Pattern representations for classifying (non-)metric (non-)vectorial data with applications in Structural Health Monitoring and geotechnical/natural-hazard engineering

dc.contributor.advisorOrozco-Alzate, Mauricio
dc.contributor.authorOspina Dávila, Yesid Mauricio
dc.date.accessioned2022-10-11T17:04:20Z
dc.date.available2022-10-11T17:04:20Z
dc.date.issued2022
dc.descriptiongráficos, tablasspa
dc.description.abstractNowadays, data-driven modelling in structural and geo-engineering problems using Statistical Pattern Recognition and Machine Learning provides powerful and more versatile tools within a predictive framework. In contrast to the mainstream orientations of the state-of-art in data-driven structural and geo-engineering surrogates, which are based on advanced and (hyper-)parametrized classifiers, this thesis is focused on data representation issues. Firstly, for vectorial slope/landslide data, feature-based vector spaces are enriched and enhanced according to the Occam’s razor principle, which is achieved through three simple but powerful existing variants of a transparent classifier as the nearest neighbor rule. Secondly, for non-vectorial SHM data, powerful and highly discriminant dissimilarity-vector spaces are built-up using spectral/time-frequency information from structural states, adopting a proximity-based learning scheme. In both cases, the results show the importance of a proper data representation and its key role in a bottom-up design for surrogate modelling. (Texto tomado de la fuente)eng
dc.description.abstractActualmente, el Reconocimiento de Patrones Estadístico y el Aprendizaje de Máquinas proveen herramientas poderosas y versátiles para el modelamiento predictivo de problemas de estructuras civiles, mecánicas y de la geo-ingeniería. A diferencia de las principales tendencias en el estado del arte en los sustitutos basados en datos en problemas de estructuras y de geo-ingeniería, esta tesis se enfoca en la representación de los datos. Primero, para datos vectoriales de taludes/deslizamientos, los espacios vectoriales basados en características son enriquecidos y mejorados de acuerdo al principio de la navaja de Occam o de parsimonia, el cual se logra mediante tres simples pero poderosos variantes ya existentes del clasificador de vecinos más cercanos. Segundo, para datos no-vectoriales pertenecientes al Monitoreo de Salud Estructural, son construidos, poderosos y altamente discriminantes, espacios de disimilitudes usando información espectral/tiempo-frecuencia, tomando un esquema de aprendizaje basado en proximidades. En ambos casos, los resultados demuestran la importancia de una apropiada representación de datos y su influencia en el diseño incremental de modelos sustitutos.spa
dc.description.curricularareaEléctrica, Electrónica, Automatización Y Telecomunicacionesspa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingenieríaspa
dc.description.researchareaStatistical Pattern Recognition, Machine Learning and Signal Processingspa
dc.format.extentxiv, 85 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82365
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizalesspa
dc.publisher.departmentDepartamento de Ingeniería Eléctrica y Electrónicaspa
dc.publisher.facultyFacultad de Ingeniería y Arquitecturaspa
dc.publisher.placeManizales, Colombiaspa
dc.publisher.programManizales - Ingeniería y Arquitectura - Doctorado en Ingeniería - Automáticaspa
dc.relation.referencesJamal A. Abdalla, Mousa F. Attom, and Rami Hawileh. Prediction of minimum factor of safety against slope failure in clayey soils using artificial neural network. Environmental Earth Sciences, 73(9):5463–5477, May 2015.spa
dc.relation.referencesOsama Abdeljaber, Onur Avci, Mustafa Serkan Kiranyaz, Boualem Boashash, Henry Sodano, and Daniel J. Inman. 1-D CNNs for structural damage detection: Verification on a structural health monitoring benchmark data. Neurocomputing, 275:1308–1317, 2018.spa
dc.relation.referencesOsama Abdeljaber, Onur Avci, Serkan Kiranyaz, Moncef Gabbouj, and Daniel J. Inman. Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks. Journal of Sound and Vibration, 388:154–170, 2017.spa
dc.relation.referencesYacine Achour and Hamid Reza Pourghasemi. How do machine learning techniques help in increasing accuracy of landslide susceptibility maps? Geoscience Frontiers, 11(3):871–883, 2020.spa
dc.relation.referencesEthem Alpaydin. Introduction to Machine Learning. MIT Press, 3rd edition, 2014.spa
dc.relation.referencesVinicius Alves, Alexandre Cury, Ney Roitman, Carlos Magluta, and Christian Cremona. Structural modification assessment using supervised learning methods applied to vibration data. Engineering Structures, 99:439 – 448, 2015.spa
dc.relation.referencesOnur Avci, Osama Abdeljaber, Serkan Kiranyaz, Mohammed Hussein, Moncef Gabbouj, and Daniel J. Inman. A review of vibration–based damage detection in civil structures: From traditional methods to Machine Learning and Deep Learning applications. Mechanical Systems and Signal Processing,spa
dc.relation.referencesYuequan Bao and Hui Li. Machine learning paradigm for structural health monitoring. Structural Health Monitoring, 20(4):1353–1372, 2021.spa
dc.relation.referencesAlejandro Barredo Arrieta, Natalia Dı́az-Rodrı́guez, Javier Del Ser, Adrien Bennetot, Siham Tabik, Alberto Barbado, Salvador Garcia, Sergio Gil-Lopez, Daniel Molina, Richard Benjamins, Raja Chatila, and Francisco Herrera. Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion, 58:82–115, 2020.spa
dc.relation.referencesRobert M. Bell and Yehuda Koren. Lessons from the Netflix Prize Challenge. SIGKDD Explorations Newsletter, 9(2):75–79, dec 2007.spa
dc.relation.referencesManuele Bicego and Mauricio Orozco-Alzate. PowerHC: non linear normalization of distances for advanced nearest neighbor classification. In 25th International Conference on Pattern Recognition (ICPR), pages 1205–1211, 2021.spa
dc.relation.referencesMichael Biehl, Barbara Hammer, and Thomas Villmann. Prototype-based models in machine learning. WIREs Cognitive Science, 7(2):92–111, 2016.spa
dc.relation.referencesAlain Biem. A model selection criterion for classification: application to HMM topology optimization. In Proceedings of the Seventh International Conference on Document Analysis and Recognition - ICDAR 2003, pages 104–108, August 2003.spa
dc.relation.referencesChristopher Bishop. Pattern Recognition and Machine Learning. Springer-Verlag, NY, 1st edition, 2006.spa
dc.relation.referencesLuke Bornn, Charles R. Farrar, David Higdon, and Kevin P. Murphy. Modeling and diagnosis of structural systems through sparse dynamic graphical models. Mechanical Systems and Signal Processing, 74:133–143, 2016. Special Issue in Honor of Professor Simon Braun.spa
dc.relation.referencesSteven L. Brunton and J. Nathan Kutz. Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, 2019.spa
dc.relation.referencesLawrence A. Bull, Paul Gardner, Timothy J. Rogers, Elizabeth J. Cross, Nikolaos Dervilis, and Keith Worden. Probabilistic inference for structural health monitoring: New modes of learning from data. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 7(1):03120003, 2021.spa
dc.relation.referencesRaghavendra Chalapathy and Nguyen Lu Dang Khoa. Comparison of unsupervised shallow and deep models for structural health monitoring. Proceedings of the Institution of Civil Engineers - Bridge Engineering, pages 1–11, 2021.spa
dc.relation.referencesWei Chen, Hamid Reza Pourghasemi, Aiding Kornejady, and Ning Zhang. Landslide spatial modeling: Introducing new ensembles of ANN, MaxEnt, and SVM machine learning techniques. Geoderma, 305:314–327, 2017.spa
dc.relation.referencesZuoyi Chen, Yanzhi Wang, Jun Wu, Chao Deng, and Kui Hu. Sensor data-driven structural damage detection based on deep convolutional neural networks and continuous wavelet transform. Applied Intelligence, 51(8):5598–5609, 2021.spa
dc.relation.referencesMin-Yuan Cheng and Nhat-Duc Hoang. Typhoon–induced slope collapse assessment using a novel bee colony optimized support vector classifier. Natural Hazards, 78(3):1961–1978, September 2015.spa
dc.relation.referencesVladimir Cherkassky and Filip M. Mulier. Learning from Data: Concepts, Theory, and Methods. Wiley-IEEE Press, 2007.spa
dc.relation.referencesJen-Tzung Chien and Chia-Chen Wu. Discriminant waveletfaces and nearest feature classifiers for face recognition. IEEE Trans. Pattern Anal. Machine Intell., 24(12):1644–1649, 2002.spa
dc.relation.referencesJianye Ching and Kok-Kwang Phoon. Characterizing Unknown Trend Using Sparse Bayesian Learning, chapter Geo-Risk 2017: Geotechnical Risk Assessment and Management, pages 22–31. 2017.spa
dc.relation.referencesHung V. Dang, Mohsin Raza, Tung V. Nguyen, T. Bui-Tien, and Huan X. Nguyen. Deep learning-based detection of structural damage using time-series data. Structure and Infrastructure Engineering, 17(11):1474–1493, 2021.spa
dc.relation.referencesR. De Almeida Cardoso, Alexandre Cury, and Flavio Barbosa. Automated real–time damage detection strategy using raw dynamic measurements. Engineering Structures, 196:109364, 2019.spa
dc.relation.referencesHao Du and Yan Qiu Chen. Rectified nearest feature line segment for pattern classification. Pattern Recognition, 40(5):1486 – 1497, 2007.spa
dc.relation.referencesRobert P. W. Duin. The origin of patterns. Frontiers in Computer Science, 3, 2021.spa
dc.relation.referencesRobert P. W. Duin, Manuele Bicego, Mauricio Orozco-Alzate, Sang-Woon Kim, and Marco Loog. Metric learning in dissimilarity space for improved nearest neighbor performance. In Pasi Fränti, Gavin Brown, Marco Loog, Francisco Escolano, and Marcello Pelillo, editors, Structural, Syntactic, and Statistical Pattern Recognition, pages 183–192, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.spa
dc.relation.referencesRobert P. W. Duin and E. Pȩkalska. The dissimilarity space: Bridging structural and statistical pattern recognition. Pattern Recognition Letters, 33(7):826–832, 2012. Special Issue on Awards from ICPR 2010.spa
dc.relation.referencesRobert P. W. Duin, E. Pȩkalska, and Marco Loog. Non-Euclidean Dissimilarities: Causes, Embedding and Informativeness, pages 13–44. Springer London, London, 2013.spa
dc.relation.referencesR.P.W. Duin and E. Pȩkalska. The dissimilarity representation for structural pattern recognition. In C. San-Martin and Sang-Woon Kim, editors, Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, volume 7042 of Lecture Notes in Computer Science, pages 1–24. Springer Berlin Heidelberg, 2011.spa
dc.relation.referencesAlireza Entezami, Hashem Shariatmadar, and Abbas Karamodin. Data–driven damage diagnosis under environmental and operational variability by novel statistical pattern recognition methods. Structural Health Monitoring, 18(5-6):1416–1443, 2019.spa
dc.relation.referencesAlireza Entezami, Hashem Shariatmadar, and Stefano Mariani. Early damage assessment in large-scale structures by innovative statistical pattern recognition methods based on time series modeling and novelty detection. Advances in Engineering Software, 150:102923, 2020.spa
dc.relation.referencesZhice Fang, Yi Wang, Ling Peng, and Haoyuan Hong. Integration of convolutional neural network and conventional machine learning classifiers for landslide susceptibility mapping. Computers & Geosciences, 139:104470, 2020.spa
dc.relation.referencesCharles R. Farrar and Keith Worden. Structural Health Monitoring: A Machine Learning Perspective. John Wiley & Sons, West Sussex, UK, 2013.spa
dc.relation.referencesManuel Fernández-Delgado, Eva Cernadas, Senén Barro, and Dinani Amorim. Do we need hundreds of classifiers to solve real world classification problems? Journal of Machine Learning Research, 15(90):3133–3181, 2014.spa
dc.relation.referencesP. A. Gardner, L. A. Bull, N. Dervilis, and K. Worden. On the Application of Heterogeneous Transfer Learning to Population-Based Structural Health Monitoring. In Ramin Madarshahian and Francois Hemez, editors, Data Science in Engineering, Volume 9, pages 87–98, Cham, 2022. Springer International Publishing.spa
dc.relation.referencesLev Goldfarb. A unified approach to pattern recognition. Pattern Recognition, 17(5):575–582, 1984.spa
dc.relation.referencesRalf Herbrich. Learning Kernel Classifiers. Theory and Algorithms. MIT Press, 2001.spa
dc.relation.referencesNhat-Duc Hoang and Dieu Tien Bui. Chapter 18 - Slope Stability Evaluation Using Radial Basis Function Neural Network, Least Squares Support Vector Machines, and Extreme Learning Machine. In Pijush Samui, Sanjiban Sekhar, and Valentina E. Balas, editors, Handbook of Neural Computation, pages 333–344. Academic Press, 2017.spa
dc.relation.referencesNhat-Duc Hoang and Anh-Duc Pham. Hybrid artificial intelligence approach based on metaheuristic and machine learning for slope stability assessment: A multinational data analysis. Expert Systems with Applications, 46:60–68, 2016.spa
dc.relation.referencesYu Huang and Lu Zhao. Review on landslide susceptibility mapping using support vector machines. CATENA, 165:520–529, 2018.spa
dc.relation.referencesPiotr Juszczak, David M.J. Tax, E. Pȩkalska, and R. P. W. Duin. Minimum spanning tree based one-class classifier. Neurocomputing, 72(7):1859–1869, 2009. Advances in Machine Learning and Computational Intelligence.spa
dc.relation.referencesGeorge Em Karniadakis, Ioannis G. Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang. Physics-informed machine learning. Nature Reviews Physics, 3(6):422–440, 2021.spa
dc.relation.referencesEamonn Keogh, Stefano Lonardi, and Chotirat Ann Ratanamahatana. Towards parameter-free data mining. In Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’04, pages 206–215, New York, NY, USA, 2004. Association for Computing Machinery.spa
dc.relation.referencesA.J. Li, S. Khoo, A.V. Lyamin, and Y. Wang. Rock slope stability analyses using extreme learning neural network and terminal steepest descent algorithm. Automation in Construction, 65:42–50, 2016.spa
dc.relation.referencesBo Li, Duanyou Li, Zhijun Zhang, Shengmei Yang, and Fan Wang. Slope stability analysis based on quantum–behaved particle swarm optimization and least squares support vector machine. Applied Mathematical Modelling, 39(17):5253–5264, 2015.spa
dc.relation.referencesDian-Qing Li, Dong Zheng, Zi-Jun Cao, Xiao-Song Tang, and Kok-Kwang Phoon. Response surface methods for slope reliability analysis: Review and comparison. Engineering Geology, 203:3–14, 2016. Special Issue on Probabilistic and Soft Computing Methods for Engineering Geology.spa
dc.relation.referencesJiang Li and Can-Yi Lu. A new decision rule for sparse representation based classification for face recognition. Neurocomputing, 116:265–271, 2013. Advanced Theory and Methodology in Intelligent Computing.spa
dc.relation.referencesStan Z. Li and Juwei Lu. Face recognition using the nearest feature line method. IEEE Transactions on Neural Networks, 10(2):439–443, 1999.spa
dc.relation.referencesY. Lin, K. Zhou, and J. Li. Prediction of slope stability using four supervised learning methods. IEEE Access, 6:31169–31179, 6 2018.spa
dc.relation.referencesRamin Madarshahian and Francois Hemez, editors. Data Science in Engineering, Proceedings of the 39th IMAC, A Conference and Exposition on Structural Dynamics, volume 9 of Conference Proceedings of the Society for Experimental Mechanics Series book series (CPSEMS), Berlin, Germany, 2021. Springer.spa
dc.relation.referencesMehrisadat Makki Alamdari, Ali Anaissi, Nguyen L. D. Khoa, and Samir Mustapha. Frequency domain decomposition-based multisensor data fusion for assessment of progressive damage in structures. Structural Control and Health Monitoring, 26(2):e2299, 2019.spa
dc.relation.referencesMehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of Machine Learning. MIT Press, 2nd edition, 2018.spa
dc.relation.referencesMaliki Moustapha, Stefano Marelli, and Bruno Sudret. Active learning for structural reliability: Survey, general framework and benchmark. Structural Safety, 96:102174, 2022.spa
dc.relation.referencesMaximilian Münch, Christoph Raab, and Frank-Michael Schleif. Encoding of Indefinite Proximity Data: A Structure Preserving Perspective. In Maria De Marsico, Gabriella Sanniti di Baja, and Ana Fred, editors, Pattern Recognition Applications and Methods, pages 112–137, Cham, 2020. Springer International Publishing.spa
dc.relation.referencesMaximilian Münch, Michiel Straat, Michael Biehl, and Frank-Michael Schleif. Complex-valued embeddings of generic proximity data. In Andrea Torsello, Luca Rossi, Marcello Pelillo, Battista Biggio, and Antonio Robles Kelly, editors, Structural, Syntactic, and Statistical Pattern Recognition, pages 14–23, Cham, 2021. Springer International Publishing.spa
dc.relation.referencesW. James Murdoch, Chandan Singh, Karl Kumbier, Reza Abbasi-Asl, and Bin Yu. Definitions, methods, and applications in interpretable machine learning. Proceedings of the National Academy of Sciences, 116(44):22071–22080, 2019.spa
dc.relation.referencesMauricio Orozco-Alzate, Sisto Baldo, and Manuele Bicego. Relation, transition and comparison between the adaptive nearest neighbor rule and the hypersphere classifier. In Elisa Ricci, Samuel Rota Bulò, Cees Snoek, Oswald Lanz, Stefano Messelodi, and Nicu Sebe, editors, Image Analysis and Processing – ICIAP 2019, pages 141–151, Cham, 2019. Springer International Publishing.spa
dc.relation.referencesMauricio Orozco-Alzate and Manuele Bicego. A cheaper rectified-nearest-feature-line-segment classifier based on safe points. In 2020 25th International Conference on Pattern Recognition (ICPR), pages 2787–2794, 2021.spa
dc.relation.referencesMauricio Orozco-Alzate, Robert P. W. Duin, and César Germán Castellanos-Domı́nguez. A generalization of dissimilarity representations using feature lines and feature planes. Pattern Recognition Letters, 30(3):242–254, feb 2009.spa
dc.relation.referencesE. Pȩkalska and R. P.W. Duin. The Dissimilarity Representation for Pattern Recognition: Foundations and Applications, volume 64 of Machine Perception and Artificial Intelligence. World Scientific, Singapore, 2005.spa
dc.relation.referencesElzbieta Pȩkalska, Pavel Paclik, and Robert P. W. Duin. A generalized kernel approach to dissimilarity-based classification. J. Mach. Learn. Res., 2:175–211, March 2002.spa
dc.relation.referencesE. Pekalska and R. P. W. Duin. Beyond Traditional Kernels: Classification in Two Dissimilarity-Based Representation Spaces. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 38(6):729–744, Nov 2008.spa
dc.relation.referencesKok-Kwang Phoon, Jianye Ching, and Zijun Cao. Unpacking data-centric geotechnics. Underground Space, 2022.spa
dc.relation.referencesKok-Kwang Phoon, Jianye Ching, and Takayuki Shuku. Challenges in data-driven site characterization. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 0(0):1–13, 2021.spa
dc.relation.referencesJ. S.-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis. Cambridge University Press, Cambridge, UK, 2004.spa
dc.relation.referencesAdam Santos, Eloi Figueiredo, M.F.M. Silva, C.S. Sales, and J.C.W.A. Costa. Machine learning algorithms for damage detection: Kernel-based approaches. Journal of Sound and Vibration, 363:584 – 599, 2016.spa
dc.relation.referencesHassan Sarmadi and Abbas Karamodin. A novel anomaly detection method based on adaptive Mahalanobis-squared distance and one-class kNN rule for structural health monitoring under environmental effects. Mechanical Systems and Signal Processing, 140:106495, 2020.spa
dc.relation.referencesW. J. Scheirer, M. J. Wilber, M. Eckmann, and T. E. Boult. Good recognition is non–metric. Pattern Recognition, 47:2721–2731, 2014.spa
dc.relation.referencesFrank-Michael Schleif and Peter Tino. Indefinite Proximity Learning: A Review. Neural Computation, 27(10):2039–2096, 10 2015.spa
dc.relation.referencesOsvaldo Simeone. A Brief Introduction to Machine Learning for Engineers, volume 12. Now Foundations and Trends, 2018.spa
dc.relation.referencesHoon Sohn and Chang Kook Oh. Statistical Pattern Recognition, chapter 30. John Wiley & Sons, Ltd., 2009.spa
dc.relation.referencesDavid M.J Tax and Robert P.W Duin. Support vector domain description. Pattern Recognition Letters, 20(11):1191–1199, 1999.spa
dc.relation.referencesSergios Theodoridis and Konstantinos Koutroumbas. Pattern Recognition. Academic Press, 2009.spa
dc.relation.referencesJigang Wang, Predrag Neskovic, and Leon N. Cooper. Improving nearest neighbor rule with a simple adaptive distance measure. Pattern Recognition Letters, 28(2):207 – 213, 2007.spa
dc.relation.referencesRenjie Wu and Eamonn Keogh. Current Time Series Anomaly Detection Benchmarks are Flawed and are Creating the Illusion of Progress. IEEE Transactions on Knowledge and Data Engineering, pages 1–9, 2021.spa
dc.relation.referencesJianXi Yang, Fei Yang, Likai Zhang, Ren Li, Shixin Jiang, Guiping Wang, Le Zhang, and Zeng Zeng. Bridge health anomaly detection using deep support vector data description. Neurocomputing, 2021.spa
dc.relation.referencesZ. Zhou, S.Z. Li, and K.L. Chan. A theoretical justification of nearest feature line method. In Proc. 15th ICPR International Conference on Pattern Recognition, volume 2, pages 759–762, 2000.spa
dc.relation.referencesRania Rizki Arinta and Emanuel Andi W.R. Natural Disaster Application on Big Data and Machine Learning: A Review. In 2019 4th International Conference on Information Technology, Information Systems and Electrical Engineering (ICITISEE), pages 249–254, 2019.spa
dc.relation.referencesLuke Bornn, Charles R. Farrar, Gyuhae Park, and Kevin Farinholt. Structural Health Monitoring With Autoregressive Support Vector Machines. Journal of Vibration and Acoustics, 131(2), 02 2009.spa
dc.relation.referencesMuhammad Shahzad Cheema, Abdalrahman Eweiwi, and Christian Bauckhage. High dimensional low sample size activity recognition using geometric classifiers. Digital Signal Processing, 42:61–69, 2015.spa
dc.relation.referencesWei Chen, Hamid Reza Pourghasemi, Mahdi Panahi, Aiding Kornejady, Jiale Wang, Xiaoshen Xie, and Shubo Cao. Spatial prediction of landslide susceptibility using an adaptive neuro-fuzzy inference system combined with frequency ratio, generalized additive model, and support vector machine techniques. Geomorphology, 297:69–85, 2017.spa
dc.relation.referencesA. J. Choobbasti, F. Farrokhzad, and A. Barari. Prediction of slope stability using artificial neural network (case study: Noabad, Mazandaran, Iran). Arabian Journal of Geosciences, 2(4):311–319, Nov 2009.spa
dc.relation.referencesPaul Cilliers. Complexity and Postmodernism. Understanding Complex Systems. Routledge, 1st edition, 2002.spa
dc.relation.referencesAlexandre Cury and Christian Crémona. Pattern recognition of structural behaviors based on learning algorithms and symbolic data concepts. Structural Control and Health Monitoring, 19(2):161–186, 2012.spa
dc.relation.referencesSarat Kumar Das, Rajani Kanta Biswal, N. Sivakugan, and Bitanjaya Das. Classification of slopes and prediction of factor of safety using differential evolution neural networks. Environmental Earth Sciences, 64(1):201–210, Sep 2011.spa
dc.relation.referencesRharã de Almeida Cardoso, Alexandre Cury, Flavio Barbosa, and Carmelo Gentile. Unsupervised real-time SHM technique based on novelty indexes. Structural Control and Health Monitoring, 26(7):e2364, 2019.spa
dc.relation.referencesRobert P. W. Duin and Elżbieta Pekalska. The Science of Pattern Recognition. Achievements and Perspectives, chapter 10, pages 221–259. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.spa
dc.relation.referencesRobert P.W. Duin, E. Pȩkalska, P. Paclı́k, and D.M.J. Tax. The dissimilarity representation, a basis for a domain-based pattern recognition? In J Goldfarb, editor, Proceedings of a satellite workshop of the 17th international conference on pattern recognition, pages 43–56. s.n., 2004.spa
dc.relation.referencesR.P.W. Duin and E. Pȩkalska. Non–Euclidean dissimilarities: Causes and informativeness. In Structural, Syntactic, and Statistical Pattern Recognition, Joint IAPR International Workshop, SSPR–SPR, Cesme, Izmir, Turkey, 2010.spa
dc.relation.referencesC. R. Farrar and H. Sohn. Pattern recognition for structural health monitoring. In Workshop on Mitigation of Earthquake Disaster by Advanced Technologies, pages 1–6, Las Vegas, NV, USA, Nov–Dec 2000.spa
dc.relation.referencesC. R. Farrar and K. Worden. An introduction to structural health monitoring. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365(1851):303–315, December 2007.spa
dc.relation.referencesCharles Farrar, Mayuko Nishio, Francois Hemez, Chris Stull, Gyuhae Park, Phil Cornwell, Eloi Figueiredo, D. J. Luscher, and Keith Worden. Feature Extraction for Structural Dynamics Model Validation. Technical Report LA-UR-16-20151, Los Alamos National Laboratory, 2016.spa
dc.relation.referencesSpilios D Fassois and John S Sakellariou. Time-series methods for fault detection and identification in vibrating structures. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365(1851):411–448, 2007.spa
dc.relation.referencesQingxiang Feng, Lijun Yan, and Jeng-Shyang Pan. A novel classifier based on nearest feature line. In International Conference on Computing, Measurement, Control and Sensor Network (CMCSN), pages 265–268, July 2012.spa
dc.relation.referencesM.D. Ferentinou and M.G. Sakellariou. Computational intelligence tools for the prediction of slope performance. Computers and Geotechnics, 34(5):362–384, 2007. Special Issue on Biologically Inspired and Other Novel Computing Techniques in Geomechanics.spa
dc.relation.referencesEloi Figueiredo, Joaquim Figueiras, Gyuhae Park, Charles R. Farrar, and Keith Worden. Influence of the Autoregressive Model Order on Damage Detection. Computer-Aided Civil and nfrastructure Engineering, 26(3):225–238, 2011.spa
dc.relation.referencesEloi Figueiredo, Gyuhae Park, Charles R Farrar, Keith Worden, and Joaquim Figueiras. Machine learning algorithms for damage detection under operational and environmental variability. Structural Health Monitoring, 10(6):559–572, 2011.spa
dc.relation.referencesEloi Figueiredo, Gyuhae Park, Joaquim Figueiras, Charles Farrar, and Keith Worden. Structural Health Monitoring Algorithm Comparisons Using Standard Data Sets. Technical Report LA-14393, Los Alamos National Laboratory, 2009.spa
dc.relation.referencesQing-Bin Gao and Zheng-Zhi Wang. Center–based nearest neighbor classifier. Pattern Recognition, 40(1):346–349, 2007.spa
dc.relation.referencesSalvador Garcia, Joaquin Derrac, Jose Cano, and Francisco Herrera. Prototype selection for nearest neighbor classification: Taxonomy and empirical study. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(3):417–435, 2012.spa
dc.relation.referencesP. Gardner, L.A. Bull, J. Gosliga, J. Poole, N. Dervilis, and K. Worden. A population-based SHM methodology for heterogeneous structures: Transferring damage localisation knowledge between different aircraft wings. Mechanical Systems and Signal Processing, 172:108918, 2022.spa
dc.relation.referencesJason N. Goetz, Richard H. Guthrie, and Alexander Brenning. Integrating physical and empirical landslide susceptibility models using generalized additive models. Geomorphology, 129(3):376–386, 2011.spa
dc.relation.referencesBehrouz Gordan, Danial Jahed Armaghani, Mohsen Hajihassani, and Masoud Monjezi. Prediction of seismic slope stability through combination of particle swarm optimization and neural network. Engineering with Computers, 32(1):85–97, Jan 2016.spa
dc.relation.referencesM. Gul and F. N. Catbas. Statistical pattern recognition for structural health monitoring using time series modeling: Theory and experimental verifications. Mechanical Systems and Signal Processing, 23(7):2192–2204, 2009.spa
dc.relation.referencesB. Haasdonk and D. Keysers. Tangent distance kernels for support vector machines. In 2002 International Conference on Pattern Recognition, volume 2, pages 864–868 vol.2, 2002.spa
dc.relation.referencesYe Hua, Xianmin Wang, Yongwei Li, Peiyun Xu, and Wenxiang Xia. Dynamic development of landslide susceptibility based on slope unit and deep neural networks. Landslides, 18(1):281–302, 2021.spa
dc.relation.referencesFaming Huang, Jing Zhang, Chuangbing Zhou, Yuhao Wang, Jinsong Huang, and Li Zhu. A deep learning algorithm using a fully connected sparse autoencoder neural network for landslide susceptibility prediction. Landslides, 17(1):217–229, 2020.spa
dc.relation.referencesYang H. Huang. Slope Stability Analysis by the Limit Equilibrium Method. American Society of Civil Engineers, 2014.spa
dc.relation.referencesA. K. Jain, R. P. W. Duin, and Jianchang Mao. Statistical Pattern Recognition: A Review. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(1):4–37, 2000.spa
dc.relation.referencesKejie Jiang, Qiang Han, Xiuli Du, and Pinghe Ni. A decentralized unsupervised structural condition diagnosis approach using deep auto-encoders. Computer-Aided Civil and Infrastructure Engineering, 36(6):711–732, 2021.spa
dc.relation.referencesNavid Kardani, Annan Zhou, Majidreza Nazem, and Shui-Long Shen. Improved prediction of slope stability using a hybrid stacking ensemble method based on finite element analysis and field data. Journal of Rock Mechanics and Geotechnical Engineering, 13(1):188–201, 2021.spa
dc.relation.referencesEamonn Keogh, Stefano Lonardi, Chotirat Ann Ratanamahatana, Li Wei, Sang-Hee Lee, and John Handley. Compression-based data mining of sequential data. Data Mining and Knowledge Discovery, 14:99–129, 2007.spa
dc.relation.referencesSerkan Kiranyaz, Onur Avci, Osama Abdeljaber, Turker Ince, Moncef Gabbouj, and Daniel J. Inman. 1D convolutional neural networks and applications: A survey. Mechanical Systems and Signal Processing, 151:107398, 2021.spa
dc.relation.referencesMohammadreza Koopialipoor, Danial Jahed Armaghani, Ahmadreza Hedayat, Aminaton Marto, and Behrouz Gordan. Applying various hybrid intelligent systems to evaluate and predict slope stability under static and dynamic conditions. Soft Computing, May 2018.spa
dc.relation.referencesKundan Kumar, Prabir Kumar Biswas, and Nirjhar Dhang. Time series-based SHM using PCA with application to ASCE benchmark structure. Journal of Civil Structural Health Monitoring, 10(5):899–911, 2020.spa
dc.relation.referencesManoj Kumar, Pijush Samui, and Ajay Kumar Naithani. Determination of stability of epimetamorphic rock slope using Minimax Probability Machine. Geomatics, Natural Hazards and Risk, 7(1):186–193, 2016.spa
dc.relation.referencesDavid J. Lary, Gebreab K. Zewdie, Xun Liu, Daji Wu, Estelle Levetin, Rebecca J. Allee, Nabin Malakar, Annette Walker, Hamse Mussa, Antonio Mannino, and Dirk Aurin. Machine Learning Applications for Earth Observation, pages 165–218. Springer International Publishing, Cham, 2018.spa
dc.relation.referencesS.Z Li and J. Lu. Generalizing capacity of face database for face recognition. In Third IEEE International Conference on Automatic Face and Gesture Recognition, pages 402–406, Apr 1998.spa
dc.relation.referencesXueyou Li, Limin Zhang, and Shuai Zhang. Efficient bayesian networks for slope safety evaluation with large quantity monitoring information. Geoscience Frontiers, 9(6):1679–1687, 2018. Reliability Analysis of Geotechnical Infrastructures.spa
dc.relation.referencesZaobao Liu, Jianfu Shao, Weiya Xu, Hongjie Chen, and Yu Zhang. An extreme learning machine approach for slope stability evaluation and prediction. Natural Hazards, 73(2):787–804, Sep 2014.spa
dc.relation.referencesNoel Lopes and Bernardete Ribeiro. Incremental Hypersphere Classifier (IHC). In Machine Learning for Adaptive Many-Core Machines - A Practical Approach, volume 7 of Studies in Big Data, chapter 6, pages 107–123. Springer International Publishing, Cham, 2015.spa
dc.relation.referencesI. Lopez and N. Sarigul-Klijn. A novel dimensional reduction approach for structural damage diagnosis using feature similarity. In Tribikram Kundu, editor, Health Monitoring of Structural and Biological Systems 2009, volume 7295, pages 511 – 522. International Society for Optics and Photonics, SPIE, 2009.spa
dc.relation.referencesIsrael Lopez and Nesrin Sarigul-Klijn. Distance similarity matrix using ensemble of dimensional data reduction techniques: Vibration and aerocoustic case studies. Mechanical Systems and Signal Processing, 23(7):2287 – 2300, 2009.spa
dc.relation.referencesZhengjing Ma, Gang Mei, and Francesco Piccialli. Machine learning for landslides prevention: a survey. Neural Computing and Applications, 33(17):10881–10907, 2021.spa
dc.relation.referencesHossein Moayedi, Mansour Mosallanezhad, Ahmad Safuan A. Rashid, Wan Amizah Wan Jusoh, and Mohammed Abdullahi Muazu. A systematic review and meta-analysis of artificial neural network application in geotechnical engineering: theory and applications. Neural Computing and Applications, 32(2):495–518, 2020.spa
dc.relation.referencesL. Moniz, J.M. Nichols, C.J. Nichols, M. Seaver, S.T. Trickey, M.D. Todd, L.M. Pecora, and L.N. Virgin. A multivariate, attractor-based approach to structural health monitoring. Journal of Sound and Vibration, 283(1):295–310, 2005.spa
dc.relation.referencesJ. M. Nichols, M. D. Todd, M. Seaver, and L. N. Virgin. Use of chaotic excitation and attractor property analysis in structural health monitoring. Phys. Rev. E, 67:016209, Jan 2003.spa
dc.relation.referencesMayuko Nishio, Francois Hemez, Keith Worden, Gyuhae Park, Nobuo Takeda, and Charles Farrar. Feature extraction for structural dynamics model validation. In Tom Proulx, editor, Linking Models and Experiments, Volume 2, pages 153–163, New York, NY, 2011. Springer New York.spa
dc.relation.referencesL.A. Overbey and M.D. Todd. Analysis of Local State Space Models for Feature Extraction in Structural Health Monitoring. Structural Health Monitoring, 6(2):145–172, 2007.spa
dc.relation.referencesE. Pȩkalska. Dissimilarity representations in pattern recognition. Concepts, theory and applications. PhD thesis, Delft University of Technology, 2005.spa
dc.relation.referencesE. Pȩkalska and R. P.W. Duin. Dissimilarity measures, volume 64 of Machine Perception and Artificial Intelligence, chapter 5, pages 215–252. World Scientific, Singapore, 2005.spa
dc.relation.referencesE. Pȩkalska and B. Haasdonk. Kernel discriminant analysis for positive definite and indefinite kernels. IEEE Transactions on Pattern Recognition and Machine Intelligence, 31(6):482–492, 2009.spa
dc.relation.referencesJin-Song Pei, Dean F. Hougen, Sai Teja Kanneganti, Joseph P. Wright, Eric C. Mai, Andrew W. Smyth, Sami F. Masri, Armen Derkevorkian, François Gay-Balmaz, and Ludian Komini. Interpretable Machine Learning for Function Approximation in Structural Health Monitoring, pages 369–388. Springer International Publishing, Cham, 2022.spa
dc.relation.referencesBinh Thai Pham and Indra Prakash. A novel hybrid model of Bagging-based Naive Bayes Trees for landslide susceptibility assessment. Bulletin of Engineering Geology and the Environment, 78(3):1911–1925, 2021.spa
dc.relation.referencesBinh Thai Pham, Indra Prakash, Sushant K. Singh, Ataollah Shirzadi, Himan Shahabi, Thi-Thu-Trang Tran, and Dieu Tien Bui. Landslide susceptibility modeling using Reduced Error Pruning Trees and different ensemble techniques: Hybrid machine learning approaches. CATENA, 175:203–218, 2019.spa
dc.relation.referencesKok-Kwang Phoon and Wengang Zhang. Future of machine learning in geotechnics. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 0(0):1–16, 2022.spa
dc.relation.referencesLuca Piciullo, Michele Calvello, and José Mauricio Cepeda. Territorial early warning systems for rainfall-induced landslides. Earth-Science Reviews, 179:228–247, 2018.spa
dc.relation.referencesDaniele Posenato, Francesca Lanata, Daniele Inaudi, and Ian F.C. Smith. Model-free data interpretation for continuous monitoring of complex structures. Advanced Engineering Informatics, 22(1):135–144, 2008. Intelligent computing in engineering and architecture.spa
dc.relation.referencesMiguel A. Prada, Janne Toivola, Jyrki Kullaa, and Jaakko Hollmén. Three-way analysis of structural health monitoring data. Neurocomputing, 80:119 – 128, 2012. Special Issue on Machine Learning for Signal Processing 2010.spa
dc.relation.referencesChongchong Qi and Xiaolin Tang. A hybrid ensemble method for improved prediction of slope stability. International Journal for Numerical and Analytical Methods in Geomechanics, 42(15):1823–1839, 2018.spa
dc.relation.referencesThanawin Rakthanmanon, Bilson Campana, Abdullah Mueen, Gustavo Batista, Brandon Westover, Qiang Zhu, Jesin Zakaria, and Eamonn Keogh. Addressing Big Data Time Series: Mining Trillions of Time Series Subsequences Under Dynamic Time Warping. ACM Transactions on Knowledge Discovery from Data, 7(3), September 2013.spa
dc.relation.referencesPaola Reichenbach, Mauro Rossi, Bruce D. Malamud, Monika Mihir, and Fausto Guzzetti. A review of statistically-based landslide susceptibility models. Earth-Science Reviews, 180:60–91, 2018.spa
dc.relation.referencesHannah Ritchie and Max Roser. Natural disasters. Our World in Data, 2014. It was last revised in November 2021.spa
dc.relation.referencesG. Roberti, J. McGregor, S. Lam, D. Bigelow, B. Boyko, C. Ahern, V. Wang, B. Barnhart, C. Smyth, D. Poole, and S. Richard. INSPIRE standards as a framework for artificial intelligence applications: a landslide example. Natural Hazards and Earth System Sciences, 20(12):3455–3483, 2020.spa
dc.relation.referencesT.J. Rogers, K. Worden, R. Fuentes, N. Dervilis, U.T. Tygesen, and E.J. Cross. A Bayesian non-parametric clustering approach for semi-supervised structural health monitoring. Mechanical Systems and Signal Processing, 119:100–119, 2019.spa
dc.relation.referencesS. Rukhaiyar, M. N. Alam, and N. K. Samadhiya. A PSO–ANN hybrid model for predicting factor of safety of slope. International Journal of Geotechnical Engineering, 12(6):556–566, 2018.spa
dc.relation.referencesSeyedomid Sajedi and Xiao Liang. Dual Bayesian inference for risk-informed vibration-based damage diagnosis. Computer-Aided Civil and Infrastructure Engineering, 36(9):1168–1184, 2021.spa
dc.relation.referencesM. G. Sakellariou and M. D. Ferentinou. A study of slope stability prediction using neural networks. Geotechnical & Geological Engineering, 23(4):419, Aug 2005.spa
dc.relation.referencesP. Samui and D.P. Kothari. Utilization of a least square support vector machine (LSSVM) for slope stability analysis. Scientia Iranica, 18(1):53–58, 2011.spa
dc.relation.referencesPijush Samui. Slope stability analysis: a support vector machine approach. Environmental Geology, 56(2):255, Feb 2008.spa
dc.relation.referencesPijush Samui. Support vector classifier analysis of slope. Geomatics, Natural Hazards and Risk, 4(1):1–12, 2013.spa
dc.relation.referencesJoão Pedro Santos, Christian Cremona, André D. Orcesi, and Paulo Silveira. Early Damage Detection Based on Pattern Recognition and Data Fusion. Journal of Structural Engineering, 143(2):04016162, 2017.spa
dc.relation.referencesHassan Sarmadi, Alireza Entezami, Behzad Saeedi Razavi, and Ka-Veng Yuen. Ensemble learning-based structural health monitoring by Mahalanobis distance metrics. Structural Control and Health Monitoring, 28(2):e2663, 2021.spa
dc.relation.referencesHaichen Shi, Keith Worden, and Elizabeth J. Cross. A cointegration approach for heteroscedastic data based on a time series decomposition: An application to structural health monitoring. Mechanical Systems and Signal Processing, 120:16 – 31, 2019.spa
dc.relation.referencesMoisés Silva, Adam Santos, and Elói Figueiredo. Damage Detection for Structural Health Monitoring of Bridges as a Knowledge Discovery in Databases Process, pages 1–24. Springer Singapore, Singapore, 2019.spa
dc.relation.referencesMoisés Silva, Adam Santos, Eloi Figueiredo, Reginaldo Santos, Claudomiro Sales, and João C.W.A. Costa. A novel unsupervised approach based on a genetic algorithm for structural damage detection in bridges. Engineering Applications of Artificial Intelligence, 52:168 – 180, 2016.spa
dc.relation.referencesH Sohn, C R Farrar, F M Hemez, and J J Czarnecki. A Review of Structural Health Monitoring Literature: 1996-2001. Technical Report LA-UR-02-2095, Los Alamos National Lab. (LANL), 1 2002.spa
dc.relation.referencesNikos A Spanos, John S Sakellariou, and Spilios D Fassois. Vibration-response-only statistical time series structural health monitoring methods: A comprehensive assessment via a scale jacket structure. Structural Health Monitoring, 19(3):736–750, 2020.spa
dc.relation.referencesM.D. Spiridonakos and S.D. Fassois. Adaptable functional series TARMA models for non-stationary signal representation and their application to mechanical random vibration modeling. Signal Processing, 96:63 – 79, 2014.spa
dc.relation.referencesIngo Steinwart. Empirical Inference. Festschrift in Honor of Vladimir N. Vapnik, chapter Some Remarks on the Statistical Analysis of SVMs and Related Methods, pages 25–36. Springer-Verlag Berlin Heidelberg, 2013.spa
dc.relation.referencesHan Sun, Henry V. Burton, and Honglan Huang. Machine learning applications for building structural design and performance assessment: State-of-the-art review. Journal of Building Engineering, 33:101816, 2021.spa
dc.relation.referencesZhiyi Tang, Zhicheng Chen, Yuequan Bao, and Hui Li. Convolutional neural network-based data anomaly detection method using multiple information for structural health monitoring. Structural Control and Health Monitoring, 26(1):e2296, 2019.spa
dc.relation.referencesDavid Tax. One-class classification: Concept-learning in the absence of counter-examples. Doctoral thesis, Delft University of Technology, Netherlands, June 2001.spa
dc.relation.referencesDieu Tien Bui, Biswajeet Pradhan, Owe Lofman, Inge Revhaug, and Oystein B. Dick. Spatial prediction of landslide hazards in Hoa Binh province (Vietnam): A comparative assessment of the efficacy of evidential belief functions and fuzzy logic models. CATENA, 96:28–40, 2012.spa
dc.relation.referencesDieu Tien Bui, Biswajeet Pradhan, Haleh Nampak, Quang-Thanh Bui, Quynh-An Tran, and Quoc-Phi Nguyen. Hybrid artificial intelligence approach based on neural fuzzy inference model and metaheuristic optimization for flood susceptibility modeling in a high-frequency tropical cyclone area using GIS. Journal of Hydrology, 540:317–330, 2016.spa
dc.relation.referencesMaria Valero, Fangyu Li, Liang Zhao, Chi Zhang, Jose Garrido, and Zhu Han. Vibration sensing-based human and infrastructure safety/health monitoring: A survey. Digital Signal Processing, 114:103037, 2021.spa
dc.relation.referencesChaofeng Wang, Qian Yu, Kincho H. Law, Frank McKenna, Stella X. Yu, Ertugrul Taciroglu, Adam Zsarnóczay, Wael Elhaddad, and Barbaros Cetiner. Machine learning-based regional scale intelligent modeling of building information for natural hazard risk management. Automation in Construction, 122:103474, 2021.spa
dc.relation.referencesH.B. Wang, J.M. Li, B.Zhou, Y.Zhou, Z.Q. Yuan, , and Y.P. Chen. Application of a hybrid model of neural networks and genetic algorithms to evaluate landslide susceptibility. Geoenvironmental Disasters, 4(15):1–12, 2017.spa
dc.relation.referencesXiaoyue Wang, Abdullah Mueen, Hui Ding, Goce Trajcevski, Peter Scheuermann, and Eamonn Keogh. Experimental comparison of representation methods and distance measures for time series data. Data Mining and Knowledge Discovery, 26(2):275–309, 2013.spa
dc.relation.referencesKeith Worden, Charles R. Farrar, Jonathan Haywood, and Michael Todd. A review of nonlinear dynamics applications to structural health monitoring. Structural Control and Health Monitoring, 15(4):540–567, 2008.spa
dc.relation.referencesKeith Worden and Graeme Manson. The application of machine learning to structural health monitoring. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365(1851):515–537, 2007.spa
dc.relation.referencesXindong Wu, Vipin Kumar, J. Ross Quinlan, Joydeep Ghosh, Qiang Yang, , Hiroshi Motoda, Geoffrey J. McLachlan, Angus Ng, Bing Liu, Philip S. Yu, Zhi-Hua Zhou, Michael Steinbach, David J. Hand, and Dan Steinberg. Top 10 algorithms in data mining. Knowledge and Information Systems, 14(1):1–37, 2008.spa
dc.relation.referencesBeibei Yang, Kunlong Yin, Suzanne Lacasse, and Zhongqiang Liu. Time series analysis and long short-term memory neural network to predict landslide displacement. Landslides, 16(4):677–694, 2019.spa
dc.relation.referencesXin-She Yang, Siamak Talatahari, Amir Hossein Gandomi, and Amir Hossein Alavi, editors. Metaheuristics in Water, Geotechnical and Transport Engineering. Elsevier, 2013.spa
dc.relation.referencesYang Yang, Zhike Peng, Wenming Zhang, and Guang Meng. Parameterised time–frequency analysis methods and their engineering applications: A review of recent advances. Mechanical Systems and Signal Processing, 119:182 – 221, 2019.spa
dc.relation.referencesRuigen Yao and Shamim N. Pakzad. Autoregressive statistical pattern recognition algorithms for damage detection in civil structures. Mechanical Systems and Signal Processing, 31:355–368, 2012.spa
dc.relation.referencesZaher Mundher Yaseen, Ahmed El-shafie, Othman Jaafar, Haitham Abdulmohsin Afan, and Khamis Naba Sayl. Artificial intelligence based models for stream-flow forecasting: 2000–2015. Journal of Hydrology, 530:829–844, 2015.spa
dc.relation.referencesSaleh Yousefi, Hamid Reza Pourghasemi, Sayed Naeim Emami, Soheila Pouyan, Saeedeh Eskandari, and John P. Tiefenbacher. A machine learning framework for multi-hazards modeling and mapping in a mountainous area. Scientific Reports, 10(1):12144, 2020.spa
dc.relation.referencesF Zhang, Zaobao Liu, Lifeng Zheng, and Yu Zhang. Development of an adaptive relevance vector machine approach for slope stability inference. Neural Computing and Applications, 25(7):2025–2035, December 2014.spa
dc.relation.referencesYin Zhang, Miaolin Dai, and Zhimin Ju. Preliminary Discussion Regarding SVM Kernel Function Selection in the Twofold Rock Slope Prediction Model. Journal of Computing in Civil Engineering, 30(3):04015031, 2016.spa
dc.relation.referencesHongbo Zhao, Shunde Yin, and Zhongliang Ru. Relevance vector machine applied to slope stability analysis. International Journal for Numerical and Analytical Methods in Geomechanics, 36(5):643–652, 2012.spa
dc.relation.referencesWenming Zheng, Li Zhao, and Cairong Zou. Locally nearest neighbor classifiers for pattern classification. Pattern Recognition, 37(6):1307–1309, 2004.spa
dc.relation.referencesJian Zhou, Enming Li, Shan Yang, Mingzheng Wang, Xiuzhi Shi, Shu Yao, and Hani S. Mitri. Slope stability prediction for circular mode failure using gradient boosting machine approach based on an updated database of case histories. Safety Science, 118:505–518, 2019.spa
dc.relation.referencesLim Yi Zhou, Fam Pei Shan, Kunio Shimizu, Tomoaki Imoto, Habibah Lateh, and Koay Swee Peng. A comparative study of slope failure prediction using logistic regression, support vector machine and least square support vector machine models. AIP Conference Proceedings, 1870(1):060012, 2017.spa
dc.relation.referencesYonglei Zhou, Changshui Zhang, and Jingchun Wang. Extended nearest feature line classifier. In Chengqi Zhang, H. W. Guesgen, and Wai-Kiang Yeap, editors, PRICAI 2004: Trends in Artificial Intelligence, volume 3157 of Lecture Notes in Computer Science, pages 183–190. Springer Berlin Heidelberg, 2004.spa
dc.relation.referencesZonglin Zhou and Chee Keong Kwoh. The pattern classification based on the nearest feature midpoints. In Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004, volume 3, pages 446–449, Aug 2004.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadoresspa
dc.subject.proposalClassifier system designeng
dc.subject.proposalData-driven surrogateseng
dc.subject.proposalDissimilarity pattern recognitioneng
dc.subject.proposalLandslideseng
dc.subject.proposalPattern representationeng
dc.subject.proposalStructural health monitoringeng
dc.subject.proposalSlope stabilityeng
dc.subject.proposalDeslizamientosspa
dc.subject.proposalDiseño de sistemas de clasificaciónspa
dc.subject.proposalEstabilidad de taludesspa
dc.subject.proposalMonitoreo de salud estructuralspa
dc.subject.proposalReconocimiento de patrones basado en disimilitudesspa
dc.subject.proposalRepresentación de patronesspa
dc.subject.proposalSustitutos basados en datosspa
dc.subject.unescoIngeniería de la construcción
dc.subject.unescoConstruction engineering
dc.titlePattern representations for classifying (non-)metric (non-)vectorial data with applications in Structural Health Monitoring and geotechnical/natural-hazard engineeringeng
dc.title.translatedRepresentaciones de patrones para la clasificación de datos (no-)vectoriales (no-)métricos con aplicaciones en el Monitoreo de Salud Estructural y la ingeniería de amenazas geotécnicas/naturalesspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentImagespa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
75092593.2022.pdf
Tamaño:
8.34 MB
Formato:
Adobe Portable Document Format
Descripción:
Doctorado en Ingeniería - Automática

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: