Measuring bicycle accessibility with spatial effects evaluation

dc.contributor.advisorBotero Fernández, Verónica
dc.contributor.advisorDuque Cardona, Juan Carlos
dc.contributor.authorOspina Zapata, Juan Pablo
dc.contributor.researcherLópez , Víctor Ignacio
dc.contributor.researcherBrussel, Mark
dc.contributor.researcherGrigolon, Anna
dc.contributor.researcherMontoya, Alejandro
dc.date.accessioned2021-04-05T15:08:32Z
dc.date.available2021-04-05T15:08:32Z
dc.date.issued2020-12
dc.descriptionDissertation for the degree of Doctor of Civil Engineeringeng
dc.description.abstractThis research seeks to understand how the accessibility measure can be explained by the sociodemographic characteristics of cyclists, the built environment at the origin and destination, and the built and natural environment along the route. We first conducted a bicycle route survey to collect information about the characteristics of cyclists and the routes they take in Medellin city. Second, we developed an econometric model, which aimed at understanding how the natural and environmental factors of origin, destination, and along the route, affect cyclists’ travel distance. Such an understanding is essential to know about cyclists' preferences, which may affect their potential space of interaction in the city. Third, we solved an optimization problem which involved making investment decisions to build a cycling network that was aimed at maximizing the coverage of cyclists, while maintaining a minimum total network cost at its minimum. Fourth, we analyze the accessibility for cyclists, which takes into account the results derived from the econometric model and the optimization model. Our results reveal the importance of built and natural characteristics along the road in explaining cycling travel distances while controlling for socioeconomic and built environment measures at origins and destinations. All these results suggest that cyclists’ behaviors are diverse and therefore, including cyclists’ preferences will allow a more sensitive assessment of individual variations in accessibility measures.eng
dc.description.abstractEsta investigaci´on busc´o comprender la manera en la cual la medida de accesibilidad puede ser explicada por las caracter´ısticas sociodemogr´aficas de los ciclistas, el entorno construido en el origen y destino, y el entorno construido y natural a lo largo de la ruta. Primero realizamos una encuesta para recoger informaci´on sobre las caracter´ısticas de los ciclistas y las rutas que toman en la ciudad de Medell´ın. En segundo lugar, desarrollamos un modelo econom´etrico, cuyo objetivo era comprender c´omo los factores naturales y ambientales de origen, destino y a lo largo de la ruta afectan la distancia de viaje de los ciclistas. Esta comprensi´on es fundamental para conocer las preferencias de los ciclistas, las cu´ales pueden afectar su espacio de interacci´on en la ciudad. En tercer lugar, resolvimos un problema de optimizaci´on que implicaba tomar decisiones de inversi´on para construir una red ciclista que ten´ıa como objetivo maximizar la cobertura de los ciclistas, manteniendo al mismo tiempo un costo total m´ınimo de la red. En cuarto lugar, analizamos la accesibilidad para ciclistas, la cual tiene en cuenta los resultados derivados del modelo econom´etrico y el modelo de optimizaci´on. Nuestros resultados revelan la importancia de las caracter´ısticas socioecon´omicas, las caracter´ısticas del entorno construido en los or´ıgenes y destinos, as´ı como el entorno construido y natural a lo largo de la ruta para explicar las distancias de viaje en bicicleta. Nuestros resultados sugieren que los comportamientos de los ciclistas son diversos y, por lo tanto, la inclusi´on de las preferencias de los ciclistas permitir´a una evaluaci´on m´as sensible de las variaciones individuales en las medidas de accesibilidad.spa
dc.description.degreelevelDoctoradospa
dc.description.researchareaTransportation planning and infrastructurespa
dc.description.researchareaPlaneación de Transporte e Infraestructuraspa
dc.description.sponsorshipPEAK Urban Programme, supported by UKIR’s Global Challenge Re- search Fund, Grant Ref.: ES/P011055/1.spa
dc.description.sponsorshipUniversidad Nacional de Colombia-Medellin (project code QUIPU 202010017827)spa
dc.format.extent131 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional - Sede Medellínspa
dc.identifier.reponameRepositorio Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79378
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de Ingeniería Civilspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.programMedellín - Minas - Doctorado en Ingeniería - Ingeniería Civilspa
dc.relation.referencesAnselin, L. (1988). Spatial Econometrics: Methods and Models. Kluwer Academic Publishers, Dordrecht, The Netherlands.spa
dc.relation.referencesAnselin, L. (1995). Local indicators of spatial analysis–LISA. Geographical Analysis, 27(2):93–115.spa
dc.relation.referencesAppleyard, B. (2016). New methods to measure the built environment for human-scale travel research: Individual access corridor (IAC) analytics to better understand sustainable active travel choices. Journal of Transport and Land Use, 9(2):121–145.spa
dc.relation.referencesArbelaez, O. (2015). Modelación de la elección de la bicicleta pública y privada en ciudades. PhD thesis, Universidad Nacional de Colombia, Medellín.spa
dc.relation.referencesÁrea Metropolitana del Valle de Aburrá (2012). Encuesta Origen y Destino para el Valle de Aburrá. Technical report, Área Metropolitana del Valle de Aburrá, Medellín.spa
dc.relation.referencesÁrea Metropolitana del Valle de Aburrá (2015). Plan Maestro Metropolitano de la Bicicleta del Valle de Aburrá. Technical report, Area Metropolitana del Valle de Aburrá, Medellín.spa
dc.relation.referencesÁrea Metropolitana del Valle de Aburrá (2018). Encuesta de Movilidad Origen y Destino 2017. Technical report, Área Metropolitana del Valle de Aburrá, Medellín.spa
dc.relation.referencesÁrea Metropolitana del Valle de Aburrá (2019). Actualización Inventario de emisiones atmosféricas del Valle de Aburrá - Año 2018. Technical report, Área Metropolitana del Valle de Aburrá, Medellín.spa
dc.relation.referencesAultman-Hall, L. and Hall, F. (1998). Research Design Insights from a Survey of Urban Bicycle Commuters. Transportation Research Record, 1636(98):21–28.spa
dc.relation.referencesBelsley, D. A., Kuh, E., and Welsch, R. E. (1980). Regression Diagnosis. Indentifying influential data and sources of collinearity. John Wiley & Sons, Inc., Hoboken, New Jersey, USA.spa
dc.relation.referencesBen-Akiva, M. E. and Lerman, S. R. (1985). Discrete Choice Analysis. Theory and application to travel demand. MIT Press.spa
dc.relation.referencesBenoit, K. (2011). Linear Regression Models with Logarithmic Transformations.spa
dc.relation.referencesBernal, R. (2009). The Informal Labor Market in Colombia: Identification and Characterization. Desarrollo y Sociedad, pages 145–208.spa
dc.relation.referencesBoeing, G. (2017). OSMnx: New methods for acquiring, constructing, analyzing, and visualizing complex street networks. Computers, Environment and Urban Systems, 65:126–139.spa
dc.relation.referencesBroach, J., Dill, J., and Gliebe, J. (2012). Where do cyclists ride? A route choice model develo- ped with revealed preference GPS data. Transportation Research Part A: Policy and Practice, 46(10):1730–1740.spa
dc.relation.referencesBroach, J., Gliebe, J., and Dill, J. (2011). Bicycle route choice model developed using revealed preference GPS data. TRB 2011 Annual Meeting, 5464.spa
dc.relation.referencesBuehler, R. and Dill, J. (2016). Bikeway Networks: A Review of Effects on Cycling. Transport Reviews, 36(1):9–27.spa
dc.relation.referencesBuehler, R., Hamre, A., Sonenklar, D., and Goger, P. (2011). Trends and Determinants of Cycling in the Washington, DC Region. Technical report, Report No. VT-2009-05 Mid-Atlantic Universities Transportation Center - MAUTC US DOT Research & Innovative Technology Admin, Washington DC.spa
dc.relation.referencesCabral, L., Kim, A. M., and Shirgaokar, M. (2019). Low-stress bicycling connectivity: Assessment of the network build-out in Edmonton, Canada. Case Studies on Transport Policy, 7(2):230–238.spa
dc.relation.referencesCameron, A. C. and Trivedi, P. K. (2005). Microeconometrics. Methods and applications. Cambridge University Press, New York, New York, USA.spa
dc.relation.referencesCampbell, A. A., Cherry, C. R., Ryerson, M. S., and Yang, X. (2016). Factors influencing the choice of shared bicycles and shared electric bikes in Beijing. Transportation Research Part C: Emerging Technologies, 67:399–414.spa
dc.relation.referencesCao, X., Handy, S. L., and Mokhtarian, P. L. (2006). The influences of the built environment and residential self-selection on pedestrian behavior: Evidence from Austin, TX. Transportation, 33(1):1–20.spa
dc.relation.referencesCao, X., Mokhtarian, P. L., and Handy, S. L. (2009). Examining the impacts of residential self- selection on travel behaviour: A focus on empirical findings. Transport Reviews, 29(3):359–395.spa
dc.relation.referencesCárdenas, M. and Rozo, S. (2009). Firm informality in Colombia: Problems and solutions. Desarrollo y Sociedad, (63):211–243.spa
dc.relation.referencesCardozo, O. D., García-Palomares, J. C., and Gutiérrez, J. (2012). Application of geographically weighted regression to the direct forecasting of transit ridership at station-level. Applied Geo- graphy, 34(4):548–558.spa
dc.relation.referencesCaviedes, A. and Figliozzi, M. (2018). Modeling the impact of traffic conditions and bicycle faci- lities on cyclists’ on-road stress levels. Transportation Research Part F: Traffic Psychology and Behaviour, 58:488–499.spa
dc.relation.referencesCervero, R., Denman, S., and Jin, Y. (2018). Network design, built and natural environments, and bicycle commuting: Evidence from British cities and towns. Transport Policy.spa
dc.relation.referencesCervero, R. and Duncan, M. (2003). Walking, Bicycling, and Urban Landscapes: Evidence from the San Francisco Bay Area. American Journal of Public Health, 93(9):1478–1483.spa
dc.relation.referencesCervero, R. and Kockelman, K. (1997). Travel demand and the 3Ds : Density, design and diversity. Transportation Research Part D: Transport and Environment, 2(3):199–219.spa
dc.relation.referencesCervero, R. and Radisch, C. (1996). Travel choices in pedestrian versus automobile oriented neigh- borhoods. Transport Policy, 3(3):127–141.spa
dc.relation.referencesCervero, R., Sarmiento, O. L., Jacoby, E., Gomez, L. F., and Neiman, A. (2009). Influences of built environments on walking and cycling: Lessons from Bogot ́a. International Journal of Sustainable Transportation, 3(4):203–226.spa
dc.relation.referencesChurch, R. L. and Murray, A. T. (2009). Coverage. In Bussiness site selection, location analysis, and GIS, chapter 9, pages 209–233. John Wiley & Sons, Inc.spa
dc.relation.referencesChurch, R. L. and ReVelle, C. (1974). The maximal covering location problem. Papers of the Regional Science Association, 32:101–118.spa
dc.relation.referencesConrow, L., Murray, A. T., and Fischer, H. A. (2018). An optimization approach for equitable bicycle share station siting. Journal of Transport Geography, 69(May 2017):163–170.spa
dc.relation.referencesCROW (2011). Manual de Diseño para el Tráfico de Bicicletas. Technical report, CROW, Ede, Netherlands.spa
dc.relation.referencesCurtis, C. (2008). Planning for sustainable accessibility: The implementation challenge. Transport Policy, 15(2):104–112.spa
dc.relation.referencesDANE (2018). Pobreza Monetaria y Multidimensional en Colombia. Año 2017. Technical report, Departamento Administrativo Nacional de Estadística, Bogotá.spa
dc.relation.referencesDuque, J. C., Lozano-Gracia, N., Patino, J. E., Restrepo, P., and Velasquez, W. A. (2019). Spatio- temporal dynamics of urban growth in Latin American cities: An analysis using nighttime light imagery. Landscape and Urban Planning, 191(August):103640.spa
dc.relation.referencesDuque, J. C., Patino, J. E., Ruiz, L. A., and Pardo-Pascual, J. E. (2015). Measuring intra-urban poverty using land cover and texture metrics derived from remote sensing data. Landscape and Urban Planning, 135:11–21.spa
dc.relation.referencesDuthie, J. and Unnikrishnan, A. (2014). Optimization framework for bicycle network design. Journal of Transportation Engineering, (May):548–556.spa
dc.relation.referencesEwing, R. and Cervero, R. (2010). Travel and the Built Environment. Journal of the American Planning Association, 76(3):265–294.spa
dc.relation.referencesFaghih-Imani, A., Eluru, N., El-geneidy, A. M., Rabbat, M., and Haq, U. (2014). How land-use and urban form impact bicycle flows: Evidence from the bicycle-sharing system (BIXI) in Montreal. Journal of Transport Geography, 41(August 2012):306–314.spa
dc.relation.referencesFernández-Heredia, Á., Jara-Díaz, S., and Monzón, A. (2016). Modelling bicycle use intention: the role of perceptions. Transportation, 43(1):1–23.spa
dc.relation.referencesFitch, D. T., Rhemtulla, M., and Handy, S. (2019). The relation of the road environment and bicycling attitudes to usual travel mode to school in teenagers. Transportation Research Part A: Policy and Practice, 123(June 2018):35–53.spa
dc.relation.referencesForsyth, A., Agrawal, A., and Krizek, K. (2012). Simple, Inexpensive Approach to Sampling for Pedestrian and Bicycle Surveys. Transportation Research Record: Journal of the Transportation Research Board, 2299(2299):22–30.spa
dc.relation.referencesForsyth, A. and Krizek, K. (2011). Urban Design: Is there a Distinctive View from the Bicycle? Journal of Urban Design, 16(4):531–549.spa
dc.relation.referencesGarrard, J., Rose, G., and Lo, S. K. (2008). Promoting transportation cycling for women: the role of bicycle infrastructure. Preventive medicine, 46(1):55–9.spa
dc.relation.referencesGeurs, K. T. and van Wee, B. (2004). Accessibility evaluation of land-use and transport strategies: Review and research directions. Journal of Transport Geography, 12(2):127–140.spa
dc.relation.referencesGuan, X., Wang, D., and Cao, X. J. (2019). The role of residential self-selection in land use- travel research : a review of recent findings. Transport Reviews, 1647(0):1–21.spa
dc.relation.referencesHägerstrand, T. (1970). What about people in regional science? Papers of the Regional Science Association, 24:6–21.spa
dc.relation.referencesHamann-Salcedo, F. A. and Mejía, L. F. (2012). Formalizando la informalidad empresarial en Colombia. El mercado de trabajo en Colombia : hechos, tendencias e instituciones. Capítulo 10. Formalizando la informalidad empresarial en Colombia. Pág.:399-427.spa
dc.relation.referencesHandy, S. (1993). Regional versus local acessibility: Implications for nonwork travel. Transportation Research Record 1400, (234):58–66.spa
dc.relation.referencesHandy, S. (1996). Methodologies for exploring the link between urban form and travel behavior. Transportation Research Part D: Transport and Environment, 1(2):151–165.spa
dc.relation.referencesHandy, S., Boarnet, M. G., Ewing, R., and Killingsworth, R. E. (2002). How the built environment affects physical activity. American Journal of Preventive Medicine, 23(2):64–73.spa
dc.relation.referencesHandy, S. and Niemeier, D. A. (1997). Measuring accessibility: An exploration of issues and alter- natives. Environment and Planning A, 29(7):1175–1194.spa
dc.relation.referencesHandy, S., van Wee, B., and Kroesen, M. (2014). Promoting Cycling for Transport: Research Needs and Challenges. Transport Reviews, 34(1):4–24.spa
dc.relation.referencesHansen, W. G. (1959). How Accessibility Shapes Land Use. Journal of the American Institute of Planners, 25(2):73–76.spa
dc.relation.referencesHayes, M. and Norman, J. M. (1994). Running Uphill : an Experimental Result and its Applications. The Journal of the Operational Research Society, 45(1):25–29.spa
dc.relation.referencesHeinen, E. (2011). Bicycle commuting.spa
dc.relation.referencesHeinen, E., Van Wee, B., and Maat, K. (2010). Commuting by Bicycle: An Overview of the Literature. Transport Reviews, 30(1):59–96.spa
dc.relation.referencesIacono, M., Krizek, K., and El-Geneidy, A. (2008). Access to Destinations: How Close is Close Enough? Estimating Accurate Distance Decay Functions for Multiple Modes and Different Purposes. Technical report.spa
dc.relation.referencesIacono, M., Krizek, K. J., and El-Geneidy, A. (2010). Measuring non-motorized accessibility: issues, alternatives, and execution. Journal of Transport Geography, 18(1):133–140.spa
dc.relation.referencesKeijer, M. J. N. and Rietveld, P. (2000). How do people get to the railway station? The dutch experience. Transportation Planning and Technology, 23(3):215–235.spa
dc.relation.referencesKockelman, K. (1997). Travel Behavior as Function of Accessibility, Land Use Mixing, and Land Use Balance: Evidence from San Francisco Bay Area. Transportation Research Record: Journal of the Transportation Research Board, 1607(January 1997):116–125.spa
dc.relation.referencesKorner-Nievergelt, F., Roth, T., von Felten, S., Gu ́elat, J., Almasi, B., and Korner-Nievergelt, P. (2015). Model Selection and Multimodel Inference. In Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and Stan, chapter 11.spa
dc.relation.referencesKrizek, K. J. and Johnson, P. J. (2006). Proximity to Trails and Retail: Effects on Urban Cycling and Walking. Journal of the American Planning Association, 72(1):33–42.spa
dc.relation.referencesKwan, M.-p. (1998). Space-Time and Integral measures of individual accessibility : A Comparative Analysis Using a Point-based Framework. Geographical Analysis, 30(9512451).spa
dc.relation.referencesLa Paix Puello, L. and Geurs, K. (2015). Modelling observed and unobserved factors in cycling to railway stations: application to transit-oriented-developments in the Netherlands. European Journal of Transport and Infrastructure Research, 15(15):27–50.spa
dc.relation.referencesLarrañaga, A. M., Rizzi, L. I., Arellana, J., Strambi, O., and Cybis, H. B. B. (2016). The influence of built environment and travel attitudes on walking: A case study of Porto Alegre, Brazil. International Journal of Sustainable Transportation, 10(4):332–342.spa
dc.relation.referencesLarsen, J., El-Geneidy, A., and Yasmin, F. (2010). Beyond the Quarter Mile : Examining Travel Distances by Walking and Cycling, Montr ́eal, Canada. Canadian Journal of Urban Research: Canadian Planning and Policy (supplement), 19(1):70–88.spa
dc.relation.referencesLevine, J., Grengs, J., and Merlin, L. A. (2019). From mobility to accessibility: Transforming urban transportation and land-use planning. Cornell University Press, Ithaca, New York, first edition.spa
dc.relation.referencesLevinson, D. M., Marshall, W., and Axhausen, K. (2017). Elements of Access. Network Design Lab.spa
dc.relation.referencesLewis, M. (2007). Stepwise versus Hierarchical Regression: Pros and Cons. Southwest Educational Research Association.spa
dc.relation.referencesLin, J. J. and Yu, C. J. (2013). A bikeway network design model for urban areas. Transportation, 40(1):45–68.spa
dc.relation.referencesLitman, T. (2018). Land Use Impacts on Transport.spa
dc.relation.referencesLiu, H., Szeto, W. Y., and Long, J. (2019). Bike network design problem with a path-size logit- based equilibrium constraint: Formulation, global optimization, and matheuristic. Transportation Research Part E: Logistics and Transportation Review, 127(June):284–307.spa
dc.relation.referencesLowry, M., Callister, D., Gresham, M., and Moore, B. (2012). Assessment of communitywide bikeability with bicycle level of service. Transportation Research Record, (2314):41–48.spa
dc.relation.referencesMagnanti, T. L. and Wong, R. T. (1984). Network Design and Transportation Planning: Models and Algorithms. Transportation Science, 18(1):1–55.spa
dc.relation.referencesMauttone, A., Mercadante, G., Rabaza, M., and Toledo, F. (2017). Bicycle network design: Model and solution algorithm. Transportation Research Procedia, 27:969–976.spa
dc.relation.referencesMenghini, G., Carrasco, N., Schu ̈ssler, N., and Axhausen, K. W. (2010). Route choice of cyclists in Zurich. Transportation Research Part A: Policy and Practice, 44(9):754–765.spa
dc.relation.referencesMesbah, M., Thompson, R., and Moridpour, S. (2012). Bilevel optimization approach to design of network of bike lanes. Transportation Research Record, (2284):21–28.spa
dc.relation.referencesMoreno, R. and Vayá, E. (2000). Técnicas econométricas para el tratamiento de datos espaciales: La econometría espacial. Universitat de Barcelona, Barcelona.spa
dc.relation.referencesMoritz, W. E. (1998). Adult Bicyclists in the United States: Characteristics and Riding Experience in 1996. Transportation Research Record, 1636(98):1–7.spa
dc.relation.referencesMotoaki, Y. and Daziano, R. A. (2015). A hybrid-choice latent-class model for the analysis of the effects of weather on cycling demand. Transportation Research Part A: Policy and Practice, 75(2015):217–230.spa
dc.relation.referencesMurawski, L. and Church, R. L. (2009). Improving accessibility to rural health services: The maximal covering network improvement problem. Socio-Economic Planning Sciences, 43(2):102– 110.spa
dc.relation.referencesOliva, I., Galilea, P., and Hurtubia, R. (2018). Identifying cycling-inducing neighborhoods: A latent class approach. International Journal of Sustainable Transportation, 12(10):701–713.spa
dc.relation.referencesOrtúzar, J. D. D. and Willumsen, L. G. (2011). Modelling Transport. John Wiley & Sons, London, fourth edition.spa
dc.relation.referencesOspina, J. P., Botero-Fernández, V., Duque, J. C., Brussel, M., and Grigolon, A. (2020a). Unders- tanding cycling travel distance: The case of Medellin city (Colombia). Transportation Research Part D: Transport and Environment, 86(102423):1–15.spa
dc.relation.referencesOspina, J. P., Duque, J. C., Botero-Fernández, V., and Montoya, A. (2020b). The Maximal Covering Bicycle Network Design Problem. Manuscript Draft.spa
dc.relation.referencesOspina, J. P., López-Ríos, V. I., Botero-Fernández, V., and Duque, J. C. (2020c). A database to analyze cycling routes in Medellin, Colombia. Data in Brief, 32:106162.spa
dc.relation.referencesPáez, A. (2006). Exploring contextual variations in land use and transport analysis using a probit model with geographical weights. Journal of Transport Geography, 14(3):167–176.spa
dc.relation.referencesPáez, A. (2009). Spatial analysis of economic systems and land use change. Papers in Regional Science, 88(2):251–258.spa
dc.relation.referencesPáez, A., Scott, D., and Morency, C. (2012). Measuring Accessibility: Positive and Normative Implementation of Various Accessibility Indicators. Journal of Transport Geography, 25:141– 153.spa
dc.relation.referencesPucher, J. and Buehler, R. (2006). Why Canadians cycle more than Americans: A comparative analysis of bicycling trends and policies. Transport Policy, 13(3):265–279.spa
dc.relation.referencesPucher, J. and Buehler, R. (2008). Making Cycling Irresistible: Lessons from The Netherlands, Denmark and Germany. Transport Reviews, 28(4):495–528.spa
dc.relation.referencesPucher, J. and Buehler, R. (2012). City Cycling. MIT Press, Cambridge, Massachusetts, 1 edition.spa
dc.relation.referencesPucher, J., Dill, J., and Handy, S. (2010). Infrastructure, programs, and policies to increase bicy- cling: an international review. Preventive medicine, 50 Suppl 1:S106–25.spa
dc.relation.referencesReggiani, A., Bucci, P., and Russo, G. (2011). Accessibility and Network Structures in the German Commuting. Networks and Spatial Economics, 11(4):621–641.spa
dc.relation.referencesRibeiro, A. and Antunes, A. P. (2002). A GIS-based decision-support tool for public facility planning. Environment and Planning B: Planning and Design, 29(4):553–569.spa
dc.relation.referencesRietveld, P. and Daniel, V. (2004). Determinants of bicycle use: do municipal policies matter? Transportation Research Part A: Policy and Practice, 38(7):531–550.spa
dc.relation.referencesRodríguez, D. a. and Joo, J. (2004). The relationship between non-motorized mode choice and the local physical environment. Transportation Research Part D: Transport and Environment, 9(2):151–173.spa
dc.relation.referencesRosas-Satizábal, D. and Rodriguez-Valencia, A. (2019). Factors and policies explaining the emergence of the bicycle commuter in Bogot ́a. Case Studies on Transport Policy, 7(1):138–149.spa
dc.relation.referencesRossi, F., van Beek, P., and Walsh, T. (2006). Handbook of Constraint Programming (Foundations of Artificial Intelligence). pages 281–322.spa
dc.relation.referencesSaelens, B. E., Sallis, J. F., and Frank, L. D. (2003). Environmental Correlates of Walking and Cycling : Findings From the Transportation , Urban Design , and Planning Literatures. Behavioral medicine, 25(2):80–91.spa
dc.relation.referencesSaghapour, T., Moridpour, S., and Thompson, R. G. (2017). Measuring cycling accessibility in metropolitan areas. International Journal of Sustainable Transportation, 11(5):381–394.spa
dc.relation.referencesSamper E., J. J. (2010). The politics of peace process in cities in conflict: the Medellin case as a best practice. Department of Urban Studies and Planning.spa
dc.relation.referencesScarf, P. (2007). Route choice in mountain navigation , Naismith ’ s rule , and the equivalence of distance and climb. 0414.spa
dc.relation.referencesSchoner, J. E. and Levinson, D. M. (2014). The missing link: bicycle infrastructure networks and ridership in 74 US cities. Transportation, 41(6):1187–1204.spa
dc.relation.referencesSmith, H. (2011). A mathematical optimization model for a bicycle network design considering bicyle level of service. PhD thesis, University of Maryland.spa
dc.relation.referencesSzimba, E. and Rothengatter, W. (2012). Spending scarce funds more efficiently-including the pattern of interdependence in cost-benefit analysis. Journal of Infrastructure Systems, 18(4):242– 251.spa
dc.relation.referencesTaylor, D. and Davis, W. (1999). Review of Basic Research in Bicycle Traffic Science, Traffic Operations, and Facility Design. Transportation Research Record, 1674(1):102–110.spa
dc.relation.referencesToregas, C. and ReVelle, C. (1972). Optimal location under time or distance constraints. Papers of the Regional Science Association, 28(1):131–143.spa
dc.relation.referencesTransport for London (2014). London Cycling Design Standards - Tools and techniques. Technical Report June, Transport for London, London.spa
dc.relation.referencesUN-Habitat (2013). Planning and design for sustainable urban mobility. Technical report, United Nations Organization, New York.spa
dc.relation.referencesUnited Nations (2019). World Urbanization Prospects. The 2018 Revision. Technical report, United Nations, New York.spa
dc.relation.referencesVale, D. S., Saraiva, M., and Pereira, M. (2016). Active accessibility: A review of operational measures of walking and cycling accessibility. Journal of Transport and Land Use, 9(1):209–235.spa
dc.relation.referencesVélez-Gallego, M. C., Teran-Somohano, A., and Smith, A. E. (2020). Journal Pre-proof. European Journal of Operational Research.spa
dc.relation.referencesWalker, J. L. (2001). Extended discrete choice models: Integrated framework, flexible error structu- res, and latent variables. PhD thesis, Massachusetts Institute of Technology.spa
dc.relation.referencesWhite, H. (1980). A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity. Econometrica, 48(4):817–838.spa
dc.relation.referencesWooldridge, J. (2011). Econometric analysis of cross section and panel data. Number November. The MIT Press, London.spa
dc.relation.referencesWooldridge, J. (2013). Introductory Econometrics. A modern approach. Cengage Learning, Mason, OH, USA, fifth edition.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::624 - Ingeniería civilspa
dc.subject.lembConectividad
dc.subject.lembAccesibilidad
dc.subject.proposalAccessibilityeng
dc.subject.proposalCyclingeng
dc.subject.proposalTravel behavioreng
dc.subject.proposalInteraction effectseng
dc.subject.proposalNetworkeng
dc.subject.proposalCoverageeng
dc.subject.proposalConnectivityeng
dc.subject.proposalAccessibilidadspa
dc.subject.proposalCiclismo urbanospa
dc.subject.proposalEfectos interactivosspa
dc.subject.proposalRedspa
dc.subject.proposalCoberturaspa
dc.subject.proposalConectividadspa
dc.titleMeasuring bicycle accessibility with spatial effects evaluationeng
dc.title.translatedMedición de la accesibilidad para ciclistas incluyendo la evaluación de efectos espacialesspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleQUIPU 202010017827spa
oaire.fundernamePEAK Urban Programmespa
oaire.fundernameUniversidad Nacional de Colombiaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
71779670.2020.pdf
Tamaño:
164.96 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería Civil

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: