spa
dc.relation.referencesYu, S.-P., Muniz, J. A., Hung, C.-L., and Kimble, H. J. (2019). Two-dimensional photonic crystals for engineering atom–light interactions. Proceedings of the National Academy of Sciences, 116(26):12743–12751.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc530 - Física::535 - Luz y radiación relacionadaspa
dc.subject.ddc530 - Física::537 - Electricidad y electrónicaspa
dc.subject.ddc530 - Física::539 - Física modernaspa
dc.subject.proposalCristal Fotónicospa
dc.subject.proposalPhotonic Crystaleng
dc.subject.proposaldiole-dipole interactioneng
dc.subject.proposalInteracción dipolo-dipolospa
dc.subject.proposalFunciones de Green
dc.subject.proposalInteracción mediada por fotonesspa
dc.subject.proposalPhoton-mediated interactioneng
dc.subject.proposalGreen's functionseng
dc.subject.proposalBand Structureeng
dc.subject.proposalEstructura de bandasspa
dc.subject.proposalEmisroes cuánticosspa
dc.subject.proposalQuantum emitterseng
dc.subject.wikidataCristal fotónico
dc.subject.wikidataRefracción
dc.subject.wikidataEcuaciones de Maxwell
dc.titleInteracción de emisores cuánticos inmersos en cristales fotónicosspa
dc.title.translatedInteraction of quantum emitters embedded in photonic crystalseng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameUniversidad Nacional de Colombiaspa
oaire.fundernameMinisterio de Ciencias - Gobierno Nacinal de Colombiaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis_Doctoral_EPNavarroB-2024-01-21.pdf
Tamaño:
17.86 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ciencias - Física

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: