Diseño conceptual para el tratamiento de aguas coloreadas provenientes de la industria de alimentos utilizando el sistema peróxido activado con bicarbonato
dc.contributor.advisor | Macías Quiroga, Iván Fernando | |
dc.contributor.advisor | Sanabria González, Nancy Rocío | |
dc.contributor.author | Daza Pacheco, Silvia Lucia | |
dc.contributor.researchgroup | Procesos Químicos, Catalíticos y Biotecnológicos - PQCB | spa |
dc.date.accessioned | 2022-07-05T14:42:09Z | |
dc.date.available | 2022-07-05T14:42:09Z | |
dc.date.issued | 2022 | |
dc.description | gráficos, ilustraciones, tablas. | spa |
dc.description.abstract | Los vertimientos coloreados de la industria alimentaria tienen gran impacto en la calidad del agua de los cuerpos hídricos receptores, puesto que los colorantes, debido a su alto peso molecular, estructuras complejas y gran solubilidad en el agua, tienden a permanecer durante extensos periodos de tiempo en la naturaleza, alterando los procesos fotosintéticos. El ponceau 4R es un colorante sintético azoico, ampliamente utilizado en la industria alimentaria, cosmética y farmacéutica. Este colorante posee un grupo cromóforo de tipo -N=N-, dos anillos nafténicos, tres grupos sulfónicos (-SO3-) y un grupo hidroxilo (-OH), características que los hacen recalcitrante. Los Procesos de Oxidación Avanzados (POAs) han sido ampliamente estudiados para la degradación de compuestos coloreados. Los POAs se basan en la formación in situ de radicales hidroxilos (•OH), especies que reaccionan con la materia orgánica para transformarla a productos oxidados, CO2 y H2O. El sistema peróxido de hidrógeno activado con bicarbonato o sistema BAP (por sus siglas en ingles Bicarbonate Activated Peroxide), es una tecnología emergente que ha demostrado ser eficiente para la oxidación de colorantes, debido a la formación de radicales hidroxilo (•OH) y otras especies reactivas como el ion peroximonocarbonato (HCO4-), radical perhidroxilo (O2•-) y anión radical carbonato (CO3•-); que pueden degradar los contaminantes. El sistema BAP ha sido evaluado principalmente en medio homogéneo, presentando como desventaja la recuperación del catalizador, lo cual ha llevado a la implementación de este sistema de oxidación en medio heterogéneo. Una de las fases activas del sistema BAP es el cobalto, el cual se ha soportado sobre hidróxidos doble laminares (Co-Mg/Al LDH), diatomita, carbón activado y arcilla pilarizada, mostrando excelentes resultados. Sin embargo, todos las investigaciones han sido a nivel de laboratorio y no se han evaluado los costos de este sistema de tratamiento. En el presente trabajo final de maestría se planteó como objetivo general “Proponer un diseño conceptual para el tratamiento de un colorante azoico en medio acuoso empleando el sistema peróxido de hidrógeno activado con bicarbonato (BAP)”, siendo esta la primera fase del diseño de un proceso ingenieril, el cual permite proyectar el sistema de tratamiento BAP a una escala industrial. Los datos experimentales de decoloración catalítica del ponceau 4R en medio homogéneo y heterogéneo fueron el insumo para el desarrollo de este trabajo final, y estos fueron obtenidos en otros estudios realizados en el grupo de investigación. El desarrollo de un diseño conceptual puede ser complejo, debido a las diferentes alternativas de diseño para el mismo proceso, por tanto, para la selección entre el sistema homogéneo ii y heterogéneo se realizó una matriz de priorización para evaluar diferentes criterios a considerar en la implementación de la nueva tecnología de tratamiento de aguas coloreadas, entre estos, el costo anual total, el acceso y reuso de materias, los tiempos de operación y el tamaño de los equipos. Después de comparar el sistema homogéneo y el heterogéneo de acuerdo con cada criterio en la matriz, el sistema homogéneo fue la alternativa que obtuvo el mayor puntaje. Para un caudal de 50,000 m3/año, una concentración inicial de colorante de 50 mg/L, el costo de tratamiento del agua coloreada con el sistema Co2+-BAP se estimó en 10.11 USD/m3 (USD = 3661 COP). Con el fin de garantizar la máxima eficiencia y el menor costo de tratamiento del proceso homogéneo, se evaluó la configuración del sistema de reacción (serie, paralelo), donde nuevamente se utilizó una matriz de selección de alternativas para comparar estas dos opciones. La configuración en serie fue la alternativa que tuvo mayor puntuación y para esta se realizó el diseño conceptual del sistema de tratamiento BAP. | spa |
dc.description.abstract | Colored discharges from the food industry have a great impact on the water quality of receiving water bodies, since dyes, due to their high molecular weight, complex structures and high solubility in water, tend to remain for long periods of time in nature, altering photosynthetic processes. Ponceau 4R is a synthetic azo dye, widely used in the food, cosmetic and pharmaceutical industries. This dye possesses a -N=N- type chromophore group, two naphthenic rings, three sulfonic groups (-SO3-) and a hydroxyl group (-OH), characteristics that make them recalcitrant. The Advanced Oxidation Processes (AOPs) have been widely studied for the degradation of colored compounds. AOPs are based on the in-situ formation of hydroxyl radicals (•OH), species that react with organic matter to transform it to oxidized products, CO2 and H2O. The Bicarbonate Activated Peroxide (BAP) system is an emerging technology that has proven to be efficient for the oxidation of dyes, owing to the formation of hydroxyl radicals (•OH) and other reactive species such as peroxymonocarbonate ion (HCO4-), perhydroxyl radical (O2•-) and carbonate radical anion (CO3•-); which can oxidize pollutants. The BAP system has been evaluated mainly in homogeneous media, presenting as a disadvantage the recovery of the catalyst, which has led to the implementation of this oxidation system in heterogeneous media. One of the active phases of the BAP system is cobalt, which has been supported on double lamellar hydroxides (Co-Mg/Al LDH), diatomite, activated carbon and pillared clays showing excellent results. However, all investigations have been at the laboratory level and the costs of this treatment system have not been evaluated. In this Master's degree Final Project, the general objective was "To propose a conceptual design for the treatment of an azo dye in an aqueous medium using the bicarbonate-activated hydrogen peroxide (BAP) system", this being the first phase of the design of an engineering process, which allows the BAP treatment system to be projected on an industrial scale (scale-up). The experimental data of catalytic decolorization of 4R ponceau in homogeneous and heterogeneous media were the input for the development of this final project, and these were obtained in other studies carried out in the research group. The development of a conceptual design can be complex, due to the different design alternatives for the same process, therefore, for the selection between the homogeneous and heterogeneous system a prioritization matrix (decision-making method) was performed to evaluate different criteria to be considered in the implementation of the new colored water treatment technology, among these, the total annual cost, access and reuse of materials, operation times and size of the equipment. After comparing the homogeneous and heterogeneous systems according to each criterion in the prioritization matrix, the homogeneous system was the alternative with the highest score. For a flow rate of 50,000 m3/year, an initial dye concentration of 50 mg/L, the cost of treating the colored water with the Co2+-BAP system was estimated at 10.11 USD/m3. In order to ensure maximum efficiency and the lowest treatment cost of the homogeneous process, the configuration of the reaction system (series, parallel) was evaluated, where the decision-making method was used again to compare these two options. The series configuration was the highest scoring alternative and the conceptual design of the BAP treatment system. | eng |
dc.description.curriculararea | Química Y Procesos | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ingeniería - Ingeniería Ambiental | spa |
dc.format.extent | x, 94 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/81678 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Manizales | spa |
dc.publisher.department | Departamento de Ingeniería Química | spa |
dc.publisher.faculty | Facultad de Ingeniería y Arquitectura | spa |
dc.publisher.place | Manizales, Colombia | spa |
dc.publisher.program | Manizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Ingeniería Ambiental | spa |
dc.relation.references | Lellis, B., Fávaro-Polonio, C.Z., Pamphile, J.A., and Polonio, J.C. 2019. Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnology Research and Innovation, 3: p. 275-290. | spa |
dc.relation.references | Benincá, C., Peralta-Zamora, P., Camargo, R., Tavares, C., Zanoelo, E., and Igarashi-Mafra, L. 2011. Kinetics of oxidation of ponceau 4R in aqueous solutions by Fenton and photo-Fenton processes. Reaction Kinetics, Mechanisms and Catalysis, 105: p. 293-306. | spa |
dc.relation.references | Arroyave, J., Rodriguez, E., Barón, C., and Moreno, C. 2012. Degradación y mineralización del colorante rojo punzó empleando el reactivo Fenton. Producción + Limpia, 7: p. 48-58. | spa |
dc.relation.references | Robinson, T., McMullan, G., Marchant, R., and Nigam, P. 2001. Remediation of dyes in textile effluent: A critical review on current treatment technologies with a proposed alternative. Bioresource Technology, 77: p. 247-255. | spa |
dc.relation.references | Deng, Y. and Zhao, R. 2015. Advanced Oxidation Processes (AOPs) in wastewater treatment. Current Pollution Reports, 1: p. 167-176. | spa |
dc.relation.references | Jawad, A., Chen, Z., and Yin, G. 2016. Bicarbonate activation of hydrogen peroxide: A new emerging technology for wastewater treatment. Chinese Journal of Catalysis, 37: p. 810-825. | spa |
dc.relation.references | Jawad, A., Li, Y., Lu, X., Chen, Z., Liu, W., and Yin, G. 2015. Controlled leaching with prolonged activity for Co-LDH supported catalyst during treatment of organic dyes using bicarbonate activation of hydrogen peroxide. Journal of Hazardous Materials, 289: p. 165-173. | spa |
dc.relation.references | Zhou, L., Song, W., Chen, Z., and Yin, G. 2013. Degradation of organic pollutants in wastewater by bicarbonate-activated hydrogen peroxide with a supported cobalt catalyst. Environmental science & technology, 47: p. 3833-3839. | spa |
dc.relation.references | Duan, L., Chen, Y., Zhang, K., Luo, H., Huang, J., and Xu, A. 2015. Catalytic degradation of acid orange 7 with hydrogen peroxide using CoxOy-N/GAC catalysts in a bicarbonate aqueous solution. RSC Advances, 5: p. 84303-84310. | spa |
dc.relation.references | Macías-Quiroga, I.F., Pérez-Flórez, A., Arcila, J.S., Giraldo-Goméz, G.I., and Sanabria-Gonzalez, N.R. 2021. Synthesis and characterization of Co/Al-PILCs for the oxidation of an azo dye using the bicarbonate-activated hydrogen peroxide system. Catalysis Letters, In press. | spa |
dc.relation.references | Poyatos, J.M., Muñio, M.M., Almecija, M.C., Torres, J.C., Hontoria, E., and Osorio, F. 2010. Advanced oxidation processes for wastewater treatment: State of the art. Water, Air, and Soil Pollution volume, 205: p. 187-204. | spa |
dc.relation.references | Douglas, J. 1999. Conceptual Design of Chemical Process. McGraw-Hill Science: New York - USA. p. 601. | spa |
dc.relation.references | UNESCO. 2003. Informe de las Naciones Unidas sobre el desarrollo de los recursos hídricos en el mundo 2003. Agua para todos, agua para la vida. Ediciones UNESCO: París, Francia | spa |
dc.relation.references | Benkhaya, S., Rabet, S., and El Harfi, A. 2020. Classifications, properties, recent synthesis and applications of azo dyes. Heliyon, 6(1): p. Article ID e03271. | spa |
dc.relation.references | Henao A., P.A. 2019. Arcillas mezcladas con aluminio y hierro degradarían colorantes | spa |
dc.relation.references | Arroyave, J., Rodriguez, E., Barón, C., and Moreno, C. 2012. Degradación y mineralización del colorante rojo punzó empleando el reactivo Fenton. Producción + Limpia, 7(1): p. 48-58. | spa |
dc.relation.references | Restrepo G., M. 2012. Producción más limpia en la industria alimentaria. Producción + Limpia, 1(1): p. 87-101. | spa |
dc.relation.references | Hernández, M. and Martínez, F. 2019. Congo red dye diversely affects organisms of different trophic levels: a comparative study with microalgae, cladocerans, and zebrafish embryos. Environmental Science and Pollution Research, 26(12): p. 11743-11755. | spa |
dc.relation.references | Barrios Ziolo, L.F., Gaviria Restrepo, L.F., Agudelo, E.A., and Cardona Gallo, S.A. 2017. Estudio de la toxicidad asociada al vertimiento de aguas residuales con presencia de colorantes y pigmentos en el area metropolitana del Valle de Aburra. Revista EIA, 13(26): p. 61-74. | spa |
dc.relation.references | Hao, O.J., Kim, H., and Chiang, P.-C. 2000. Decolorization of wastewater. Critical Reviews in Environmental Science and Technology, 30(4): p. 449-505. | spa |
dc.relation.references | Anjaneyulu, Y., Sreedhara Chary, N., and Samuel Suman Raj, D. 2005. Decolourization of industrial effluents – Available methods and emerging technologies – A Review. Reviews in Environmental Science and Bio/Technology, 4: p. 245-273. | spa |
dc.relation.references | Salem, M.A., Abdel-Halim, S.T., El-Sawy, A.E.M., and Zaki, A.B. 2009. Kinetics of degradation of allura red, ponceau 4R and carmosine dyes with potassium ferrioxalate complex in the presence of H2O2. Chemosphere, 76(8): p. 1088-1093. | spa |
dc.relation.references | Jonstrup, M., Punzi, M., and Mattiasson, B. 2011. Comparison of anaerobic pre-treatment and aerobic post-treatment coupled to photo-Fenton oxidation for degradation of azo dyes. Journal of Photochemistry and Photobiology A: Chemistry, 224(1): p. 55-61. | spa |
dc.relation.references | Oturan, M. and Aaron, J. 2014. Advanced oxidation processes in water/wastewater treatment: Principles and applications. A review. Critical Reviews in Environmental Science and Technology 44(23): p. 2577-2641. | spa |
dc.relation.references | Macías-Quiroga, I.F., Henao-Aguirre, P.A., Marín-Flórez, A., Arredondo-López, S., and Sanabria-González, N.R. 2020. Bibliometric analysis of advanced oxidation processes (AOPs) in wastewater treatment: Global and Ibero-American research trends. Environmental Science and Pollution Research, 28: p. 23791-23811. | spa |
dc.relation.references | Xu, X.-R., Li, H.-B., Wang, W.-H., and Gu, J.-D. 2004. Degradation of dyes in aqueous solutions by the Fenton process. Chemosphere, 57(7): p. 595-600. | spa |
dc.relation.references | Nidheesh, P.V., Gandhimathi, R., and Ramesh, S.T. 2013. Degradation of dyes from aqueous solution by Fenton processes: A review. Environmental Science and Pollution Research, 20(4): p. 2099-2132. | spa |
dc.relation.references | Rache, M.L., García, A.R., Zea, H.R., Silva, A.M.T., Madeira, L.M., and Ramírez, J.H. 2014. Azo-dye orange II degradation by the heterogeneous Fenton-like process using a zeolite Y-Fe catalyst - Kinetics with a model based on the Fermi's equation. Applied Catalysis B: Environmental, 146: p. 192-200. | spa |
dc.relation.references | Nidheesh, P.V., Gandhimathi, R., and Ramesh, S.T. 2013. Degradation of dyes from aqueous solution by Fenton processes: A review. Environmental Science Pollution Research, 20: p. 2099-2132. | spa |
dc.relation.references | Tetay Botia, C.N. and García Herrán, M. 2019. Capítulo 6. Calidad de Agua. In: Estudio Nacional del Agua (ENA) 2018. Instituto de Hidrología, Meteorología y Estudios Ambientales: Bogotá, Colombia. p. 452. | spa |
dc.relation.references | Wang, L., Yao, Y., Zhang, Z., Sun, L., Lu, W., Chen, W., and Chen, H. 2014. Activated carbon fibers as an excellent partner of Fenton catalyst for dyes decolorization by combination of adsorption and oxidation. Chemical Engineering Journal, 251: p. 348-354. | spa |
dc.relation.references | Zhou, L., Song, W., Chen, Z., and Yin, G. 2013. Degradation of organic pollutants in wastewater by bicarbonate-activated hydrogen peroxide with a supported cobalt catalyst. Environmental Science & Technology, 47(8): p. 3833-3839. | spa |
dc.relation.references | Macías-Quiroga, I.F., Rojas-Méndez, E.F., Giraldo-Gómez, G.I., and Sanabria-González, N.R. 2020. Experimental data of a catalytic decolorization of ponceau 4R dye using the cobalt (II)/NaHCO3/H2O2 system in aqueous solution. Data in Brief, 30: p. Article ID 105463. | spa |
dc.relation.references | Muñoz, H., Vallejo, C., Blanco, C., Gil, A., Vicente, M., Ramírez, J., and Galeano, L. 2018. 10 kg scaled-up preparation of Al/Fe-pillared clay CWPO catalysts from concentrated precursors. Green Chemistry, 20: p. 5196-5208. | spa |
dc.relation.references | Baloyi, J., Ntho, T., and Moma, J. 2018. Synthesis and application of pillared clay heterogeneous catalysts for wastewater treatment: A review. RSC Advances, 8: p. 5197–5211. | spa |
dc.relation.references | Jawad, A., Li, Y., Lu, X., Chen, Z., Liu, W., and Yin, G. 2015. Controlled leaching with prolonged activity for Co-LDH supported catalyst during treatment of organic dyes using bicarbonate activation of hydrogen peroxide. Journal of Hazardous Materials, 289: p. 165-173 | spa |
dc.relation.references | Pan, H., Gao, Y., Li, N., Zhou, Y., Lin, Q., and Jiang, J. 2020. Recent advances in bicarbonate-activated hydrogen peroxide system for water treatment. Chemical Engineering Journal, 408: p. Article ID 127332. | spa |
dc.relation.references | Gorissen, H.J. 2003. A general approach for the conceptual design of counter-current reactive separations. Chemical Engineering Science, 58(3-6): p. 809-814. | spa |
dc.relation.references | Douglas, J. 1999. Conceptual Design of Chemical Process. McGraw-Hill Science: New York - USA. p. 601. | spa |
dc.relation.references | Turton, R., Bailie, R., Whiting, W., and Shaeiwitz, J. 2008. Analysis, Synthesis, and Design of Chemical Processes. New Jersey, USA | spa |
dc.relation.references | Ayag, Z. 2007. An integrated approach to evaluating conceptual design alternatives in a new product development environment. International Journal of Production Research, 43(4): p. 687-713. | spa |
dc.relation.references | Hsu, W. and Liu, B. 2000. Conceptual design: Issues and challenges. Computer-Aided Design, 32(14): p. 849-850. | spa |
dc.relation.references | Horváth, I. 2004. Chapter 2. On some Crucial Issues of Computer Support of Conceptual Design. In: Product Engineering - Eco Design, Technologies and Green Energy. Talaba, D. and Roche, T. (Eds). Springer: Dordrecht, Netherlands. p. 123-142. | spa |
dc.relation.references | Frey, D.D., Herder, P.M., Wijnia, Y., Subrahmanian, E., Katsikopoulos, K., and Clausing, D.P. 2009. The Pugh controlled convergence method: Model-based evaluation and implications for design theory. Research in Engineering Design, 41(58): p. 41-58. | spa |
dc.relation.references | Bascaran, E., Bannerot, R.B., and Mistree, F. 1989. Hierarchical selection decision support problems in conceptual design. Engineering Optimization, 14(3): p. 207-238. | spa |
dc.relation.references | Girod, M., Elliott, A.C., Burns, N.D., and Wright, I.C. 2003. Decision making in conceptual engineering design: An empirical investigation. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 27(9): p. 1215-1228. | spa |
dc.relation.references | Junta Municipal de Agua Potable y Alcantarillado de Mazatlán - Jumapam. 2020. Distribución de agua en el planeta. Mazatlán, México. Disponible en http://jumapam.gob.mx/cultura-del-agua/distribucion-de-agua-en-el-planeta/. | spa |
dc.relation.references | Durán Juárez, J.M. and Torres Rodríguez, A. 2006. Los problemas del abastecimiento de agua potable en una ciudad media. Espiral (Guadalajara), XII(36): p. 129-162. | spa |
dc.relation.references | United Nations World Water Assessment Programme. 2017. UN World Water Development Report 2017. Wastewater: An Untapped Resource. Available in https://www.unwater.org/publications/world-water-development-report-2017/. | spa |
dc.relation.references | Barrios-Ziolo, L.F., Gaviria-Restrepo, L.F., and Agudelo, E.A. 2015. Tecnologías para la remoción de colorantes y pigmentos presentes en aguas residuales. Dyna, 82(191): p. 118-126. | spa |
dc.relation.references | IDEAM 2019. Capítulo 6. Calidad de agua. In: Estudio Nacional del Agua (ENA) 2018. García-Herrán, M., Vargas-Martínez, N., Jaramillo-Rodríguez, O., and Marín-Salazar, J. (Eds). Ideam: Bogotá. p. 452. | spa |
dc.relation.references | Rodríguez Pimentel, H. 2017. Las aguas residuales y sus efectos contaminantes. Connecting Waterpeople. Madrid, España.Disponible en https://www.iagua.es/blogs/hector-rodriguez-pimentel/aguas-residuales-y-efectos-contaminantes. | spa |
dc.relation.references | World Health Organization. 2019. Drinking-water. Available in https://www.who.int/news-room/fact-sheets/detail/drinking-water. | spa |
dc.relation.references | Delgado-Gomez, P. 2018. Lo que falta en suministro de agua y alcantarillado en Colombia. Periódico El Espectador (26 de julio de 2018). Medellín, Colombia. Disponible en https://www.elespectador.com/economia/lo-que-falta-en-suministro-de-agua-y-alcantarillado-en-colombia-article-802501/. | spa |
dc.relation.references | Harsha Madiraju, S.V. 2018. Color removal and treatment of dye and sugar wastewater using low cost adsorbents. Master of Science in Environmental Engineering Thesis. Department of Civil and Environmental Engineering. Cleveland State University's. Cleveland, USA. p. 99. | spa |
dc.relation.references | Gürses, A., Açıkyıldız, M., Güneş, K., and Gürses, M. 2016. Chapter 2. Their Structure and Properties. In: Dyes and Pigments. Springer International Publishing: Jaipur - India. p. 13-30. | spa |
dc.relation.references | García Visos, B. 2018. Malva: La historia del color que revolucionó el mundo. Openmind BBVA. España (Julio 13 de 2018). Disponible en https://www.bbvaopenmind.com/ciencia/investigacion/malva-la-historia-del-color-que-revoluciono-el-mundo/. | spa |
dc.relation.references | Villaseñor LLerena, M. 1995. Nuevos métodos fotométricos y electroquímicos de determinación de colorantes amarillos en alimentos. Tesis de Doctorado en Química Analítica. Departamento de Química Analítica. Universidad de Castilla - La Mancha, España. p. 98. | spa |
dc.relation.references | Bolaños V., N., Lutz C., G., and H., H.R.C. 2003. Manual de Laboratorio. Química de Alimentos Editorial Universidad de Costa Rica: San José, Costa Rica. p. 142. | spa |
dc.relation.references | Marcano, D. 2018. Introducción a la química de los colorantes. Caracas | spa |
dc.relation.references | Kobylewski, S. and Jacobson, M.F. 2010. Food Dyes: A Rainbow of Risks. Jacobson, M.F. (Ed). Center for Science in the Public Interest: Washington, USA. p. 1-68. | spa |
dc.relation.references | Kiss, E., Lazic, M., and Boskovic, G. 2004. AlFe-Pillared clay catalyst for phenol oxidation in aqueous solution. Reaction Kinetics and Catalysis Letters, 83(2): p. 221-227. | spa |
dc.relation.references | Pubchem. 2020. Compound Summary Ponceau 4R. National Library of Medicine. National Center for Biotechnology Information. Maryland, USA. Available in https://pubchem.ncbi.nlm.nih.gov/compound/Ponceau-4R. | spa |
dc.relation.references | Elmadfa, I., Muscat, E., and Fritzsche, D. 2011. Tabla de Aditivos: Los Números E. Colorantes, conservantes, acidulantes, antioxidantes, estabilizantes, emulsionantes, edulcorates, etc. Editorial Hispano Europea: Barcelona, España. p. 96. | spa |
dc.relation.references | Arroyave, J., Rodriguez, E., Barón, C., and Moreno, C. 2012. Degradación y mineralización del colorante rojo punzó empleando el reactivo Fenton. Producción + Limpia, 7: p. 48-58. | spa |
dc.relation.references | Zaruma Arias, P.E., Proal Nájera, J.B., Chaires Hernández, I., and Salas-Ayala, H.I. 2018. Los colorantes textiles industriales y tratamientos óptimos de sus efluentes de agua residual: Una breve revisión. Revista de la Facultad de Ciencias Químicas 19: p. 38-47. | spa |
dc.relation.references | Feng, J., Cerniglia, C.E., and Chen, H. 2012. Toxicological significance of azo dye metabolism by human intestinal microbiota. Frontiers in Bioscience-Elite, 4(2): p. 568-586. | spa |
dc.relation.references | Mossmann, A., Dotto, G., Hotza, D., Jahn, S., and Foletto, E. 2019. Preparation of polyethylene–supported zero–valent iron buoyant catalyst and its performance for ponceau 4R decolorization by photo–Fenton process. Journal of Environmental Chemical Engineering, 7(2): p. Article ID 102963. | spa |
dc.relation.references | Shariati, S., Chinevari, A., and Ghorbani, M. 2019. Simultaneous removal of four dye pollutants in mixture using amine functionalized Kit-6 silica mesoporous magnetic nanocomposite. Silicon, 12: p. 1865-1878. | spa |
dc.relation.references | Drumond Chequer, F.M., D., J.D., and Palma de Oliveira, D. 2011. Chapter 2. Azo Dyes and Their Metabolites: Does the Discharge of the Azo Dye into Water Bodies Represent Human and Ecological Risks? In: Advances in Treating Textile Effluent. Hauser, P. (Ed). IntechOpen: London, UK. p. 27-48. | spa |
dc.relation.references | Yaseen, D.A. and Scholz, M. 2018. Textile dye wastewater characteristics and constituents of synthetic effluents: A critical review. International Journal of Environmental Science and Technology, 16: p. 1193-1226. | spa |
dc.relation.references | Al Prol, A.E. 2019. Study of environmental concerns of dyes and recent textile effluents treatment technology: A review. Asian Journal of Fisheries and Aquatic Research, 3(2): p. 1-18. | spa |
dc.relation.references | Seshadri, S., Bishop, P.L., and Mourad Agha, A. 1994. Anaerobic/aerobic treatment of selected azo dyes in wastewater. Waste Management, 14(2): p. 127-137. | spa |
dc.relation.references | Hernández, M. and Martínez, F. 2019. Congo red dye diversely affects organisms of different trophic levels: a comparative study with microalgae, cladocerans, and zebrafish embryos. Environmental Science and Pollution Research, 26: p. 11743-11755. | spa |
dc.relation.references | Razo-Flores, E., Donlon, B., Lettinga, G., and Field, J.A. 1997. Biotransformation and biodegradation of N-substituted aromatics in methanogenic granular sludge. FEMS Microbiology Reviews, 20(3-4): p. 525-538. | spa |
dc.relation.references | Hu, T.-L. and Wu, S.C. 2001. Assessment of the effect of azo dye RP2B on the growth of a nitrogen fixing cyanobacterium – Anabaena sp. Bioresource Technology, 77(1): p. 93-98. | spa |
dc.relation.references | Pinheiro, H.M., Touraud, E., and Thomas, O. 2004. Aromatic amines from azo dye reduction: Status review with emphasis on direct UV spectrophotometric detection in textile industry wastewaters. Dyes and Pigments, 61(2): p. 121-139. | spa |
dc.relation.references | Agudelo, E. 2014. Los colorantes del río Medellín ¿tóxicos para los ecosistemas y el ser humano? Agencia de Noticias para la divulgación de la Ciencia y Tecnología del Instituto ECYT de la Universidad de Salamanca. Salamanca, España. Disponible en https://www.iagua.es/noticias/colombia/14/02/14/los-colorantes-del-rio-medellin-%C2%BFtoxicos-para-los-ecosistemas-y-el-ser-humano-45288. | spa |
dc.relation.references | Bello Espinoza, A., Vásquez, M., Rincón, D., López, O., and Garzón, S. 2005. VIII Fase del programa de seguimiento y monitoreo de efluentes industriales y corrientes superficiales de Bogotá. Secretaría Distrital de Ambiente. Bogotá, Colombia. p. 156. | spa |
dc.relation.references | Abdallah, K.Z. and Hammam, G. 2014. Correlation between biochemical oxygen demand and chemical oxygen demand for various wastewater treatment plants in Egypt to obtain the biodegradability indices. International Journal of Sciences: Basic and Applied Research, 13(1): p. 42-48. | spa |
dc.relation.references | Restrepo, V. Alerta por dos nuevos vertimientos contaminantes en el río Medellín. 2016 [cited 2020 05/10]; Available from: https://www.elcolombiano.com/antioquia/en-el-rio-medellin-siguen-los-vertimientos-contaminantes-GF4153109. | spa |
dc.relation.references | Gutiérrez, D. El azul de la quebrada Manizales era tinta para dulces. 2020 [cited 2020 01/10]; Available from: https://www.lapatria.com/denuncie/el-azul-de-la-quebrada-manizales-era-tinta-para-dulces-452338. | spa |
dc.relation.references | Giraldo, B.E. 2019. Misterio por los rojos en la quebrada Olivares de Manizales. Periódico La Patria (Febrero 5 de 2019). Manizales, Colombia. Disponible en https://www.lapatria.com/medioambiente/misterio-por-los-rojos-en-la-quebrada-olivares-de-manizales-431273. | spa |
dc.relation.references | Oturan, M. and Aaron, J. 2014. Advanced oxidation processes in water/wastewater treatment: Principles and applications. A review. Critical Reviews in Environmental Science and Technology 44: p. 2577-2641. | spa |
dc.relation.references | Niamul, B., Sulekha, K., Rasel, M., and Khatun, F. 2014. Removal of colour from wastewater using locally available charcoal. Proceedings of the 2nd International Conference on Civil Engineering for Sustainable Development (ICCESD-2014): p. 1375-1382. | spa |
dc.relation.references | Gil Pavas, E. 2020. Procesos avanzados de oxidación para la degradación de índigo y materia orgánica de aguas residuales de una industria textil. Tesis Doctorado en Ingeniería - Ingeniería Química. Departamento de Ingeniería Química. Universidad Nacional de Colombia. Manizales, Colombia. p. 323. | spa |
dc.relation.references | Macías-Quiroga, I.F., Henao-Aguirre, P.A., Marín-Flórez, A., Arredondo-López, S., and Sanabria-González, N.R. 2020. Bibliometric analysis of advanced oxidation processes (AOPs) in wastewater treatment: Global and Ibero-American research trends. Environmental Science and Pollution Research, 28: p. 23791-23811. | spa |
dc.relation.references | Dinkar Gosavi, V. and Sharma, S. 2014. A general review on advanced oxidation processes for waste water treatment. Journal of Environmental Science, Computer Science and Engineering & Technology, 3(1): p. 29-39. | spa |
dc.relation.references | Salem, M., Abdel-Halim, S., El-Sawy Ael, H., and Zaki, A. 2009. Kinetics of degradation of allura red, ponceau 4R and carmosine dyes with potassium ferrioxalate complex in the presence of H2O2. Chemosphere, 76: p. 1088-1093. | spa |
dc.relation.references | Centi, G. and Perathoner, S. 2014. Chapter 10. Advanced Oxidation Processes in Water Treatment. In: Handbook of Advanced Methods and Processes in Oxidation Catalysis. Duprez, D. and Cavani, F. (Eds). Imperial College Press: London, UK. p. 251-290. | spa |
dc.relation.references | Bautista, P., Mohedano, A., Gilarranz, M., Casas, J., and Rodriguez, J. 2007. Application of Fenton oxidation to cosmetic wastewaters treatment. Journal of Hazardous Materials, 143(1-2): p. 128–134. | spa |
dc.relation.references | Atalay, S. and Ersöz, G. 2016. Chapter 3. Advanced Oxidation Processes. In: Novel Catalysts in Advanced Oxidation Of Organic Pollutants. Sharma, S.K. (Ed). Springer International Publishing: Jaipur - India. p. 23-32. | spa |
dc.relation.references | Shen, Y., Zhang, Z., and Xiao, K. 2015. Evaluation of cobalt oxide, copper oxide and their solid solutions as heterogeneous catalysts for Fenton-degradation of dye pollutants. RSC Advances, 5(111): p. 91846-91854. | spa |
dc.relation.references | Westphal, K., Saliger, R., Jäger, D., Teevs, L., and Prübe, U. 2013. Degradation of clopyralid by the Fenton reaction. Industrial & Engineering Chemistry Research, 52(39): p. 13924-13929. | spa |
dc.relation.references | Rache, M.L., García, A.R., Zea, H.R., Silva, A.M.T., Madeira, L.M., and Ramírez, J.H. 2014. Azo-dye orange II degradation by the heterogeneous Fenton-like process using a zeolite Y-Fe catalyst - Kinetics with a model based on the Fermi's equation. Applied Catalysis B: Environmental, 146: p. 192-200. | spa |
dc.relation.references | Aleksić, M., Kušić, H., Koprivanac, N., Leszczynska, D., and Božić, A. 2010. Heterogeneous Fenton type processes for the degradation of organic dye pollutant in water — The application of zeolite assisted AOPs. Desalination, 257(1/3): p. 22-29. | spa |
dc.relation.references | Richardson, D.E., Yao, H., Frank, K.M., and Bennett, D.A. 2000. Equilibria, kinetics, and mechanism in the bicarbonate activation of hydrogen peroxide: Oxidation of sulfides by peroxymonocarbonate. Journal of the American Chemical Society, 122(8): p. 1729-1739. | spa |
dc.relation.references | Long, X., Yang, Z., Wang, H., Chen, M., Peng, K., Zeng, Q., and Xu, A. 2012. Selective degradation of orange II with the cobalt(II)–bicarbonate–hydrogen peroxide system. Industrial & Engineering Chemistry Research, 51(37): p. 11998-12003. | spa |
dc.relation.references | Xu, A., Li, X., Ye, S., Yin, G., and Zeng, Q. 2011. Catalyzed oxidative degradation of methylene blue by in situ generated cobalt(II)-bicarbonate complexes with hydrogen peroxide. Applied Catalysis B: Environmental, 102(1-2): p. 37-43. | spa |
dc.relation.references | Li, X., Xiong, Z., Ruan, X., Xia, D., Zeng, Q., and Xu, A. 2012. Kinetics and mechanism of organic pollutants degradation with cobalt–bicarbonate–hydrogen peroxide system: Investigation of the role of substrates. Applied Catalysis A: General, 411: p. 24-30. | spa |
dc.relation.references | Yang, Z., Wang, H., Chen, M., Luo, M., Xia, D., Xu, A., and Zeng, Q. 2012. Fast degradation and biodegradability improvement of reactive brilliant red X-3B by the cobalt(II)/bicarbonate/hydrogen peroxide system. Industrial & Engineering Chemistry Research, 51(34): p. 11104-11111. | spa |
dc.relation.references | Bruland, K.W., Donat, J.R., and Hutchins, D.A. 1991. Interactive influences of bioactive trace metals on biological production in oceanic waters. Limnology and Oceanography, 36(8): p. 1555-1577. | spa |
dc.relation.references | Mnasri-Ghnimi, S. and Frini-Srasra, N. 2019. Removal of heavy metals from aqueous solutions by adsorption using single and mixed pillared clays. Applied Clay Science, 179: p. Article ID 105151. | spa |
dc.relation.references | Marković, M., Marinović, S., Mudrinić, T., Ajduković, M., Jović-Jovičić, N., Mojović, Z., Orlić, J., Milutinović-Nikolić, A., and Banković, P. 2019. Co(II) impregnated Al(III)-pillared montmorillonite–Synthesis, characterization and catalytic properties in Oxone® activation for dye degradation. Applied Clay Science, 182: p. Aricle ID 105276. | spa |
dc.relation.references | Schoonheydt, R.A., Pinnavaia, T., Lagaly, G., and Gangas, N. 1999. Pillared clays and pillared layered solids. Pure and Applied Chemistry, 71(12): p. 2367-2371. | spa |
dc.relation.references | Gil, A. and Vicente, M.A. 2020. Progress and perspectives on pillared clays applied in energetic and environmental remediation processes. Current Opinion in Green and Sustainable Chemistry, 21: p. 56-63. | spa |
dc.relation.references | Rinaldi, N. 2011. Preparation of Ni-Mo catalysts using the pillared clay as a support for hydrodesulfurization of coker naphtha. Widyariset, 14(3): p. 657-664. | spa |
dc.relation.references | Cool, P. and Vansant, E.F. 1998. Chapter 9. Pillared Clays: Preparation, Characterization and Applications. In: Synthesis. Molecular Sieves (Science and Technology). Springer: Berlin, Germany. p. 265-286. | spa |
dc.relation.references | Aouad, A., Mandalia, T., and Bergaya, F. 2005. A novel method of Al-pillared montmorillonite preparation for potential industrial up-scaling. Applied Clay Science, 28(1-4): p. 175-182. | spa |
dc.relation.references | Vreysen, S. 2006. Adsorption of humic substances on poly(hydroxo aluminum) intercalated bentonites and layered double hydroxides. Dissertation Doctoral Thesis. Faculty of Bio-Engineering. Catholic University of Leuven. Leuven, Belgium. p. 158. | spa |
dc.relation.references | Sterte, J. 1988. Hydrothermal treatment of hydroxycation precursor solutions. Catalysis Today, 2(2-3): p. 219-231. | spa |
dc.relation.references | Katdare, S.P., Ramaswamy, V., and Ramaswamy, A.V. 1999. Ultrasonication: A competitive method of intercalation for the preparation of alumina pillared montmorillonite catalys. Catalysis Today, 49(1-3): p. 313-320. | spa |
dc.relation.references | Fetter, G., Heredia, G., Velazquez, L., Maubert, A., and Bosch, P. 1997. Synthesis of aluminum-pillared montmorillonites using highly concentrated clay suspensions. Applied Catalysis A: General, 162(1-2): p. 41-45. | spa |
dc.relation.references | Fogler, H.S. 2016. Elements of Chemical Reaction Engineering. 5th Edition. Prentice Hall International: New Jersey, USA. p. 957. | spa |
dc.relation.references | Levenspiel, O. 1998. Chemical Reaction Engineering. Third Edition. Houston, TX, USA. p. 688. | spa |
dc.relation.references | Sun, S.-P., Li, C.-J., Sun, J.-H., Shi, S.-H., Fan, M.-H., and Zhou, Q. 2009. Decolorization of an azo dye orange G in aqueous solution by Fenton oxidation process: Effect of system parameters and kinetic study. Journal of Hazardous Materials, 161(2): p. 1052-1057. | spa |
dc.relation.references | Santana, C.S., Nicodemos Ramos, M.D., Vieira Velloso, C.C., and Aguiar, A. 2019. Kinetic evaluation of dye decolorization by Fenton processes in the presence of 3-hydroxyanthranilic acid. International Journal of Environmental Research and Public Health, 16(9): p. 1602. | spa |
dc.relation.references | Herney-Ramirez, J., Silva, A.M.T., Vicente, M.A., Costa, C.A., and Madeira, L.M. 2011. Degradation of acid orange 7 using a saponite-based catalyst in wet hydrogen peroxide oxidation: Kinetic study with the Fermi's equation. Applied Catalysis B: Environmental, 101(3-4): p. 197–205. | spa |
dc.relation.references | Guimarães, V., Teixeira, A., Lucas, M., Silva, A., and Peres, J. 2019. Pillared interlayered natural clays as heterogeneous photocatalysts for H2O2 -assisted treatment of a winery wastewater. Separation and Purification Technology, 228: p. Article ID 115768. | spa |
dc.relation.references | Henao-Aguirre, P.A., Macías-Quiroga, I.F., Giraldo-Gómez, G.I., and Sanabria-González, N.R. 2021. Catalytic oxidation of ponceau 4R in aqueous solution using iron-impregnated Al-pillared bentonite: Optimization of the process. Bulletin of Chemical Reaction Engineering & Catalysis, 16(3): p. 491-506. | spa |
dc.relation.references | Ordoñez-Ordoñez, A., Revelo-Romo, D.M., Garcia-Mora, A.M., Hidalgo-Troya, A., and Galeano, L.-A. 2019. MS2 coliphage inactivation by Al/Fe PILC-activated Catalytic Wet Peroxide Oxidation: multiresponse statistical optimization. Heliyon, 5(6): p. e01892. | spa |
dc.relation.references | IngenieriaQuimica.org. 2018. ¿En qué consiste el diseño de procesos? 2018. Disponible en http://www.ingenieriaquimica.org/diseno-procesos. | spa |
dc.relation.references | French, M. 1999. Conceptual Design for Engineers. Third Edition. Springer-Verlag GmbH: Berlin, Germany. p. 252. | spa |
dc.relation.references | Ayag, Z. 2007. An integrated approach to evaluating conceptual design alternatives in a new product development environment. International Journal of Production Research, 43(4): p. 687-713. | spa |
dc.relation.references | Frey, D.D., Herder, P.M., Wijnia, Y., Subrahmanian, E., Katsikopoulos, K., and Clausing, D.P. 2009. The Pugh controlled convergence method: Model-based evaluation and implications for design theory. Research in Engineering Design, 41(58): p. 41-58. | spa |
dc.relation.references | Bascaran, E., Bannerot, R.B., and Mistree, F. 1989. Hierarchical selection decision support problems in conceptual design. Engineering Optimization, 14(3): p. 207-238. | spa |
dc.relation.references | Tian, W., Fan, C., Cui, Z., and Zhang, H. 2020. Conceptual design of a treatment process for centrifugal mother liquor wastewater in the PVC industry. Process Safety and Environmental Protection, 138: p. 208-219. | spa |
dc.relation.references | Park, C.S. 2012. Fundamentals of Engineering Economics. Third Edition. Harlow, UK. p. 696. | spa |
dc.relation.references | Nuño, P. 2017. Costes Operativos. (Septiembre 4 de 2017). Disponible en https://www.emprendepyme.net/costes-operativos.html. | spa |
dc.relation.references | Bashar, R., Gungor, K., Karthikeyan, K.G., and Barak, P. 2018. Cost effectiveness of phosphorus removal processes in municipal wastewater treatment. Chemosphere, 197: p. 280-290. | spa |
dc.relation.references | Dodane, P.-H., Mbéguéré, M., Sow, O., and Strande, L. 2012. Capital and operating costs of full-scale fecal sludge management and wastewater treatment systems in Dakar, Senegal. Environmental Science & Technology, 46(7): p. 3705-3711. | spa |
dc.relation.references | Donati, G. and Paludetto, R. 1997. Scale up of chemical reactors. Catalysis Today, 34(3): p. 483-533. | spa |
dc.relation.references | Zlokarnik, M. 2006. Scale-Up in Chemical Engineering. Zlokarnik, M. (Ed). Wiley-VCH: Weinheim, Germany. p. 296. | spa |
dc.relation.references | Zlokarnik, M. 2010. Scale-Up of Chemical and Biotechnological Processes. Zlokarnik, M. (Ed). Wiley-VCH: Weinheim, Germany. p. 296. | spa |
dc.relation.references | Ruíz Colorado, A.A. 2009. Factores de escala para la producción biotecnológica de etanol carburante. Tesis para optar por el título de Doctorado en Ingeniería. Facultad de Minas, Universidad Nacional de Colombia sede Medellín. Medellín, Colombia. p. 175. | spa |
dc.relation.references | Towler, G. and Sinnott, R. 2021. Chemical Engineering Design: Principles, Practice and Economics of Plant and Process Design. Third Edition. Butterworth-Heinemann-Elsevier Ltd: Boston, USA. p. 1027. | spa |
dc.relation.references | Silla, H. 2003. Chapter 7. Reactor Design. In: Chemical Process Engineering: Design and Economics. Marcel Dekker Inc: New York, USA. p. 504. | spa |
dc.relation.references | McCabe, W.L., Smith, J.C., and Harriot, P. 1993. Unit Operations of Chemical Engineering. Seventh Edition. McGraw-Hill Education: New York - USA. p. 1168. | spa |
dc.relation.references | Doran, P.M. 2013. Chapter 7. Fluid Flow. In: Bioprocess Engineering Principles. Academic Press: New York, USA. p. 201-254. | spa |
dc.relation.references | GilPavas, E., Medina, J., Dobrosz-Gómez, I., and Gómez, M.-Á. 2016. Optimización de los costos de operación del proceso de electro-oxidación para una planta de tratamiento de aguas mediante análisis estadístico de superficie de respuesta. Información Tecnológica, 27(4): p. 73-82. | spa |
dc.relation.references | Couper, J. 2003. Chapter 4. Estimation of Capital Requirements. In: Process Engineering Economics. Heinz, H. (Ed). CRC Press: Arkansas - USA. p. 65-134. | spa |
dc.relation.references | Corpocaldas. 2010. Selección de alternativas para el tratamiento de aguas residuales del interceptor Quebrada Manizales, incluyendo la estabilización, tratamiento y disposicion adecuada de lodos Fase 1. Corporación Autónoma Regional de Caldas-CORPOCALDAS; Universidad Tecnológica de Pereira-UTP; Central Hidroeléctrica de Caldas-CHEC. Manizales, Colombia. p. 32-33. | spa |
dc.relation.references | Yaseen, D.A. and Scholz, M. 2018. Textile dye wastewater characteristics and constituents of synthetic effluents: A critical review. International Journal of Environmental Science and Technology, 16: p. 1193-1226. | spa |
dc.relation.references | Camisón, C., Cruz, S., and González, T. 2006. Capítulo 21. Directorio de Técnicas y Herramientas de la Calidad. In: Gestión de la Calidad: Conceptos, Enfoques, Modelos y Sistemas. Pearson - Prentice Hall: Madrid, España. p. 1222-1310. | spa |
dc.relation.references | Mora Bonilla, K.Y. 2021. Degradación del colorante rojo allura en solución acuosa mediante un proceso avanzado de oxidación. Trabajo Final de Maestría en Ingeniería - Ingeniería Ambiental. Departamento de Ingeniería Química. Universidad Nacional de Colombia Sede Manizales. manizales, Colombia. p. 86. | spa |
dc.relation.references | Kiss, E., Lazic, M., and Boskovic, G. 2004. AlFe-Pillared clay catalyst for phenol oxidation in aqueous solution. Reaction Kinetics and Catalysis Letters, 83(2): p. 221-227. | spa |
dc.relation.references | Muñoz, H., Vallejo, C., Blanco, C., Gil, A., Vicente, M., Ramírez, J., and Galeano, L. 2018. 10 kg scaled-up preparation of Al/Fe-pillared clay CWPO catalysts from concentrated precursors. Green Chemistry, 20: p. 5196-5208. | spa |
dc.relation.references | Yaseen, D.A. and Scholz, M. 2018. Textile dye wastewater characteristics and constituents of synthetic effluents: A critical review. International Journal of Environmental Science and Technology, 16: p. 1193-1226. | spa |
dc.relation.references | Sanabria González, N.R. 2009. Evaluación de los efectos fisicoquímicos y catalíticos en el proceso de síntesis de arcillas pilarizadas (PILC’S) en estado sólido y su viabilidad en la obtención de extrusados. Tesis de Doctorado en Ciencias-Química. Departamento de Química. Universidad Nacional de Colombia. Bogota, Colombia. p. 203. | spa |
dc.relation.references | Selvaraj, S., Mohan, B., Krishna, K., and Jai Prakash, B. 1996. Pillaring of smectites using an aluminium oligomer: A study of pillar density and thermal stability. Applied Clay Science, 10: p. 439-450. | spa |
dc.relation.references | CIENYTEC. 2020. Instrumentos científicos y equipos para laboratorios. Hornos, muflas para laboratorio. Bogotá, Colombia. Disponible en https://www.cienytec.com/lab2muflas.htm. | spa |
dc.relation.references | LabProcess 2021. Información técnica de agitadores. Barcelona, España. Disponible en https://www.labprocess.es/agitador-am40-d-pro. | spa |
dc.relation.references | CHEC/Grupo EPM. 2021. Tarifas y precios. Informe de Sostenibilidad 2020. Manizales, Colombia. Disponible en https://www.sostenibilidadchec.com/tarifas-y-precios/. | spa |
dc.relation.references | Ricaurte Freire, L.E. 2016. Diseño y simulación de un tanque mezclador de 10,000 gal para la elaboración de aceites lubricantes. Trabajo Final de Grado en Ingeniería Mecánica. Departamento de Ingeniería en Mecánica y Ciencias de la Producción. Escuela Superior Politécnica del Litoral. Guayaquil, Ecuador. p. 116. | spa |
dc.relation.references | Zuluaga, S., Ibarra, H.N., Dobrosz-Gómez, I., and Gómez, M.-Á. 2018. Ajuste de parámetros cinéticos y cálculo de sus desviaciones usando Matlab. Formación Universitaria, 11(6): p. 53-62. | spa |
dc.relation.references | McCabe, W.L., Smith, J.C., and Harriot, P. 1993. Unit Operations of Chemical Engineering. Seventh Edition. McGraw-Hill Education: New York - USA. p. 1168. | spa |
dc.relation.references | Vaughan, D.E.W., Pillared clays - a historical perspective. Catalysis Today, 1988. 2(2): p. 187-198. | spa |
dc.relation.references | Turton, R., et al., Chapter 3. Batch Processing, in Analysis, Synthesis and Design of Chemical Processes, R. Turton, Editor. 2008, Pearson Education: Massachusetts, USA. p. 106-135. | spa |
dc.relation.references | Cañizares, P., et al., Costs of the electrochemical oxidation of wastewaters: A comparison with ozonation and Fenton oxidation processes. Journal of Environmental Management, 2009. 90(1): p. 410-420. | spa |
dc.relation.references | Poyatos, J.M., et al., Advanced oxidation processes for wastewater treatment: State of the art. Water, Air, and Soil Pollution, 2010. 205: p. Article N° 187. | spa |
dc.relation.references | Cole-Hamilton, D.J. and R.P. Tooze, Catalyst Separation, Recovery and Recycling: Chemistry and Process Design. Springer. 2006, Dordrecht, Netherlands. | spa |
dc.relation.references | Foutch, G.L. and A.H. Johannes, Reactors in Process Engineering. Encyclopedia of Physical Science and Technology (Third Edition). 2003, Massachusetts, USA: Academic Press. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería | spa |
dc.subject.proposal | Diseño conceptual | spa |
dc.subject.proposal | Procesos avanzados de oxidación | spa |
dc.subject.proposal | Peróxido de hidrógeno activado con bicarbonato | spa |
dc.subject.proposal | Rojo ponceau | spa |
dc.subject.proposal | Costo anual total | spa |
dc.subject.proposal | Conceptual design | eng |
dc.subject.proposal | Advanced oxidation processes | eng |
dc.subject.proposal | Bicarbonate activated hydrogen peroxide | eng |
dc.subject.proposal | Ponceau red | eng |
dc.subject.proposal | Total annual cost | eng |
dc.subject.unesco | Calidad del agua | |
dc.subject.unesco | Water quality | |
dc.title | Diseño conceptual para el tratamiento de aguas coloreadas provenientes de la industria de alimentos utilizando el sistema peróxido activado con bicarbonato | spa |
dc.title.translated | Conceptual design for the treatment of colored water from the food industry using the peroxide activated with bicarbonate system | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Image | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Administradores | spa |
dcterms.audience.professionaldevelopment | Bibliotecarios | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Grupos comunitarios | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Padres y familias | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
dcterms.audience.professionaldevelopment | Responsables políticos | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1026280439.2022.pdf
- Tamaño:
- 3.06 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Ingeniería Ambiental
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 3.98 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: