Segmentación de la invasión por vegetación a líneas de transmisión eléctrica usando aprendizaje profundo en imágenes de drone

dc.contributor.advisorBallesteros Parra, John Robert
dc.contributor.advisorBranch Bedoya, John Willian
dc.contributor.authorCano Solis, Mateo
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001689779spa
dc.contributor.googlescholarhttps://scholar.google.com/citations?user=OkGRZ30AAAAJ&hl=esspa
dc.contributor.orcidhttps://orcid.org/0000-0001-9988-4624spa
dc.contributor.researchgatehttps://www.researchgate.net/profile/Mateo-Cano-Solisspa
dc.contributor.researchgroupGidia: Grupo de Investigación YyDesarrollo en Inteligencia Artificialspa
dc.contributor.scopus58551783500spa
dc.date.accessioned2024-01-24T19:52:16Z
dc.date.available2024-01-24T19:52:16Z
dc.date.issued2024-01-14
dc.description.abstractEl trabajo de tesis se enfoca en abordar el problema de los cortes de energía en líneas de transmisión eléctrica debido a la invasión de vegetación. Se propone un enfoque basado en el uso de imágenes de drones y técnicas de aprendizaje profundo para anticipar y detectar la presencia de vegetación en estas líneas. El objetivo general es desarrollar un flujo de trabajo que permita segmentar áreas invadidas por vegetación, mediante la creación de un conjunto de datos público de imágenes de drones, la preparación y fusión de datos, y la selección de una arquitectura de aprendizaje profundo para la detección. El método propuesto se presenta como una alternativa más eficiente y confiable en comparación con los métodos tradicionales de revisión manual en campo. El enfoque busca proporcionar una herramienta efectiva para la detección temprana de invasión de vegetación, contribuyendo así a mejorar la calidad y confiabilidad del suministro eléctrico y reduciendo los costos asociados a los cortes de energía generados por este problema. (Tomado de la fuente)spa
dc.description.abstractThe thesis work focuses on addressing the issue of power outages in electrical transmission lines caused by vegetation encroachment. An approach is proposed that relies on drone imagery and deep learning techniques to anticipate and detect vegetation invasion in these lines. The overall objective is to develop a workflow that allows for the segmentation of vegetation-invaded areas, achieved through the creation of a public dataset of drone images, data preparation and fusion strategies, and the selection of a deep learning architecture for detection. The proposed method is presented as a more efficient and reliable alternative compared to traditional manual field inspection methods. The approach aims to provide an effective tool for early detection of vegetation encroachment, thereby contributing to enhancing the quality and reliability of the electrical power supply and reducing costs associated with power outages caused by this problem.eng
dc.description.curricularareaÁrea Curricular de Ingeniería de Sistemas e Informáticaspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Ingeniería - Analíticaspa
dc.description.researchareaGEOAIspa
dc.description.researchareaDeep Learningspa
dc.format.extent47 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85423
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Analíticaspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesV. N. Nguyen, R. Jenssen, and D. Roverso, “Automatic autonomous vision-based power line inspection: A review of current status and the potential role of deep learning,” Int. J. Electr. Power Energy Syst., vol. 99, pp. 107–120, Jul. 2018, doi: 10.1016/j.ijepes.2017.12.016.spa
dc.relation.referencesJ. Ahmad, A. S. Malik, L. Xia, and N. Ashikin, “Vegetation encroachment monitoring for transmission lines right-of-ways: A survey,” Electr. Power Syst. Res., vol. 95, pp. 339–352, Feb. 2013, doi: 10.1016/j.epsr.2012.07.015.spa
dc.relation.referencesM. Korki, N. D. Shankar, R. Naymeshbhai Shah, S. M. Waseem, and S. Hodges, “Automatic Fault Detection of Power Lines using Unmanned Aerial Vehicle (UAV),” in 2019 1st International Conference on Unmanned Vehicle Systems-Oman (UVS), Feb. 2019, pp. 1–6. doi: 10.1109/UVS.2019.8658283.spa
dc.relation.referencesY. Zhang, X. Yuan, W. Li, and S. Chen, “Automatic power line inspection using UAV images,” Remote Sens., vol. 9, no. 8, 2017, doi: 10.3390/rs9080824.spa
dc.relation.referencesD. Li and X. Wang, “The Future Application of Transmission Line Automatic Monitoring and Deep Learning Technology Based on Vision,” in 2019 IEEE 4th International Conference on Cloud Computing and Big Data Analysis (ICCCBDA), Apr. 2019, pp. 131–137. doi: 10.1109/ICCCBDA.2019.8725702.spa
dc.relation.referencesY. Lecun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436–444, 2015, doi: 10.1038/nature14539.spa
dc.relation.referencesI. Maduako et al., “Deep learning for component fault detection in electricity transmission lines,” J. Big Data, vol. 9, no. 1, 2022, doi: 10.1186/s40537-022-00630-2.spa
dc.relation.referencesB. Zhang, L. Zhao, and X. Zhang, “Three-dimensional convolutional neural network model for tree species classification using airborne hyperspectral images,” Remote Sens. Environ., vol. 247, 2020, doi: 10.1016/j.rse.2020.111938.spa
dc.relation.referencesG. Lin, A. Milan, C. Shen, and I. Reid, “RefineNet: Multi-path Refinement Networks for High-Resolution Semantic Segmentation,” in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jul. 2017, pp. 5168–5177. doi: 10.1109/CVPR.2017.549.spa
dc.relation.referencesC. Shorten and T. M. Khoshgoftaar, “A survey on Image Data Augmentation for Deep Learning,” J. Big Data, vol. 6, no. 1, p. 60, Jul. 2019, doi: 10.1186/s40537-019-0197-0.spa
dc.relation.referencesJ. R. Ballesteros, G. Sanchez-Torres, and J. W. Branch-Bedoya, “A GIS Pipeline to Produce GeoAI Datasets from Drone Overhead Imagery,” ISPRS Int. J. Geo-Inf., vol. 11, no. 10, Art. no. 10, Oct. 2022, doi: 10.3390/ijgi11100508.spa
dc.relation.referencesZ. Shang et al., “Democratizing data science through interactive curation of ML pipelines,” presented at the Proceedings of the ACM SIGMOD International Conference on Management of Data, 2019, pp. 1171–1188. doi: 10.1145/3299869.3319863.spa
dc.relation.referencesR. Madaan, D. Maturana, and S. Scherer, “Wire detection using synthetic data and dilated convolutional networks for unmanned aerial vehicles,” in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Sep. 2017, pp. 3487–3494. doi: 10.1109/IROS.2017.8206190.spa
dc.relation.referencesY. Zhang, X. Yuan, Y. Fang, and S. Chen, “UAV low altitude photogrammetry for power line inspection,” ISPRS Int. J. Geo-Inf., vol. 6, no. 1, 2017, doi: 10.3390/ijgi6010014.spa
dc.relation.referencesS. Vemula and M. Frye, “Multi-head Attention Based Transformers for Vegetation Encroachment Over Powerline Corriders using UAV,” in 2021 IEEE/AIAA 40th Digital Avionics Systems Conference (DASC), Oct. 2021, pp. 1–5. doi: 10.1109/DASC52595.2021.9594293.spa
dc.relation.referencesA. Vaswani et al., “Attention is all you need,” presented at the Advances in Neural Information Processing Systems, 2017, pp. 5999–6009.spa
dc.relation.referencesY. Chen, J. Lin, and X. Liao, “Early detection of tree encroachment in high voltage powerline corridor using growth model and UAV-borne LiDAR,” Int. J. Appl. Earth Obs. Geoinformation, vol. 108, p. 102740, Apr. 2022, doi: 10.1016/j.jag.2022.102740.spa
dc.relation.referencesS. Rong, L. He, L. Du, Z. Li, and S. Yu, “Intelligent Detection of Vegetation Encroachment of Power Lines With Advanced Stereovision,” IEEE Trans. Power Deliv., vol. 36, no. 6, pp. 3477–3485, Dec. 2021, doi: 10.1109/TPWRD.2020.3043433.spa
dc.relation.referencesD. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J. Comput. Vis., vol. 60, no. 2, pp. 91–110, 2004, doi: 10.1023/B:VISI.0000029664.99615.94.spa
dc.relation.referencesK. Sikorska-Łukasiewicz, “Methods of automatic vegetation encroachment detection for high voltage power lines,” presented at the Proceedings of SPIE - The International Society for Optical Engineering, 2020. doi: 10.1117/12.2565756.spa
dc.relation.referencesPubMed, “PubMed User Guide,” PubMed. Accessed: Aug. 15, 2023. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/help/spa
dc.relation.referencesT. Vopham, J. E. Hart, F. Laden, and Y.-Y. Chiang, “Emerging trends in geospatial artificial intelligence (geoAI): Potential applications for environmental epidemiology,” Environ. Health Glob. Access Sci. Source, vol. 17, no. 1, 2018, doi: 10.1186/s12940-018-0386-x.spa
dc.relation.referencesF. M. E. Haroun, S. N. M. Deros, and N. M. Din, “A Review of Vegetation Encroachment Detection in Power Transmission Lines using Optical Sensing Satellite Imagery,” Int. J. Adv. Trends Comput. Sci. Eng., vol. 9, no. 1.4, pp. 618–624, Sep. 2020, doi: 10.30534/ijatcse/2020/8691.42020.spa
dc.relation.referencesM. Gazzea, M. Pacevicius, D. O. Dammann, A. Sapronova, T. M. Lunde, and R. Arghandeh, “Automated Power Lines Vegetation Monitoring Using High-Resolution Satellite Imagery,” IEEE Trans. Power Deliv., vol. 37, no. 1, pp. 308–316, 2022, doi: 10.1109/TPWRD.2021.3059307.spa
dc.relation.referencesF. M. E. Haroun, S. N. M. Deros, and N. M. Din, “Detection and Monitoring of Power Line Corridor from Satellite Imagery Using RetinaNet and K-Mean Clustering,” IEEE Access, 2021, doi: 10.1109/ACCESS.2021.3106550.spa
dc.relation.referencesF. Mahdi Elsiddig Haroun, S. N. Mohamed Deros, M. Z. Bin Baharuddin, and N. Md Din, “Detection of Vegetation Encroachment in Power Transmission Line Corridor from Satellite Imagery Using Support Vector Machine: A Features Analysis Approach,” Energies, vol. 14, no. 12, p. 3393, Jan. 2021, doi: 10.3390/en14123393.spa
dc.relation.referencesJ. Ahmad, A. S. Malik, M. F. Abdullah, N. Kamel, and L. Xia, “A novel method for vegetation encroachment monitoring of transmission lines using a single 2D camera,” Pattern Anal. Appl., vol. 18, no. 2, pp. 419–440, May 2015, doi: 10.1007/s10044-014-0391-9.spa
dc.relation.referencesF. Azevedo et al., “LiDAR-based real-time detection and modeling of power lines for unmanned aerial vehicles,” Sens. Switz., vol. 19, no. 8, 2019, doi: 10.3390/s19081812.spa
dc.relation.referencesR. Zhang, B. Yang, W. Xiao, F. Liang, Y. Liu, and Z. Wang, “Automatic extraction of high-voltage power transmission objects from UAV Lidar point clouds,” Remote Sens., vol. 11, no. 22, 2019, doi: 10.3390/rs11222600.spa
dc.relation.referencesA. Qayyum, I. Razzak, A. S. Malik, and S. Anwar, “Fusion of CNN and sparse representation for threat estimation near power lines and poles infrastructure using aerial stereo imagery,” Technol. Forecast. Soc. Change, vol. 168, p. 120762, Jul. 2021, doi: 10.1016/j.techfore.2021.120762.spa
dc.relation.referencesJ. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-time object detection,” presented at the Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016, pp. 779–788. doi: 10.1109/CVPR.2016.91.spa
dc.relation.referencesY. Freund and R. Schapire, “Experiments with a New Boosting Algorithm,” presented at the International Conference on Machine Learning, Jul. 1996. Accessed: Jan. 09, 2024. [Online]. Available: https://cseweb.ucsd.edu/~yfreund/papers/boostingexperiments.pdfspa
dc.relation.referencesM. Aizerman, E. Braverman, and L. Rozonoer, “Theoretical foundation of potential functions method in pattern recognition,” 1964. Accessed: Jan. 09, 2024. [Online]. Available: https://cs.uwaterloo.ca/~y328yu/classics/kernel.pdfspa
dc.relation.referencesT.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal Loss for Dense Object Detection.” arXiv, Feb. 07, 2018. doi: 10.48550/arXiv.1708.02002.spa
dc.relation.referencesK. McGarigal, S. Stafford, and S. Cushman, “Cluster Analysis,” in Multivariate Statistics for Wildlife and Ecology Research, K. McGarigal, S. Stafford, and S. Cushman, Eds., New York, NY: Springer, 2000, pp. 81–128. doi: 10.1007/978-1-4612-1288-1_3.spa
dc.relation.referencesS. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-time object detection with region proposal networks,” presented at the Advances in Neural Information Processing Systems, 2015, pp. 91–99.spa
dc.relation.referencesK. Pearson, “LIII. On lines and planes of closest fit to systems of points in space,” Lond. Edinb. Dublin Philos. Mag. J. Sci., vol. 2, no. 11, pp. 559–572, Nov. 1901, doi: 10.1080/14786440109462720.spa
dc.relation.referencesX. Liu, X. Miao, H. Jiang, and J. Chen, “Data analysis in visual power line inspection: An in-depth review of deep learning for component detection and fault diagnosis,” Annu. Rev. Control, vol. 50, pp. 253–277, Jan. 2020, doi: 10.1016/j.arcontrol.2020.09.002.spa
dc.relation.referencesM. Cano-Solis, J. R. Ballesteros, and J. W. Branch-Bedoya, “VEPL Dataset: A Vegetation Encroachment in Power Line Corridors Dataset for Semantic Segmentation of Drone Aerial Orthomosaics,” Data, vol. 8, no. 8, Art. no. 8, Aug. 2023, doi: 10.3390/data8080128.spa
dc.relation.referencesZ. Restrepo, S. Botero, S. González-Caro, C. Ortiz-Yusty, and E. Alvarez-Davila, Guía de flora y fauna del sistema local de área protegidas de Envigado (Colombia). Medellin: Editorial Jardín Botánico de Medellín, 2018.spa
dc.relation.referencesJ. R. Ballesteros, G. Sanchez-Torres, and J. W. Branch-Bedoya, “HAGDAVS: Height-Augmented Geo-Located Dataset for Detection and Semantic Segmentation of Vehicles in Drone Aerial Orthomosaics,” Data, vol. 7, no. 4, Art. no. 4, Apr. 2022, doi: 10.3390/data7040050.spa
dc.relation.references“Agisoft Metashape: Agisoft Metashape.” Accessed: Apr. 02, 2023. [Online]. Available: https://www.agisoft.com/spa
dc.relation.referencesA. Torralba and A. A. Efros, “Unbiased look at dataset bias,” presented at the Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2011, pp. 1521–1528. doi: 10.1109/CVPR.2011.5995347.spa
dc.relation.referencesA. Buslaev, V. I. Iglovikov, E. Khvedchenya, A. Parinov, M. Druzhinin, and A. A. Kalinin, “Albumentations: Fast and flexible image augmentations,” Inf. Switz., vol. 11, no. 2, 2020, doi: 10.3390/info11020125.spa
dc.relation.referencesR. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, “Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization,” presented at the Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 618–626. doi: 10.1109/ICCV.2017.74.spa
dc.relation.referencesE. D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, and Q. V. Le, “Autoaugment: Learning augmentation strategies from data,” presented at the Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2019, pp. 113–123. doi: 10.1109/CVPR.2019.00020.spa
dc.relation.referencesI. J. Goodfellow et al., “Generative Adversarial Networks,” arXiv.org. Accessed: Jan. 09, 2024. [Online]. Available: https://arxiv.org/abs/1406.2661v1spa
dc.relation.referencesA. Mikołajczyk and M. Grochowski, “Data augmentation for improving deep learning in image classification problem,” presented at the 2018 International Interdisciplinary PhD Workshop, IIPhDW 2018, 2018, pp. 117–122. doi: 10.1109/IIPHDW.2018.8388338.spa
dc.relation.referencesL. Taylor and G. Nitschke, “Improving Deep Learning with Generic Data Augmentation,” presented at the Proceedings of the 2018 IEEE Symposium Series on Computational Intelligence, SSCI 2018, 2019, pp. 1542–1547. doi: 10.1109/SSCI.2018.8628742.spa
dc.relation.referencesO. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Networks for Biomedical Image Segmentation.” arXiv, May 18, 2015. doi: 10.48550/arXiv.1505.04597.spa
dc.relation.referencesL.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, “DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs.” arXiv, May 11, 2017. Accessed: May 13, 2023. [Online]. Available: http://arxiv.org/abs/1606.00915.spa
dc.relation.referencesF. I. Diakogiannis, F. Waldner, P. Caccetta, and C. Wu, “ResUNet-a: A deep learning framework for semantic segmentation of remotely sensed data,” ISPRS J. Photogramm. Remote Sens., vol. 162, pp. 94–114, 2020, doi: 10.1016/j.isprsjprs.2020.01.013.spa
dc.relation.referencesC. H. Sudre, W. Li, T. Vercauteren, S. Ourselin, and M. J. Cardoso, “Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations,” Lect. Notes Comput. Sci. Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinforma., vol. 10553 LNCS, pp. 240–248, 2017, doi: 10.1007/978-3-319-67558-9_28.spa
dc.relation.referencesD. Peng, Y. Zhang, and H. Guan, “End-to-end change detection for high resolution satellite images using improved UNet++,” Remote Sens., vol. 11, no. 11, 2019, doi: 10.3390/rs11111382.spa
dc.relation.referencesX. Yang, X. Li, Y. Ye, R. Y. K. Lau, X. Zhang, and X. Huang, “Road Detection and Centerline Extraction Via Deep Recurrent Convolutional Neural Network U-Net,” IEEE Trans. Geosci. Remote Sens., vol. 57, no. 9, pp. 7209–7220, Sep. 2019, doi: 10.1109/TGRS.2019.2912301.spa
dc.relation.referencesC. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, and C. Liu, “A Survey on Deep Transfer Learning,” in Artificial Neural Networks and Machine Learning – ICANN 2018, V. Kůrková, Y. Manolopoulos, B. Hammer, L. Iliadis, and I. Maglogiannis, Eds., in Lecture Notes in Computer Science. Cham: Springer International Publishing, 2018, pp. 270–279. doi: 10.1007/978-3-030-01424-7_27.spa
dc.relation.referencesR. Giorgiani do Nascimento and F. Viana, “Satellite Image Classification and Segmentation with Transfer Learning,” in AIAA Scitech 2020 Forum, in AIAA SciTech Forum. , American Institute of Aeronautics and Astronautics, 2020. doi: 10.2514/6.2020-1864.spa
dc.relation.referencesM. Wurm, T. Stark, X. X. Zhu, M. Weigand, and H. Taubenböck, “Semantic segmentation of slums in satellite images using transfer learning on fully convolutional neural networks,” ISPRS J. Photogramm. Remote Sens., vol. 150, pp. 59–69, 2019, doi: 10.1016/j.isprsjprs.2019.02.006.spa
dc.relation.referencesT. Chen et al., “Pavement crack detection and recognition using the architecture of segNet,” J. Ind. Inf. Integr., vol. 18, 2020, doi: 10.1016/j.jii.2020.100144.spa
dc.relation.referencesP. Bosilj, E. Aptoula, T. Duckett, and G. Cielniak, “Transfer learning between crop types for semantic segmentation of crops versus weeds in precision agriculture,” J. Field Robot., vol. 37, no. 1, pp. 7–19, 2020, doi: 10.1002/rob.21869.spa
dc.relation.referencesA. Garcia-Garcia, S. Orts-Escolano, S. Oprea, V. Villena-Martinez, P. Martinez-Gonzalez, and J. Garcia-Rodriguez, “A survey on deep learning techniques for image and video semantic segmentation,” Appl. Soft Comput., vol. 70, pp. 41–65, Sep. 2018, doi: 10.1016/j.asoc.2018.05.018.spa
dc.relation.referencesS. S. M. Salehi, D. Erdogmus, and A. Gholipour, “Tversky loss function for image segmentation using 3D fully convolutional deep networks.” arXiv, Jun. 18, 2017. doi: 10.48550/arXiv.1706.05721.spa
dc.relation.referencesM. Cano-Solis, J. R. Ballesteros, and J. W. Branch, “VEPL dataset: A Vegetation Encroachment in Power Line Corridors Dataset for Semantic Segmentation in Drone Aerial Orthomosaics”, Accessed: May 10, 2023. [Online]. Available: https://zenodo.org/record/7800234/preview/ORTHOMOSAICS-DSM-MASK.zipspa
dc.relation.referencesM. Cano-Solis, J. R. Ballesteros, and G. Sanchez-Torres, “VEPL-Net: A Deep Learning Ensemble for Automatic Segmentation of Vegetation Encroachment in Power Line Corridors Using UAV Imagery,” ISPRS Int. J. Geo-Inf., vol. 12, no. 11, Art. no. 11, Nov. 2023, doi: 10.3390/ijgi12110454.spa
dc.relation.referencesH. L. Yang, J. Yuan, D. Lunga, M. Laverdiere, A. Rose, and B. Bhaduri, “Building Extraction at Scale Using Convolutional Neural Network: Mapping of the United States,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 11, no. 8, pp. 2600–2614, 2018, doi: 10.1109/JSTARS.2018.2835377.spa
dc.relation.referencesQ. Zhu, C. Liao, H. Hu, X. Mei, and H. Li, “MAP-Net: Multiple Attending Path Neural Network for Building Footprint Extraction from Remote Sensed Imagery,” IEEE Trans. Geosci. Remote Sens., vol. 59, no. 7, pp. 6169–6181, 2021, doi: 10.1109/TGRS.2020.3026051.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computaciónspa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::006 - Métodos especiales de computaciónspa
dc.subject.lembInteligencia artificial
dc.subject.lembProcesamiento digital de imágenes
dc.subject.lembLíneas eléctricas
dc.subject.proposalGeoAIeng
dc.subject.proposalDronesspa
dc.subject.proposalInvasión por vegetaciónspa
dc.subject.proposalLíneas eléctricasspa
dc.subject.proposalAprendizaje profundospa
dc.subject.proposalSegmentaciónspa
dc.subject.proposalInteligencia artificialspa
dc.subject.proposalAprendizaje automáticospa
dc.subject.proposalUAVeng
dc.subject.proposalVegetation encroachmenteng
dc.subject.proposalPower lineseng
dc.subject.proposalDeep learningeng
dc.subject.proposalSemantic segmentationeng
dc.subject.proposalArtificial intelligenceeng
dc.subject.proposalMachine learningeng
dc.subject.wikidataAprendizaje profundo
dc.titleSegmentación de la invasión por vegetación a líneas de transmisión eléctrica usando aprendizaje profundo en imágenes de dronespa
dc.title.translatedSegmentation of vegetation encroachment on electrical transmission lines using deep learning on drone imageseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMedios de comunicaciónspa
dcterms.audience.professionaldevelopmentPúblico generalspa
dcterms.audience.professionaldevelopmentReceptores de fondos federales y solicitantesspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1037660293.2024.pdf
Tamaño:
1.22 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Analítica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: