Diseño conceptual para el tratamiento de aguas coloreadas provenientes de la industria de alimentos utilizando el sistema peróxido activado con bicarbonato

dc.contributor.advisorMacías Quiroga, Iván Fernando
dc.contributor.advisorSanabria González, Nancy Rocío
dc.contributor.authorDaza Pacheco, Silvia Lucia
dc.contributor.researchgroupProcesos Químicos, Catalíticos y Biotecnológicos - PQCBspa
dc.date.accessioned2022-07-05T14:42:09Z
dc.date.available2022-07-05T14:42:09Z
dc.date.issued2022
dc.descriptiongráficos, ilustraciones, tablas.spa
dc.description.abstractLos vertimientos coloreados de la industria alimentaria tienen gran impacto en la calidad del agua de los cuerpos hídricos receptores, puesto que los colorantes, debido a su alto peso molecular, estructuras complejas y gran solubilidad en el agua, tienden a permanecer durante extensos periodos de tiempo en la naturaleza, alterando los procesos fotosintéticos. El ponceau 4R es un colorante sintético azoico, ampliamente utilizado en la industria alimentaria, cosmética y farmacéutica. Este colorante posee un grupo cromóforo de tipo -N=N-, dos anillos nafténicos, tres grupos sulfónicos (-SO3-) y un grupo hidroxilo (-OH), características que los hacen recalcitrante. Los Procesos de Oxidación Avanzados (POAs) han sido ampliamente estudiados para la degradación de compuestos coloreados. Los POAs se basan en la formación in situ de radicales hidroxilos (•OH), especies que reaccionan con la materia orgánica para transformarla a productos oxidados, CO2 y H2O. El sistema peróxido de hidrógeno activado con bicarbonato o sistema BAP (por sus siglas en ingles Bicarbonate Activated Peroxide), es una tecnología emergente que ha demostrado ser eficiente para la oxidación de colorantes, debido a la formación de radicales hidroxilo (•OH) y otras especies reactivas como el ion peroximonocarbonato (HCO4-), radical perhidroxilo (O2•-) y anión radical carbonato (CO3•-); que pueden degradar los contaminantes. El sistema BAP ha sido evaluado principalmente en medio homogéneo, presentando como desventaja la recuperación del catalizador, lo cual ha llevado a la implementación de este sistema de oxidación en medio heterogéneo. Una de las fases activas del sistema BAP es el cobalto, el cual se ha soportado sobre hidróxidos doble laminares (Co-Mg/Al LDH), diatomita, carbón activado y arcilla pilarizada, mostrando excelentes resultados. Sin embargo, todos las investigaciones han sido a nivel de laboratorio y no se han evaluado los costos de este sistema de tratamiento. En el presente trabajo final de maestría se planteó como objetivo general “Proponer un diseño conceptual para el tratamiento de un colorante azoico en medio acuoso empleando el sistema peróxido de hidrógeno activado con bicarbonato (BAP)”, siendo esta la primera fase del diseño de un proceso ingenieril, el cual permite proyectar el sistema de tratamiento BAP a una escala industrial. Los datos experimentales de decoloración catalítica del ponceau 4R en medio homogéneo y heterogéneo fueron el insumo para el desarrollo de este trabajo final, y estos fueron obtenidos en otros estudios realizados en el grupo de investigación. El desarrollo de un diseño conceptual puede ser complejo, debido a las diferentes alternativas de diseño para el mismo proceso, por tanto, para la selección entre el sistema homogéneo ii y heterogéneo se realizó una matriz de priorización para evaluar diferentes criterios a considerar en la implementación de la nueva tecnología de tratamiento de aguas coloreadas, entre estos, el costo anual total, el acceso y reuso de materias, los tiempos de operación y el tamaño de los equipos. Después de comparar el sistema homogéneo y el heterogéneo de acuerdo con cada criterio en la matriz, el sistema homogéneo fue la alternativa que obtuvo el mayor puntaje. Para un caudal de 50,000 m3/año, una concentración inicial de colorante de 50 mg/L, el costo de tratamiento del agua coloreada con el sistema Co2+-BAP se estimó en 10.11 USD/m3 (USD = 3661 COP). Con el fin de garantizar la máxima eficiencia y el menor costo de tratamiento del proceso homogéneo, se evaluó la configuración del sistema de reacción (serie, paralelo), donde nuevamente se utilizó una matriz de selección de alternativas para comparar estas dos opciones. La configuración en serie fue la alternativa que tuvo mayor puntuación y para esta se realizó el diseño conceptual del sistema de tratamiento BAP.spa
dc.description.abstractColored discharges from the food industry have a great impact on the water quality of receiving water bodies, since dyes, due to their high molecular weight, complex structures and high solubility in water, tend to remain for long periods of time in nature, altering photosynthetic processes. Ponceau 4R is a synthetic azo dye, widely used in the food, cosmetic and pharmaceutical industries. This dye possesses a -N=N- type chromophore group, two naphthenic rings, three sulfonic groups (-SO3-) and a hydroxyl group (-OH), characteristics that make them recalcitrant. The Advanced Oxidation Processes (AOPs) have been widely studied for the degradation of colored compounds. AOPs are based on the in-situ formation of hydroxyl radicals (•OH), species that react with organic matter to transform it to oxidized products, CO2 and H2O. The Bicarbonate Activated Peroxide (BAP) system is an emerging technology that has proven to be efficient for the oxidation of dyes, owing to the formation of hydroxyl radicals (•OH) and other reactive species such as peroxymonocarbonate ion (HCO4-), perhydroxyl radical (O2•-) and carbonate radical anion (CO3•-); which can oxidize pollutants. The BAP system has been evaluated mainly in homogeneous media, presenting as a disadvantage the recovery of the catalyst, which has led to the implementation of this oxidation system in heterogeneous media. One of the active phases of the BAP system is cobalt, which has been supported on double lamellar hydroxides (Co-Mg/Al LDH), diatomite, activated carbon and pillared clays showing excellent results. However, all investigations have been at the laboratory level and the costs of this treatment system have not been evaluated. In this Master's degree Final Project, the general objective was "To propose a conceptual design for the treatment of an azo dye in an aqueous medium using the bicarbonate-activated hydrogen peroxide (BAP) system", this being the first phase of the design of an engineering process, which allows the BAP treatment system to be projected on an industrial scale (scale-up). The experimental data of catalytic decolorization of 4R ponceau in homogeneous and heterogeneous media were the input for the development of this final project, and these were obtained in other studies carried out in the research group. The development of a conceptual design can be complex, due to the different design alternatives for the same process, therefore, for the selection between the homogeneous and heterogeneous system a prioritization matrix (decision-making method) was performed to evaluate different criteria to be considered in the implementation of the new colored water treatment technology, among these, the total annual cost, access and reuse of materials, operation times and size of the equipment. After comparing the homogeneous and heterogeneous systems according to each criterion in the prioritization matrix, the homogeneous system was the alternative with the highest score. For a flow rate of 50,000 m3/year, an initial dye concentration of 50 mg/L, the cost of treating the colored water with the Co2+-BAP system was estimated at 10.11 USD/m3. In order to ensure maximum efficiency and the lowest treatment cost of the homogeneous process, the configuration of the reaction system (series, parallel) was evaluated, where the decision-making method was used again to compare these two options. The series configuration was the highest scoring alternative and the conceptual design of the BAP treatment system.eng
dc.description.curricularareaQuímica Y Procesosspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería Ambientalspa
dc.format.extentx, 94 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81678
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizalesspa
dc.publisher.departmentDepartamento de Ingeniería Químicaspa
dc.publisher.facultyFacultad de Ingeniería y Arquitecturaspa
dc.publisher.placeManizales, Colombiaspa
dc.publisher.programManizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Ingeniería Ambientalspa
dc.relation.referencesLellis, B., Fávaro-Polonio, C.Z., Pamphile, J.A., and Polonio, J.C. 2019. Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnology Research and Innovation, 3: p. 275-290.spa
dc.relation.referencesBenincá, C., Peralta-Zamora, P., Camargo, R., Tavares, C., Zanoelo, E., and Igarashi-Mafra, L. 2011. Kinetics of oxidation of ponceau 4R in aqueous solutions by Fenton and photo-Fenton processes. Reaction Kinetics, Mechanisms and Catalysis, 105: p. 293-306.spa
dc.relation.referencesArroyave, J., Rodriguez, E., Barón, C., and Moreno, C. 2012. Degradación y mineralización del colorante rojo punzó empleando el reactivo Fenton. Producción + Limpia, 7: p. 48-58.spa
dc.relation.referencesRobinson, T., McMullan, G., Marchant, R., and Nigam, P. 2001. Remediation of dyes in textile effluent: A critical review on current treatment technologies with a proposed alternative. Bioresource Technology, 77: p. 247-255.spa
dc.relation.referencesDeng, Y. and Zhao, R. 2015. Advanced Oxidation Processes (AOPs) in wastewater treatment. Current Pollution Reports, 1: p. 167-176.spa
dc.relation.referencesJawad, A., Chen, Z., and Yin, G. 2016. Bicarbonate activation of hydrogen peroxide: A new emerging technology for wastewater treatment. Chinese Journal of Catalysis, 37: p. 810-825.spa
dc.relation.referencesJawad, A., Li, Y., Lu, X., Chen, Z., Liu, W., and Yin, G. 2015. Controlled leaching with prolonged activity for Co-LDH supported catalyst during treatment of organic dyes using bicarbonate activation of hydrogen peroxide. Journal of Hazardous Materials, 289: p. 165-173.spa
dc.relation.referencesZhou, L., Song, W., Chen, Z., and Yin, G. 2013. Degradation of organic pollutants in wastewater by bicarbonate-activated hydrogen peroxide with a supported cobalt catalyst. Environmental science & technology, 47: p. 3833-3839.spa
dc.relation.referencesDuan, L., Chen, Y., Zhang, K., Luo, H., Huang, J., and Xu, A. 2015. Catalytic degradation of acid orange 7 with hydrogen peroxide using CoxOy-N/GAC catalysts in a bicarbonate aqueous solution. RSC Advances, 5: p. 84303-84310.spa
dc.relation.referencesMacías-Quiroga, I.F., Pérez-Flórez, A., Arcila, J.S., Giraldo-Goméz, G.I., and Sanabria-Gonzalez, N.R. 2021. Synthesis and characterization of Co/Al-PILCs for the oxidation of an azo dye using the bicarbonate-activated hydrogen peroxide system. Catalysis Letters, In press.spa
dc.relation.referencesPoyatos, J.M., Muñio, M.M., Almecija, M.C., Torres, J.C., Hontoria, E., and Osorio, F. 2010. Advanced oxidation processes for wastewater treatment: State of the art. Water, Air, and Soil Pollution volume, 205: p. 187-204.spa
dc.relation.referencesDouglas, J. 1999. Conceptual Design of Chemical Process. McGraw-Hill Science: New York - USA. p. 601.spa
dc.relation.referencesUNESCO. 2003. Informe de las Naciones Unidas sobre el desarrollo de los recursos hídricos en el mundo 2003. Agua para todos, agua para la vida. Ediciones UNESCO: París, Franciaspa
dc.relation.referencesBenkhaya, S., Rabet, S., and El Harfi, A. 2020. Classifications, properties, recent synthesis and applications of azo dyes. Heliyon, 6(1): p. Article ID e03271.spa
dc.relation.referencesHenao A., P.A. 2019. Arcillas mezcladas con aluminio y hierro degradarían colorantesspa
dc.relation.referencesArroyave, J., Rodriguez, E., Barón, C., and Moreno, C. 2012. Degradación y mineralización del colorante rojo punzó empleando el reactivo Fenton. Producción + Limpia, 7(1): p. 48-58.spa
dc.relation.referencesRestrepo G., M. 2012. Producción más limpia en la industria alimentaria. Producción + Limpia, 1(1): p. 87-101.spa
dc.relation.referencesHernández, M. and Martínez, F. 2019. Congo red dye diversely affects organisms of different trophic levels: a comparative study with microalgae, cladocerans, and zebrafish embryos. Environmental Science and Pollution Research, 26(12): p. 11743-11755.spa
dc.relation.referencesBarrios Ziolo, L.F., Gaviria Restrepo, L.F., Agudelo, E.A., and Cardona Gallo, S.A. 2017. Estudio de la toxicidad asociada al vertimiento de aguas residuales con presencia de colorantes y pigmentos en el area metropolitana del Valle de Aburra. Revista EIA, 13(26): p. 61-74.spa
dc.relation.referencesHao, O.J., Kim, H., and Chiang, P.-C. 2000. Decolorization of wastewater. Critical Reviews in Environmental Science and Technology, 30(4): p. 449-505.spa
dc.relation.referencesAnjaneyulu, Y., Sreedhara Chary, N., and Samuel Suman Raj, D. 2005. Decolourization of industrial effluents – Available methods and emerging technologies – A Review. Reviews in Environmental Science and Bio/Technology, 4: p. 245-273.spa
dc.relation.referencesSalem, M.A., Abdel-Halim, S.T., El-Sawy, A.E.M., and Zaki, A.B. 2009. Kinetics of degradation of allura red, ponceau 4R and carmosine dyes with potassium ferrioxalate complex in the presence of H2O2. Chemosphere, 76(8): p. 1088-1093.spa
dc.relation.referencesJonstrup, M., Punzi, M., and Mattiasson, B. 2011. Comparison of anaerobic pre-treatment and aerobic post-treatment coupled to photo-Fenton oxidation for degradation of azo dyes. Journal of Photochemistry and Photobiology A: Chemistry, 224(1): p. 55-61.spa
dc.relation.referencesOturan, M. and Aaron, J. 2014. Advanced oxidation processes in water/wastewater treatment: Principles and applications. A review. Critical Reviews in Environmental Science and Technology 44(23): p. 2577-2641.spa
dc.relation.referencesMacías-Quiroga, I.F., Henao-Aguirre, P.A., Marín-Flórez, A., Arredondo-López, S., and Sanabria-González, N.R. 2020. Bibliometric analysis of advanced oxidation processes (AOPs) in wastewater treatment: Global and Ibero-American research trends. Environmental Science and Pollution Research, 28: p. 23791-23811.spa
dc.relation.referencesXu, X.-R., Li, H.-B., Wang, W.-H., and Gu, J.-D. 2004. Degradation of dyes in aqueous solutions by the Fenton process. Chemosphere, 57(7): p. 595-600.spa
dc.relation.referencesNidheesh, P.V., Gandhimathi, R., and Ramesh, S.T. 2013. Degradation of dyes from aqueous solution by Fenton processes: A review. Environmental Science and Pollution Research, 20(4): p. 2099-2132.spa
dc.relation.referencesRache, M.L., García, A.R., Zea, H.R., Silva, A.M.T., Madeira, L.M., and Ramírez, J.H. 2014. Azo-dye orange II degradation by the heterogeneous Fenton-like process using a zeolite Y-Fe catalyst - Kinetics with a model based on the Fermi's equation. Applied Catalysis B: Environmental, 146: p. 192-200.spa
dc.relation.referencesNidheesh, P.V., Gandhimathi, R., and Ramesh, S.T. 2013. Degradation of dyes from aqueous solution by Fenton processes: A review. Environmental Science Pollution Research, 20: p. 2099-2132.spa
dc.relation.referencesTetay Botia, C.N. and García Herrán, M. 2019. Capítulo 6. Calidad de Agua. In: Estudio Nacional del Agua (ENA) 2018. Instituto de Hidrología, Meteorología y Estudios Ambientales: Bogotá, Colombia. p. 452.spa
dc.relation.referencesWang, L., Yao, Y., Zhang, Z., Sun, L., Lu, W., Chen, W., and Chen, H. 2014. Activated carbon fibers as an excellent partner of Fenton catalyst for dyes decolorization by combination of adsorption and oxidation. Chemical Engineering Journal, 251: p. 348-354.spa
dc.relation.referencesZhou, L., Song, W., Chen, Z., and Yin, G. 2013. Degradation of organic pollutants in wastewater by bicarbonate-activated hydrogen peroxide with a supported cobalt catalyst. Environmental Science & Technology, 47(8): p. 3833-3839.spa
dc.relation.referencesMacías-Quiroga, I.F., Rojas-Méndez, E.F., Giraldo-Gómez, G.I., and Sanabria-González, N.R. 2020. Experimental data of a catalytic decolorization of ponceau 4R dye using the cobalt (II)/NaHCO3/H2O2 system in aqueous solution. Data in Brief, 30: p. Article ID 105463.spa
dc.relation.referencesMuñoz, H., Vallejo, C., Blanco, C., Gil, A., Vicente, M., Ramírez, J., and Galeano, L. 2018. 10 kg scaled-up preparation of Al/Fe-pillared clay CWPO catalysts from concentrated precursors. Green Chemistry, 20: p. 5196-5208.spa
dc.relation.referencesBaloyi, J., Ntho, T., and Moma, J. 2018. Synthesis and application of pillared clay heterogeneous catalysts for wastewater treatment: A review. RSC Advances, 8: p. 5197–5211.spa
dc.relation.referencesJawad, A., Li, Y., Lu, X., Chen, Z., Liu, W., and Yin, G. 2015. Controlled leaching with prolonged activity for Co-LDH supported catalyst during treatment of organic dyes using bicarbonate activation of hydrogen peroxide. Journal of Hazardous Materials, 289: p. 165-173spa
dc.relation.referencesPan, H., Gao, Y., Li, N., Zhou, Y., Lin, Q., and Jiang, J. 2020. Recent advances in bicarbonate-activated hydrogen peroxide system for water treatment. Chemical Engineering Journal, 408: p. Article ID 127332.spa
dc.relation.referencesGorissen, H.J. 2003. A general approach for the conceptual design of counter-current reactive separations. Chemical Engineering Science, 58(3-6): p. 809-814.spa
dc.relation.referencesDouglas, J. 1999. Conceptual Design of Chemical Process. McGraw-Hill Science: New York - USA. p. 601.spa
dc.relation.referencesTurton, R., Bailie, R., Whiting, W., and Shaeiwitz, J. 2008. Analysis, Synthesis, and Design of Chemical Processes. New Jersey, USAspa
dc.relation.referencesAyag, Z. 2007. An integrated approach to evaluating conceptual design alternatives in a new product development environment. International Journal of Production Research, 43(4): p. 687-713.spa
dc.relation.referencesHsu, W. and Liu, B. 2000. Conceptual design: Issues and challenges. Computer-Aided Design, 32(14): p. 849-850.spa
dc.relation.referencesHorváth, I. 2004. Chapter 2. On some Crucial Issues of Computer Support of Conceptual Design. In: Product Engineering - Eco Design, Technologies and Green Energy. Talaba, D. and Roche, T. (Eds). Springer: Dordrecht, Netherlands. p. 123-142.spa
dc.relation.referencesFrey, D.D., Herder, P.M., Wijnia, Y., Subrahmanian, E., Katsikopoulos, K., and Clausing, D.P. 2009. The Pugh controlled convergence method: Model-based evaluation and implications for design theory. Research in Engineering Design, 41(58): p. 41-58.spa
dc.relation.referencesBascaran, E., Bannerot, R.B., and Mistree, F. 1989. Hierarchical selection decision support problems in conceptual design. Engineering Optimization, 14(3): p. 207-238.spa
dc.relation.referencesGirod, M., Elliott, A.C., Burns, N.D., and Wright, I.C. 2003. Decision making in conceptual engineering design: An empirical investigation. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 27(9): p. 1215-1228.spa
dc.relation.referencesJunta Municipal de Agua Potable y Alcantarillado de Mazatlán - Jumapam. 2020. Distribución de agua en el planeta. Mazatlán, México. Disponible en http://jumapam.gob.mx/cultura-del-agua/distribucion-de-agua-en-el-planeta/.spa
dc.relation.referencesDurán Juárez, J.M. and Torres Rodríguez, A. 2006. Los problemas del abastecimiento de agua potable en una ciudad media. Espiral (Guadalajara), XII(36): p. 129-162.spa
dc.relation.referencesUnited Nations World Water Assessment Programme. 2017. UN World Water Development Report 2017. Wastewater: An Untapped Resource. Available in https://www.unwater.org/publications/world-water-development-report-2017/.spa
dc.relation.referencesBarrios-Ziolo, L.F., Gaviria-Restrepo, L.F., and Agudelo, E.A. 2015. Tecnologías para la remoción de colorantes y pigmentos presentes en aguas residuales. Dyna, 82(191): p. 118-126.spa
dc.relation.referencesIDEAM 2019. Capítulo 6. Calidad de agua. In: Estudio Nacional del Agua (ENA) 2018. García-Herrán, M., Vargas-Martínez, N., Jaramillo-Rodríguez, O., and Marín-Salazar, J. (Eds). Ideam: Bogotá. p. 452.spa
dc.relation.referencesRodríguez Pimentel, H. 2017. Las aguas residuales y sus efectos contaminantes. Connecting Waterpeople. Madrid, España.Disponible en https://www.iagua.es/blogs/hector-rodriguez-pimentel/aguas-residuales-y-efectos-contaminantes.spa
dc.relation.referencesWorld Health Organization. 2019. Drinking-water. Available in https://www.who.int/news-room/fact-sheets/detail/drinking-water.spa
dc.relation.referencesDelgado-Gomez, P. 2018. Lo que falta en suministro de agua y alcantarillado en Colombia. Periódico El Espectador (26 de julio de 2018). Medellín, Colombia. Disponible en https://www.elespectador.com/economia/lo-que-falta-en-suministro-de-agua-y-alcantarillado-en-colombia-article-802501/.spa
dc.relation.referencesHarsha Madiraju, S.V. 2018. Color removal and treatment of dye and sugar wastewater using low cost adsorbents. Master of Science in Environmental Engineering Thesis. Department of Civil and Environmental Engineering. Cleveland State University's. Cleveland, USA. p. 99.spa
dc.relation.referencesGürses, A., Açıkyıldız, M., Güneş, K., and Gürses, M. 2016. Chapter 2. Their Structure and Properties. In: Dyes and Pigments. Springer International Publishing: Jaipur - India. p. 13-30.spa
dc.relation.referencesGarcía Visos, B. 2018. Malva: La historia del color que revolucionó el mundo. Openmind BBVA. España (Julio 13 de 2018). Disponible en https://www.bbvaopenmind.com/ciencia/investigacion/malva-la-historia-del-color-que-revoluciono-el-mundo/.spa
dc.relation.referencesVillaseñor LLerena, M. 1995. Nuevos métodos fotométricos y electroquímicos de determinación de colorantes amarillos en alimentos. Tesis de Doctorado en Química Analítica. Departamento de Química Analítica. Universidad de Castilla - La Mancha, España. p. 98.spa
dc.relation.referencesBolaños V., N., Lutz C., G., and H., H.R.C. 2003. Manual de Laboratorio. Química de Alimentos Editorial Universidad de Costa Rica: San José, Costa Rica. p. 142.spa
dc.relation.referencesMarcano, D. 2018. Introducción a la química de los colorantes. Caracasspa
dc.relation.referencesKobylewski, S. and Jacobson, M.F. 2010. Food Dyes: A Rainbow of Risks. Jacobson, M.F. (Ed). Center for Science in the Public Interest: Washington, USA. p. 1-68.spa
dc.relation.referencesKiss, E., Lazic, M., and Boskovic, G. 2004. AlFe-Pillared clay catalyst for phenol oxidation in aqueous solution. Reaction Kinetics and Catalysis Letters, 83(2): p. 221-227.spa
dc.relation.referencesPubchem. 2020. Compound Summary Ponceau 4R. National Library of Medicine. National Center for Biotechnology Information. Maryland, USA. Available in https://pubchem.ncbi.nlm.nih.gov/compound/Ponceau-4R.spa
dc.relation.referencesElmadfa, I., Muscat, E., and Fritzsche, D. 2011. Tabla de Aditivos: Los Números E. Colorantes, conservantes, acidulantes, antioxidantes, estabilizantes, emulsionantes, edulcorates, etc. Editorial Hispano Europea: Barcelona, España. p. 96.spa
dc.relation.referencesArroyave, J., Rodriguez, E., Barón, C., and Moreno, C. 2012. Degradación y mineralización del colorante rojo punzó empleando el reactivo Fenton. Producción + Limpia, 7: p. 48-58.spa
dc.relation.referencesZaruma Arias, P.E., Proal Nájera, J.B., Chaires Hernández, I., and Salas-Ayala, H.I. 2018. Los colorantes textiles industriales y tratamientos óptimos de sus efluentes de agua residual: Una breve revisión. Revista de la Facultad de Ciencias Químicas 19: p. 38-47.spa
dc.relation.referencesFeng, J., Cerniglia, C.E., and Chen, H. 2012. Toxicological significance of azo dye metabolism by human intestinal microbiota. Frontiers in Bioscience-Elite, 4(2): p. 568-586.spa
dc.relation.referencesMossmann, A., Dotto, G., Hotza, D., Jahn, S., and Foletto, E. 2019. Preparation of polyethylene–supported zero–valent iron buoyant catalyst and its performance for ponceau 4R decolorization by photo–Fenton process. Journal of Environmental Chemical Engineering, 7(2): p. Article ID 102963.spa
dc.relation.referencesShariati, S., Chinevari, A., and Ghorbani, M. 2019. Simultaneous removal of four dye pollutants in mixture using amine functionalized Kit-6 silica mesoporous magnetic nanocomposite. Silicon, 12: p. 1865-1878.spa
dc.relation.referencesDrumond Chequer, F.M., D., J.D., and Palma de Oliveira, D. 2011. Chapter 2. Azo Dyes and Their Metabolites: Does the Discharge of the Azo Dye into Water Bodies Represent Human and Ecological Risks? In: Advances in Treating Textile Effluent. Hauser, P. (Ed). IntechOpen: London, UK. p. 27-48.spa
dc.relation.referencesYaseen, D.A. and Scholz, M. 2018. Textile dye wastewater characteristics and constituents of synthetic effluents: A critical review. International Journal of Environmental Science and Technology, 16: p. 1193-1226.spa
dc.relation.referencesAl Prol, A.E. 2019. Study of environmental concerns of dyes and recent textile effluents treatment technology: A review. Asian Journal of Fisheries and Aquatic Research, 3(2): p. 1-18.spa
dc.relation.referencesSeshadri, S., Bishop, P.L., and Mourad Agha, A. 1994. Anaerobic/aerobic treatment of selected azo dyes in wastewater. Waste Management, 14(2): p. 127-137.spa
dc.relation.referencesHernández, M. and Martínez, F. 2019. Congo red dye diversely affects organisms of different trophic levels: a comparative study with microalgae, cladocerans, and zebrafish embryos. Environmental Science and Pollution Research, 26: p. 11743-11755.spa
dc.relation.referencesRazo-Flores, E., Donlon, B., Lettinga, G., and Field, J.A. 1997. Biotransformation and biodegradation of N-substituted aromatics in methanogenic granular sludge. FEMS Microbiology Reviews, 20(3-4): p. 525-538.spa
dc.relation.referencesHu, T.-L. and Wu, S.C. 2001. Assessment of the effect of azo dye RP2B on the growth of a nitrogen fixing cyanobacterium – Anabaena sp. Bioresource Technology, 77(1): p. 93-98.spa
dc.relation.referencesPinheiro, H.M., Touraud, E., and Thomas, O. 2004. Aromatic amines from azo dye reduction: Status review with emphasis on direct UV spectrophotometric detection in textile industry wastewaters. Dyes and Pigments, 61(2): p. 121-139.spa
dc.relation.referencesAgudelo, E. 2014. Los colorantes del río Medellín ¿tóxicos para los ecosistemas y el ser humano? Agencia de Noticias para la divulgación de la Ciencia y Tecnología del Instituto ECYT de la Universidad de Salamanca. Salamanca, España. Disponible en https://www.iagua.es/noticias/colombia/14/02/14/los-colorantes-del-rio-medellin-%C2%BFtoxicos-para-los-ecosistemas-y-el-ser-humano-45288.spa
dc.relation.referencesBello Espinoza, A., Vásquez, M., Rincón, D., López, O., and Garzón, S. 2005. VIII Fase del programa de seguimiento y monitoreo de efluentes industriales y corrientes superficiales de Bogotá. Secretaría Distrital de Ambiente. Bogotá, Colombia. p. 156.spa
dc.relation.referencesAbdallah, K.Z. and Hammam, G. 2014. Correlation between biochemical oxygen demand and chemical oxygen demand for various wastewater treatment plants in Egypt to obtain the biodegradability indices. International Journal of Sciences: Basic and Applied Research, 13(1): p. 42-48.spa
dc.relation.referencesRestrepo, V. Alerta por dos nuevos vertimientos contaminantes en el río Medellín. 2016 [cited 2020 05/10]; Available from: https://www.elcolombiano.com/antioquia/en-el-rio-medellin-siguen-los-vertimientos-contaminantes-GF4153109.spa
dc.relation.referencesGutiérrez, D. El azul de la quebrada Manizales era tinta para dulces. 2020 [cited 2020 01/10]; Available from: https://www.lapatria.com/denuncie/el-azul-de-la-quebrada-manizales-era-tinta-para-dulces-452338.spa
dc.relation.referencesGiraldo, B.E. 2019. Misterio por los rojos en la quebrada Olivares de Manizales. Periódico La Patria (Febrero 5 de 2019). Manizales, Colombia. Disponible en https://www.lapatria.com/medioambiente/misterio-por-los-rojos-en-la-quebrada-olivares-de-manizales-431273.spa
dc.relation.referencesOturan, M. and Aaron, J. 2014. Advanced oxidation processes in water/wastewater treatment: Principles and applications. A review. Critical Reviews in Environmental Science and Technology 44: p. 2577-2641.spa
dc.relation.referencesNiamul, B., Sulekha, K., Rasel, M., and Khatun, F. 2014. Removal of colour from wastewater using locally available charcoal. Proceedings of the 2nd International Conference on Civil Engineering for Sustainable Development (ICCESD-2014): p. 1375-1382.spa
dc.relation.referencesGil Pavas, E. 2020. Procesos avanzados de oxidación para la degradación de índigo y materia orgánica de aguas residuales de una industria textil. Tesis Doctorado en Ingeniería - Ingeniería Química. Departamento de Ingeniería Química. Universidad Nacional de Colombia. Manizales, Colombia. p. 323.spa
dc.relation.referencesMacías-Quiroga, I.F., Henao-Aguirre, P.A., Marín-Flórez, A., Arredondo-López, S., and Sanabria-González, N.R. 2020. Bibliometric analysis of advanced oxidation processes (AOPs) in wastewater treatment: Global and Ibero-American research trends. Environmental Science and Pollution Research, 28: p. 23791-23811.spa
dc.relation.referencesDinkar Gosavi, V. and Sharma, S. 2014. A general review on advanced oxidation processes for waste water treatment. Journal of Environmental Science, Computer Science and Engineering & Technology, 3(1): p. 29-39.spa
dc.relation.referencesSalem, M., Abdel-Halim, S., El-Sawy Ael, H., and Zaki, A. 2009. Kinetics of degradation of allura red, ponceau 4R and carmosine dyes with potassium ferrioxalate complex in the presence of H2O2. Chemosphere, 76: p. 1088-1093.spa
dc.relation.referencesCenti, G. and Perathoner, S. 2014. Chapter 10. Advanced Oxidation Processes in Water Treatment. In: Handbook of Advanced Methods and Processes in Oxidation Catalysis. Duprez, D. and Cavani, F. (Eds). Imperial College Press: London, UK. p. 251-290.spa
dc.relation.referencesBautista, P., Mohedano, A., Gilarranz, M., Casas, J., and Rodriguez, J. 2007. Application of Fenton oxidation to cosmetic wastewaters treatment. Journal of Hazardous Materials, 143(1-2): p. 128–134.spa
dc.relation.referencesAtalay, S. and Ersöz, G. 2016. Chapter 3. Advanced Oxidation Processes. In: Novel Catalysts in Advanced Oxidation Of Organic Pollutants. Sharma, S.K. (Ed). Springer International Publishing: Jaipur - India. p. 23-32.spa
dc.relation.referencesShen, Y., Zhang, Z., and Xiao, K. 2015. Evaluation of cobalt oxide, copper oxide and their solid solutions as heterogeneous catalysts for Fenton-degradation of dye pollutants. RSC Advances, 5(111): p. 91846-91854.spa
dc.relation.referencesWestphal, K., Saliger, R., Jäger, D., Teevs, L., and Prübe, U. 2013. Degradation of clopyralid by the Fenton reaction. Industrial & Engineering Chemistry Research, 52(39): p. 13924-13929.spa
dc.relation.referencesRache, M.L., García, A.R., Zea, H.R., Silva, A.M.T., Madeira, L.M., and Ramírez, J.H. 2014. Azo-dye orange II degradation by the heterogeneous Fenton-like process using a zeolite Y-Fe catalyst - Kinetics with a model based on the Fermi's equation. Applied Catalysis B: Environmental, 146: p. 192-200.spa
dc.relation.referencesAleksić, M., Kušić, H., Koprivanac, N., Leszczynska, D., and Božić, A. 2010. Heterogeneous Fenton type processes for the degradation of organic dye pollutant in water — The application of zeolite assisted AOPs. Desalination, 257(1/3): p. 22-29.spa
dc.relation.referencesRichardson, D.E., Yao, H., Frank, K.M., and Bennett, D.A. 2000. Equilibria, kinetics, and mechanism in the bicarbonate activation of hydrogen peroxide: Oxidation of sulfides by peroxymonocarbonate. Journal of the American Chemical Society, 122(8): p. 1729-1739.spa
dc.relation.referencesLong, X., Yang, Z., Wang, H., Chen, M., Peng, K., Zeng, Q., and Xu, A. 2012. Selective degradation of orange II with the cobalt(II)–bicarbonate–hydrogen peroxide system. Industrial & Engineering Chemistry Research, 51(37): p. 11998-12003.spa
dc.relation.referencesXu, A., Li, X., Ye, S., Yin, G., and Zeng, Q. 2011. Catalyzed oxidative degradation of methylene blue by in situ generated cobalt(II)-bicarbonate complexes with hydrogen peroxide. Applied Catalysis B: Environmental, 102(1-2): p. 37-43.spa
dc.relation.referencesLi, X., Xiong, Z., Ruan, X., Xia, D., Zeng, Q., and Xu, A. 2012. Kinetics and mechanism of organic pollutants degradation with cobalt–bicarbonate–hydrogen peroxide system: Investigation of the role of substrates. Applied Catalysis A: General, 411: p. 24-30.spa
dc.relation.referencesYang, Z., Wang, H., Chen, M., Luo, M., Xia, D., Xu, A., and Zeng, Q. 2012. Fast degradation and biodegradability improvement of reactive brilliant red X-3B by the cobalt(II)/bicarbonate/hydrogen peroxide system. Industrial & Engineering Chemistry Research, 51(34): p. 11104-11111.spa
dc.relation.referencesBruland, K.W., Donat, J.R., and Hutchins, D.A. 1991. Interactive influences of bioactive trace metals on biological production in oceanic waters. Limnology and Oceanography, 36(8): p. 1555-1577.spa
dc.relation.referencesMnasri-Ghnimi, S. and Frini-Srasra, N. 2019. Removal of heavy metals from aqueous solutions by adsorption using single and mixed pillared clays. Applied Clay Science, 179: p. Article ID 105151.spa
dc.relation.referencesMarković, M., Marinović, S., Mudrinić, T., Ajduković, M., Jović-Jovičić, N., Mojović, Z., Orlić, J., Milutinović-Nikolić, A., and Banković, P. 2019. Co(II) impregnated Al(III)-pillared montmorillonite–Synthesis, characterization and catalytic properties in Oxone® activation for dye degradation. Applied Clay Science, 182: p. Aricle ID 105276.spa
dc.relation.referencesSchoonheydt, R.A., Pinnavaia, T., Lagaly, G., and Gangas, N. 1999. Pillared clays and pillared layered solids. Pure and Applied Chemistry, 71(12): p. 2367-2371.spa
dc.relation.referencesGil, A. and Vicente, M.A. 2020. Progress and perspectives on pillared clays applied in energetic and environmental remediation processes. Current Opinion in Green and Sustainable Chemistry, 21: p. 56-63.spa
dc.relation.referencesRinaldi, N. 2011. Preparation of Ni-Mo catalysts using the pillared clay as a support for hydrodesulfurization of coker naphtha. Widyariset, 14(3): p. 657-664.spa
dc.relation.referencesCool, P. and Vansant, E.F. 1998. Chapter 9. Pillared Clays: Preparation, Characterization and Applications. In: Synthesis. Molecular Sieves (Science and Technology). Springer: Berlin, Germany. p. 265-286.spa
dc.relation.referencesAouad, A., Mandalia, T., and Bergaya, F. 2005. A novel method of Al-pillared montmorillonite preparation for potential industrial up-scaling. Applied Clay Science, 28(1-4): p. 175-182.spa
dc.relation.referencesVreysen, S. 2006. Adsorption of humic substances on poly(hydroxo aluminum) intercalated bentonites and layered double hydroxides. Dissertation Doctoral Thesis. Faculty of Bio-Engineering. Catholic University of Leuven. Leuven, Belgium. p. 158.spa
dc.relation.referencesSterte, J. 1988. Hydrothermal treatment of hydroxycation precursor solutions. Catalysis Today, 2(2-3): p. 219-231.spa
dc.relation.referencesKatdare, S.P., Ramaswamy, V., and Ramaswamy, A.V. 1999. Ultrasonication: A competitive method of intercalation for the preparation of alumina pillared montmorillonite catalys. Catalysis Today, 49(1-3): p. 313-320.spa
dc.relation.referencesFetter, G., Heredia, G., Velazquez, L., Maubert, A., and Bosch, P. 1997. Synthesis of aluminum-pillared montmorillonites using highly concentrated clay suspensions. Applied Catalysis A: General, 162(1-2): p. 41-45.spa
dc.relation.referencesFogler, H.S. 2016. Elements of Chemical Reaction Engineering. 5th Edition. Prentice Hall International: New Jersey, USA. p. 957.spa
dc.relation.referencesLevenspiel, O. 1998. Chemical Reaction Engineering. Third Edition. Houston, TX, USA. p. 688.spa
dc.relation.referencesSun, S.-P., Li, C.-J., Sun, J.-H., Shi, S.-H., Fan, M.-H., and Zhou, Q. 2009. Decolorization of an azo dye orange G in aqueous solution by Fenton oxidation process: Effect of system parameters and kinetic study. Journal of Hazardous Materials, 161(2): p. 1052-1057.spa
dc.relation.referencesSantana, C.S., Nicodemos Ramos, M.D., Vieira Velloso, C.C., and Aguiar, A. 2019. Kinetic evaluation of dye decolorization by Fenton processes in the presence of 3-hydroxyanthranilic acid. International Journal of Environmental Research and Public Health, 16(9): p. 1602.spa
dc.relation.referencesHerney-Ramirez, J., Silva, A.M.T., Vicente, M.A., Costa, C.A., and Madeira, L.M. 2011. Degradation of acid orange 7 using a saponite-based catalyst in wet hydrogen peroxide oxidation: Kinetic study with the Fermi's equation. Applied Catalysis B: Environmental, 101(3-4): p. 197–205.spa
dc.relation.referencesGuimarães, V., Teixeira, A., Lucas, M., Silva, A., and Peres, J. 2019. Pillared interlayered natural clays as heterogeneous photocatalysts for H2O2 -assisted treatment of a winery wastewater. Separation and Purification Technology, 228: p. Article ID 115768.spa
dc.relation.referencesHenao-Aguirre, P.A., Macías-Quiroga, I.F., Giraldo-Gómez, G.I., and Sanabria-González, N.R. 2021. Catalytic oxidation of ponceau 4R in aqueous solution using iron-impregnated Al-pillared bentonite: Optimization of the process. Bulletin of Chemical Reaction Engineering & Catalysis, 16(3): p. 491-506.spa
dc.relation.referencesOrdoñez-Ordoñez, A., Revelo-Romo, D.M., Garcia-Mora, A.M., Hidalgo-Troya, A., and Galeano, L.-A. 2019. MS2 coliphage inactivation by Al/Fe PILC-activated Catalytic Wet Peroxide Oxidation: multiresponse statistical optimization. Heliyon, 5(6): p. e01892.spa
dc.relation.referencesIngenieriaQuimica.org. 2018. ¿En qué consiste el diseño de procesos? 2018. Disponible en http://www.ingenieriaquimica.org/diseno-procesos.spa
dc.relation.referencesFrench, M. 1999. Conceptual Design for Engineers. Third Edition. Springer-Verlag GmbH: Berlin, Germany. p. 252.spa
dc.relation.referencesAyag, Z. 2007. An integrated approach to evaluating conceptual design alternatives in a new product development environment. International Journal of Production Research, 43(4): p. 687-713.spa
dc.relation.referencesFrey, D.D., Herder, P.M., Wijnia, Y., Subrahmanian, E., Katsikopoulos, K., and Clausing, D.P. 2009. The Pugh controlled convergence method: Model-based evaluation and implications for design theory. Research in Engineering Design, 41(58): p. 41-58.spa
dc.relation.referencesBascaran, E., Bannerot, R.B., and Mistree, F. 1989. Hierarchical selection decision support problems in conceptual design. Engineering Optimization, 14(3): p. 207-238.spa
dc.relation.referencesTian, W., Fan, C., Cui, Z., and Zhang, H. 2020. Conceptual design of a treatment process for centrifugal mother liquor wastewater in the PVC industry. Process Safety and Environmental Protection, 138: p. 208-219.spa
dc.relation.referencesPark, C.S. 2012. Fundamentals of Engineering Economics. Third Edition. Harlow, UK. p. 696.spa
dc.relation.referencesNuño, P. 2017. Costes Operativos. (Septiembre 4 de 2017). Disponible en https://www.emprendepyme.net/costes-operativos.html.spa
dc.relation.referencesBashar, R., Gungor, K., Karthikeyan, K.G., and Barak, P. 2018. Cost effectiveness of phosphorus removal processes in municipal wastewater treatment. Chemosphere, 197: p. 280-290.spa
dc.relation.referencesDodane, P.-H., Mbéguéré, M., Sow, O., and Strande, L. 2012. Capital and operating costs of full-scale fecal sludge management and wastewater treatment systems in Dakar, Senegal. Environmental Science & Technology, 46(7): p. 3705-3711.spa
dc.relation.referencesDonati, G. and Paludetto, R. 1997. Scale up of chemical reactors. Catalysis Today, 34(3): p. 483-533.spa
dc.relation.referencesZlokarnik, M. 2006. Scale-Up in Chemical Engineering. Zlokarnik, M. (Ed). Wiley-VCH: Weinheim, Germany. p. 296.spa
dc.relation.referencesZlokarnik, M. 2010. Scale-Up of Chemical and Biotechnological Processes. Zlokarnik, M. (Ed). Wiley-VCH: Weinheim, Germany. p. 296.spa
dc.relation.referencesRuíz Colorado, A.A. 2009. Factores de escala para la producción biotecnológica de etanol carburante. Tesis para optar por el título de Doctorado en Ingeniería. Facultad de Minas, Universidad Nacional de Colombia sede Medellín. Medellín, Colombia. p. 175.spa
dc.relation.referencesTowler, G. and Sinnott, R. 2021. Chemical Engineering Design: Principles, Practice and Economics of Plant and Process Design. Third Edition. Butterworth-Heinemann-Elsevier Ltd: Boston, USA. p. 1027.spa
dc.relation.referencesSilla, H. 2003. Chapter 7. Reactor Design. In: Chemical Process Engineering: Design and Economics. Marcel Dekker Inc: New York, USA. p. 504.spa
dc.relation.referencesMcCabe, W.L., Smith, J.C., and Harriot, P. 1993. Unit Operations of Chemical Engineering. Seventh Edition. McGraw-Hill Education: New York - USA. p. 1168.spa
dc.relation.referencesDoran, P.M. 2013. Chapter 7. Fluid Flow. In: Bioprocess Engineering Principles. Academic Press: New York, USA. p. 201-254.spa
dc.relation.referencesGilPavas, E., Medina, J., Dobrosz-Gómez, I., and Gómez, M.-Á. 2016. Optimización de los costos de operación del proceso de electro-oxidación para una planta de tratamiento de aguas mediante análisis estadístico de superficie de respuesta. Información Tecnológica, 27(4): p. 73-82.spa
dc.relation.referencesCouper, J. 2003. Chapter 4. Estimation of Capital Requirements. In: Process Engineering Economics. Heinz, H. (Ed). CRC Press: Arkansas - USA. p. 65-134.spa
dc.relation.referencesCorpocaldas. 2010. Selección de alternativas para el tratamiento de aguas residuales del interceptor Quebrada Manizales, incluyendo la estabilización, tratamiento y disposicion adecuada de lodos Fase 1. Corporación Autónoma Regional de Caldas-CORPOCALDAS; Universidad Tecnológica de Pereira-UTP; Central Hidroeléctrica de Caldas-CHEC. Manizales, Colombia. p. 32-33.spa
dc.relation.referencesYaseen, D.A. and Scholz, M. 2018. Textile dye wastewater characteristics and constituents of synthetic effluents: A critical review. International Journal of Environmental Science and Technology, 16: p. 1193-1226.spa
dc.relation.referencesCamisón, C., Cruz, S., and González, T. 2006. Capítulo 21. Directorio de Técnicas y Herramientas de la Calidad. In: Gestión de la Calidad: Conceptos, Enfoques, Modelos y Sistemas. Pearson - Prentice Hall: Madrid, España. p. 1222-1310.spa
dc.relation.referencesMora Bonilla, K.Y. 2021. Degradación del colorante rojo allura en solución acuosa mediante un proceso avanzado de oxidación. Trabajo Final de Maestría en Ingeniería - Ingeniería Ambiental. Departamento de Ingeniería Química. Universidad Nacional de Colombia Sede Manizales. manizales, Colombia. p. 86.spa
dc.relation.referencesKiss, E., Lazic, M., and Boskovic, G. 2004. AlFe-Pillared clay catalyst for phenol oxidation in aqueous solution. Reaction Kinetics and Catalysis Letters, 83(2): p. 221-227.spa
dc.relation.referencesMuñoz, H., Vallejo, C., Blanco, C., Gil, A., Vicente, M., Ramírez, J., and Galeano, L. 2018. 10 kg scaled-up preparation of Al/Fe-pillared clay CWPO catalysts from concentrated precursors. Green Chemistry, 20: p. 5196-5208.spa
dc.relation.referencesYaseen, D.A. and Scholz, M. 2018. Textile dye wastewater characteristics and constituents of synthetic effluents: A critical review. International Journal of Environmental Science and Technology, 16: p. 1193-1226.spa
dc.relation.referencesSanabria González, N.R. 2009. Evaluación de los efectos fisicoquímicos y catalíticos en el proceso de síntesis de arcillas pilarizadas (PILC’S) en estado sólido y su viabilidad en la obtención de extrusados. Tesis de Doctorado en Ciencias-Química. Departamento de Química. Universidad Nacional de Colombia. Bogota, Colombia. p. 203.spa
dc.relation.referencesSelvaraj, S., Mohan, B., Krishna, K., and Jai Prakash, B. 1996. Pillaring of smectites using an aluminium oligomer: A study of pillar density and thermal stability. Applied Clay Science, 10: p. 439-450.spa
dc.relation.referencesCIENYTEC. 2020. Instrumentos científicos y equipos para laboratorios. Hornos, muflas para laboratorio. Bogotá, Colombia. Disponible en https://www.cienytec.com/lab2muflas.htm.spa
dc.relation.referencesLabProcess 2021. Información técnica de agitadores. Barcelona, España. Disponible en https://www.labprocess.es/agitador-am40-d-pro.spa
dc.relation.referencesCHEC/Grupo EPM. 2021. Tarifas y precios. Informe de Sostenibilidad 2020. Manizales, Colombia. Disponible en https://www.sostenibilidadchec.com/tarifas-y-precios/.spa
dc.relation.referencesRicaurte Freire, L.E. 2016. Diseño y simulación de un tanque mezclador de 10,000 gal para la elaboración de aceites lubricantes. Trabajo Final de Grado en Ingeniería Mecánica. Departamento de Ingeniería en Mecánica y Ciencias de la Producción. Escuela Superior Politécnica del Litoral. Guayaquil, Ecuador. p. 116.spa
dc.relation.referencesZuluaga, S., Ibarra, H.N., Dobrosz-Gómez, I., and Gómez, M.-Á. 2018. Ajuste de parámetros cinéticos y cálculo de sus desviaciones usando Matlab. Formación Universitaria, 11(6): p. 53-62.spa
dc.relation.referencesMcCabe, W.L., Smith, J.C., and Harriot, P. 1993. Unit Operations of Chemical Engineering. Seventh Edition. McGraw-Hill Education: New York - USA. p. 1168.spa
dc.relation.referencesVaughan, D.E.W., Pillared clays - a historical perspective. Catalysis Today, 1988. 2(2): p. 187-198.spa
dc.relation.referencesTurton, R., et al., Chapter 3. Batch Processing, in Analysis, Synthesis and Design of Chemical Processes, R. Turton, Editor. 2008, Pearson Education: Massachusetts, USA. p. 106-135.spa
dc.relation.referencesCañizares, P., et al., Costs of the electrochemical oxidation of wastewaters: A comparison with ozonation and Fenton oxidation processes. Journal of Environmental Management, 2009. 90(1): p. 410-420.spa
dc.relation.referencesPoyatos, J.M., et al., Advanced oxidation processes for wastewater treatment: State of the art. Water, Air, and Soil Pollution, 2010. 205: p. Article N° 187.spa
dc.relation.referencesCole-Hamilton, D.J. and R.P. Tooze, Catalyst Separation, Recovery and Recycling: Chemistry and Process Design. Springer. 2006, Dordrecht, Netherlands.spa
dc.relation.referencesFoutch, G.L. and A.H. Johannes, Reactors in Process Engineering. Encyclopedia of Physical Science and Technology (Third Edition). 2003, Massachusetts, USA: Academic Press.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.proposalDiseño conceptualspa
dc.subject.proposalProcesos avanzados de oxidaciónspa
dc.subject.proposalPeróxido de hidrógeno activado con bicarbonatospa
dc.subject.proposalRojo ponceauspa
dc.subject.proposalCosto anual totalspa
dc.subject.proposalConceptual designeng
dc.subject.proposalAdvanced oxidation processeseng
dc.subject.proposalBicarbonate activated hydrogen peroxideeng
dc.subject.proposalPonceau redeng
dc.subject.proposalTotal annual costeng
dc.subject.unescoCalidad del agua
dc.subject.unescoWater quality
dc.titleDiseño conceptual para el tratamiento de aguas coloreadas provenientes de la industria de alimentos utilizando el sistema peróxido activado con bicarbonatospa
dc.title.translatedConceptual design for the treatment of colored water from the food industry using the peroxide activated with bicarbonate systemeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentImagespa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentAdministradoresspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentGrupos comunitariosspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPadres y familiasspa
dcterms.audience.professionaldevelopmentPúblico generalspa
dcterms.audience.professionaldevelopmentResponsables políticosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1026280439.2022.pdf
Tamaño:
3.06 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería Ambiental

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: