Influencia del contenido de materia orgánica en la resistencia al corte residual de la arcilla de Bogotá

dc.contributor.advisorColmenares Montañez, Julio Estebanspa
dc.contributor.authorRodríguez Ramírez, Daniel Felipespa
dc.contributor.researchgroupGeotechnical Engineering Knowledge and Innovation Genkispa
dc.coverage.cityBogotáspa
dc.coverage.countryColombiaspa
dc.coverage.regionCundinamarcaspa
dc.coverage.tgnhttp://vocab.getty.edu/page/tgn/1000838
dc.date.accessioned2025-03-27T20:13:58Z
dc.date.available2025-03-27T20:13:58Z
dc.date.issued2024
dc.descriptionilustraciones, diagramas, fotografíasspa
dc.description.abstractSe realizó un estudio experimental de la resistencia al corte residual de las arcillas de Bogotá con alto contenido de materia orgánica (CMO). Para lo anterior, se desarrolló un equipo de corte anular, diseñado para evaluar la resistencia al corte de las arcillas a grandes desplazamientos. Las muestras analizadas fueron extraídas del campus de la Universidad Nacional de Colombia y caracterizadas física, química y mineralógicamente con el objetivo de evaluar su comportamiento mecánico. Los resultados obtenidos mostraron que el alto CMO de las muestras analizadas aumentó el contenido de agua natural y los límites de consistencia mientras que disminuyó la gravedad especifica debido a su estructura porosa y su baja densidad. El CMO no influye directamente el ángulo de resistencia pico (𝜙), manteniéndose aproximadamente constante; mientras que la cohesión aparente (𝑐′) tiende a disminuir a medida que aumenta el CMO. Respecto a la resistencia residual se identificó una disminución significativa con el incremento del CMO. El coeficiente de resistencia residual (𝜏𝑟/𝜎′) disminuyó hasta un 40% y en ángulo de resistencia residual (𝜙 ) disminuyó un 20% con un aumento de 38% del CMO. La materia orgánica no fibrosa reduce la fricción interna entre las partículas de arcilla, disminuyendo los puntos de contacto y, por ende, la resistencia al deslizamiento de las partículas de suelo. Adicionalmente, comparando los parámetros de resistencia al corte residual con resultados obtenidos en estudios previos, se identificó que la arcilla con alto CMO no sigue las tendencias de comportamiento observadas en otros suelos arcillosos. A diferencia de los suelos convencionales, en las arcillas de Bogotá con alto CMO, un mayor contenido de fracción de arcilla se asocia con una mayor resistencia al corte residual. Esta singularidad implica que las correlaciones propuestas en otros contextos no son aplicables, identificando la necesidad de estudios locales específicos. Finalmente, la aplicación y calibración de un modelo constitutivo de daño permitió predecir eficazmente el comportamiento de las arcillas de Bogotá bajo grandes desplazamientos de corte. Suelos con alto CMO presentan una rigidez cortante y desplazamientos de cedencia significativamente menores comparados con suelos con bajo CMO, lo que resulta en una rápida degradación de la resistencia al corte y una transición rápida hacia el estado residual. Lo anterior tiene implicaciones en el diseño, análisis y construcción de proyectos geotécnicos en suelos con altos CMO, puesto que una menor resistencia residual puede comprometer la estabilidad y seguridad de estas obras. (Texto tomado de la fuente).spa
dc.description.abstractAn experimental study was conducted to investigate the residual shear strength of Bogotá clay with high organic matter content (OMC). To achieve this, a ring shear apparatus was developed, specifically designed to evaluate the shear strength of clays following large displacements. The samples analysed were extracted, from the campus of the Universidad Nacional de Colombia, and characterized physically, chemically, and mineralogically previously to assess their mechanical behaviour. The results indicated that the high OMC of the samples increased their natural water content and Atterberg Limits while decreasing their specific gravity due to their porous structure and low density. The OMC does not affect the peak shear strength angle (𝜙), which remained approximately constant; however, the apparent cohesion (𝑐′) tended to decrease with increasing OMC. Regarding the residual shear strength, a significant reduction was observed with higher OMC. The residual shear strength coefficient (𝜏𝑟/𝜎′) decreased by 40%, and the residual shear strength angle (𝜙) decreased by 20% with a 38% increase in OMC. Non-fibrous organic matter reduces internal friction between clay particles by decreasing contact points, thereby reducing the resistance to sliding of soil particles. Furthermore, when comparing the residual shear strength parameters with results from previous studies, it was found that clays with high OMC do not follow the behavioural trends observed in other clayey soils. Unlike conventional soils, in Bogotá clay with high OMC, a higher clay fraction is associated with greater residual shear strength. This anomaly implies that correlations proposed in other contexts are not applicable, spotlighting the need for specific local studies. Finally, the application and calibration of a damage constitutive model effectively predicted the behaviour of Bogotá clays under large shear displacements. Soils with high OCM exhibit significantly lower shear stiffness and lower yield displacements compared to soils with low OCM, leading to rapid degradation of the shear strength and a quick transition to the residual state. This has implications for the design, analysis, and construction of geotechnical projects in soils with high OCM, as lower residual strength can compromise the stability and safety of these structures.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Geotecniaspa
dc.description.researchareaRelaciones constitutivas de suelos, rocas y materiales afinesspa
dc.format.extentxix, 138 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87769
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Geotecniaspa
dc.relation.referencesAdejumo, T. E. (2012). Effect of organic content on compaction and consolidation characteristics of Lagos organic clay. Electronic Journal of Geotechnical Engineering, 2201-2211.spa
dc.relation.referencesAl-Adhadh, A. R., Abbas, B. J., & Ali, A. M. (2021). Factors Influencing the Shear Strength of Clays: A review. IOP Conference Series: Materials Science and Engineering, 1090. doi:10.1088/1757-899X/1090/1/012009spa
dc.relation.referencesAtkinson, J. (2007). The Mechanics of Soils and Foundations. Abingdon, United Kingdom: Taylor & Francis.spa
dc.relation.referencesAtkinson, J. H., & Bransby, P. L. (1978). The Mechanics of Soils: An Introduction to Critical State Soil Mechanics. London: McGraw-Hill Book Company.spa
dc.relation.referencesÁvila, G., Ledesma, A., & Lloret, A. (2005). Hydro-mechanical processes in soil desiccation problems. Application to Bogotá clay. Proceedings of the 16th International Conference on Soil Mechanics and Geotechnical Engineering (pp. 2353-2356). Osaka: IOS Press. doi:10.3233/978-1-61499-656-9-2353spa
dc.relation.referencesÁvila, G., Ledesma, A., & Lloret, A. (2013). Soil characterization and compressibility parameters of Bogotá clay due to suction changes. En B. Caicedo, C. Murillo, L. Hoyos, J. Colmenares, & I. Berdugo, Advances in Unsaturated Soils (págs. 285- 290). Londres: CRC Press. doi:10.1201/b14393spa
dc.relation.referencesBareither, C. A., Benson, C. H., & Edil, T. B. (2008). Reproducibility of direct shear tests conducted on granular backfill materials. Geotechnical Testing Journal, 31(1), 1-9. doi:10.1520/GTJ100878spa
dc.relation.referencesBelokas, G. (2015). Correlating the residual strength to index properties. Proceedings of the XVI ECSMGE: Geotechnical Engineering for Infrastructure and Development (pp. 3105-3110). Edinburgh: ICE Publishing. doi:10.1680/ecsmge.60678.vol6.484spa
dc.relation.referencesBhat, D. R., Bhandary, N. P., & Yatabe, R. (2013). Effect of Shearing Rate on Residual Strength of Kaolin Clay. Electronic Journal of Geotechnical Engineering, 18, 1387- 1396.spa
dc.relation.referencesBinnie, G. M., Clark, J. F., & Skempton, A. W. (1967). The effect of discontinuities in clay bedrock on the design of dams in the Mangla project. 9th International Congress on Large Dams, (pp. 165-183). doi:10.1680/sposm.02050.0017spa
dc.relation.referencesBishop, A. W., & Henkel, D. J. (1962). The measurement of soil properties in the triaxial test. London: Edward Arnold Publishers Limited.spa
dc.relation.referencesBishop, A. W., Green, G. E., Garga, V. K., Andresen, A., & Brown, J. D. (1971). A new ring shear apparatus and its application to the measurement of residual strength. Géotechnique, 21(4), 273-328. doi:https://doi.org/10.1680/geot.1971.21.4.273spa
dc.relation.referencesBjerrum, L., & Landva, A. (1966). Direct simple-shear tests on a Norwegian quick clay. Géotechnique, 16(1), 1-20. doi:10.1680/geot.1966.16.1.1spa
dc.relation.referencesBlondeau, F., & Josseaume, H. (1976). Mesure de la résistance au cisailIement résiduelle en Laboratoize. Bulletin de Liaison des Laboratoires des Ponts et Chaussées.spa
dc.relation.referencesBooth, J. S., & Dahl, A. G. (1985). A note on the relationships between organic matter and some geotechnical properties of a marine sediment. Marine Geotechnology, 281-297. doi:10.1080/10641198609388191spa
dc.relation.referencesBorowicka, H. (1965). The Influence of the Colloidal Content on the Shear Strength of Clay. 6th International Conference on Soil Mechanics and Foundation Engineering. Montréal.spa
dc.relation.referencesBowles, J. E. (2012). Engineering Properties of Soils and their Measurements. New Delhi: McGraw Hill Education.spa
dc.relation.referencesBraida, J. A. (2007). Coesão e atrito interno associados aos teores de carbono orgânico e de água de um solo franco arenoso. Ciência Rural, 1646-1653. doi:10.1590/S0103-84782007000600022spa
dc.relation.referencesBriaud, J. L. (2023). Geotechnical Engineering: Unsaturated and Saturated Soils. New Jersey: John Wiley & Sons, Inc.spa
dc.relation.referencesBromhead, E. (1992). The Stability of Slopes (Segunda ed.). Londres: CRC Press. doi:10.4324/9780203975350spa
dc.relation.referencesBromhead, E. N. (1979). A simple ring shear apparatus. Ground Engineering, 12(5), 40-44.spa
dc.relation.referencesBudhu, M. (2010). Soil mechanics and foundations. John Wiley & Sons.spa
dc.relation.referencesBurland, J. (2007). Terzaghi: back to the future. Bulletin of Engineering Geology and the Environment, 66, 29-33. doi:10.1007/s10064-006-0083-9spa
dc.relation.referencesBurland, J. B. (1990). On the compressibility and shear strength of natural clays. Géotechnique, 40(3), 329-378. doi:10.1680/geot.1990.40.3.329spa
dc.relation.referencesBurland, J. B., Rampello, S., Georgiannou, V. N., & Calabresi, G. (1996). A laboratory study of the strength of four stiff clays. Géotechnique, 46(3), 491-514. doi:10.1680/geot.1996.46.3.49spa
dc.relation.referencesBusch, W. H., & Keller, G. H. (1981). The physical properties of Peru-Chile continental margin sediments: The influence of coastal upwelling on sediment properties. Journal of Sedimentary Research(51), 705–719. doi:10.1306/212F7D83-2B24-11D7-8648000102C1865Dspa
dc.relation.referencesCaicedo, B., Mendoza, C., López, F., & Lizcano, A. (2018). Behavior of diatomaceous soil in lacustrine deposits of Bogotá, Colombia. Journal of Rock Mechanics and Geotechnical Engineering, 10(2), 367-379. doi:10.1016/j.jrmge.2017.10.005spa
dc.relation.referencesCaicedo, B., Zuluaga, D., & Slebi, C. (2019). Effects of micro-features of fossil diatom on the macroscopic behaviour of soils. Géotechnique Letters, 9(4), 322-327. doi:10.1680/jgele.18.00204spa
dc.relation.referencesCamp, W. M. (2002). Drilled Shaft Axial Design Values: Predicted Versus Measured Response in a Calcareous Clay. Deep Foundations 2002: An International Perspective on Theory, Design, Construction, and Performance. doi:10.1061/40601(256)108spa
dc.relation.referencesCancelli, A. (1977). Residual shear strength and stability analysis of a landslide in fissured overconsolidated clays. Bull. Int. Assoc. Eng. Geol, 193-197.spa
dc.relation.referencesCao, W. G., Zhao, H., & Li, X. (2010). Statistical damage model with strain softening and hardening for rocks under the influence of voids and volume changes. Canadian Geotechnical Journal, 47(8), 857–871. doi:10.1139/T09-148spa
dc.relation.referencesChan, D. H., & Morgenstern, N. R. (1987). Analysis of progressive deformation of the Edmonton Convention Centre excavation. Canadian Geotechnical Journal(24), 430–440. doi:10.1139/t87-053spa
dc.relation.referencesChandler, R. J. (1966). The Measurement of Residual Strength in Triaxial Compression. Géotechnique, 16(3), 181-186. doi:10.1680/geot.1966.16.3.181spa
dc.relation.referencesChandler, R. J. (1969). The Effect of Weathering on the Shear Strength Properties of Keuper Marl. Géotechnique, 19(3), 321-334. doi:10.1680/geot.1969.19.3.321spa
dc.relation.referencesChen, Z., Morgenstern, N. R., & Chan, D. H. (1992). Progressive failure of the Carsington Dam: A numerical study. Canadian Geotechnical Journal, 29(6), 971–988. doi:10.1139/t92-107spa
dc.relation.referencesChester, F. M. (1994). Effects of temperature on friction: constitutive equations and experiments with quartz gouge. Journal of Geophysical Research: Solid Earth, 99(B4), 7247–7261. doi:10.1029/93JB03110spa
dc.relation.referencesCole, E. R. (1967). The behavior of soils in the simple shear apparatus (Thesis). (C. University, Ed.) Cambridge, Reino Unido.spa
dc.relation.referencesCollotta, T., Cantoni, R., Pavesi, U., Ruberl, E., & Moretti, P. C. (1989). A correlation between residual friction angle, gradation and the index properties of cohesive soils. Géotechnique, 39(2), 343-346. doi:10.1680/geot.1989.39.2.343spa
dc.relation.referencesDesikachary, T., & Dweltz, N. (1961). The chemical composition of the diatom frustule. Proc. Indian Acad. Sci, 53, pp. 157-165. doi:10.1007/BF03051518spa
dc.relation.referencesDíaz-Rodríguez, J., & Cruz, R. L.-A. (1998). Physical, chemical, and mineralogical properties of Mexico City sediments: a geotechnical perspective. Canadian Ge otechnical Journal, 600-610. doi:10.1139/t98-026spa
dc.relation.referencesDuncan, J. M., Wright, S. G., & Brandon, T. L. (2014). Soil Strength and Slope Stability. New Jersey: John Wiley & Sons, Inc.spa
dc.relation.referencesEdil, T. B., & Wang, X. (2000). Shear strength and Kₒ of peats and organic soils. In Geotechnics of High Water Content Materials (pp. 209–225).spa
dc.relation.referencesGarcia, L. M., Pinyol, N. M., Lloret, A., & Soncco, E. A. (2023). Influence of temperature on residual strength of clayey soils. Engineering Geology, 323, 1-19. doi:10.1016/j.enggeo.2023.107220spa
dc.relation.referencesGhobadi, M. H., Abdilor, Y., & Babazadeh, R. (2014). Stabilization of clay soils using lime and effect of pH variations on shear strength parameters. Bulletin of Engineering Geology and the Environment, 73(3), 611–619. doi:10.1007/s10064-013-0563-7spa
dc.relation.referencesGui, Y., Zhang, Q., Qin, X., & Wang, J. (2021). Influence of Organic Matter Content on Engineering Properties of Clays. Advances in Civil Engineering. doi:10.1155/2021/6654121spa
dc.relation.referencesHamouche, F., & Zentar, R. (2020). Effects of organic matter on physical properties of dredged marine sediments. Waste and Biomass Valorization, 389-401.spa
dc.relation.referencesHelmens, K. (1990). Neogene–Quaternary geology of the high plain of Bogota´, Eastern Cordillera, Colombia (stratigraphy, palaeoenvironments and landscape evolution). Dissertationes Botanicae, 163, 189-196.spa
dc.relation.referencesHelmens, K., & Van der Hammen, T. (1994). The Pliocene and Quaternary of the high plain of Bogotá (Colombia): A history of tectonic uplift, basin development and climatic change. Quaternary International, 21, 41-61. doi:10.1016/1040-6182(94)90020-5spa
dc.relation.referencesHoltz, R. D., Kovacs, W. D., & Sheahan, T. C. (2023). Introduction to Geotechnical Engineering. Hoboken: Pearson.spa
dc.relation.referencesHoyos, L. R., Velosa, C. L., & Puppala, A. J. (2012). A Novel Suction-Controlled Ring Shear Testing Apparatus for Unsaturated Soils. Experimental and Applied Modeling of Unsaturated Soils. Shanhai. doi:10.1061/41103(376)5spa
dc.relation.referencesHoyos, L. R., Yepes, J. E., Velosa, C. L., & Puppala, A. J. (2020). Unsaturated Shear Strength of Compacted Clayey Soil via Suction-controlled Ring Shear Testing. 4th European Conference on Unsaturated Soils (E-UNSAT 2020) (pp. 1-4). EDP Sciences. doi:10.1051/e3sconf/202019503024spa
dc.relation.referencesHuat, B., Afshin, A., & Kazemian, S. (2009). Experimental investigation on geomechanical properties of tropical organic soils and peat. American Journal of Engineering & Applied Sciences, 2(1), 184–188. doi:10.3844/ajeassp.2009.184.188spa
dc.relation.referencesHubach, E. (1957). Estratigrafía de la Sabana de Bogotá y alrededores. Boletín Geológico, 5(2), 95-112.spa
dc.relation.referencesHvorslev, M. J. (1937). Uber die Festigkeitseigenschaften Gestorter Bindinger Boden. Danmarks Naturvidenskabelige Samfund.spa
dc.relation.referencesHvorslev, M. J. (1939). Torsion shear tests and their place in the determination of the shearing resistance. Proceedings-American society for testing and materials, 39, 999-1022.spa
dc.relation.referencesChandler, R. J. (1984). Recent European experience of landslides in overconsolidated clays and soft rocks. 4th Int. Symp. on Landslides, (pp. 61-81). Toronto.spa
dc.relation.referencesKanji, M. A. (1974). The relationship between drained friction angles and Atterberg limits of natural soils. Géotechnique, 24(4), 671-674. doi:10.1680/geot.1974.24.4.671spa
dc.relation.referencesKeller, W. D. (1963). The Origin of High-Alumina Clay Minerals—A Review. Symposium on Mechanism of Emplacement (Formation) of Clay Minerals, 12, pp. 129–151. doi:10.1346/CCMN.1963.0120115spa
dc.relation.referencesKrajcinovic, D., & Silva, M. A. (1982). Statistical aspects of the continuous damage theory. International Journal of Solids and Structures, 18(7), 551–562. doi:10.1016/0020-7683(82)90039-7spa
dc.relation.referencesKulhawy, F. H., & Mayne, P. W. (1990). Manual on Estimating Soil Properties for Foundation Design. Electric Power Research Institute.spa
dc.relation.referencesLa Rochelle, P. (1960). The short-term stability of slopes in London Clay. Ph.D. Thesis. Imperial College.spa
dc.relation.referencesLambe, T. W. (1985). Amuay landslides. Proceedings of the 10th International Conference on Soil Mechanics and Foundation, (pp. 137-158). San Francisco.spa
dc.relation.referencesLemaitre, J. (1984). How to use damage mechanics. Nuclear Engineering and Design, 233-245. doi:10.1016/0029-5493(84)90169-9spa
dc.relation.referencesLemaitre, J. (1984). How to use damage mechanics. Nuclear Engineering and Design, 80(2), 233–245. doi:10.1016/0029-5493(84)90169-9spa
dc.relation.referencesLi, D., Yin, K., Glade, T., & Leo, C. (2017). Effect of over-consolidation and shear rate on the residual strength of soils of silty sand in the Three Gorges Reservoir. Scientific Reports, 7(1), 1-11. Retrieved from 10.1038/s41598-017-05749-4spa
dc.relation.referencesLi, X., Cao, W. G., & Su, Y. H. (2012). A statistical damage constitutive model for softening behavior of rocks. Engineering Geology. doi:0.1016/j.enggeo.2012.05.005spa
dc.relation.referencesLiu, C. N. (2009). Progressive failure mechanism in one-dimensional stability analysis of shallow slope failures. Landslides, 6(2), 129–137. doi: 10.1007/s10346-009-0153-8spa
dc.relation.referencesLobo-Guerrero, A. (1992). Geología e Hidrogeología de Santafé de Bogotá y su Sabana. VII Jornadas Geotecnicas de la Ingeniería de Colombia, (pp. 1-20). Bogotá D.C.spa
dc.relation.referencesLuo, Y., Zou, Z., Li, C., Duan, H., T. N., Zhang, B., . . . Zhang, J. (2022). Analysis of shear constitutive models of the slip zone soil based on various statistical damage distributions. Applied Sciences, 12(7). doi:10.3390/app12073493spa
dc.relation.referencesLupini, J. F. (1981). The residual strength of soils (Thesis). London: Imperial College London.spa
dc.relation.referencesLupini, J. F., Skinner, A. E., & Vaughan, P. R. (1981). The drained residual strength of cohesive soils. Géotechnique, 31(2), 181-213. doi:10.1680/geot.1981.31.2.181spa
dc.relation.referencesMaksimović, M. (1989). On the residual shearing strength of clays . Géotechnique, 39(2), 347-351.spa
dc.relation.referencesMeehan, C. L., Brandron, T. L., & Duncan, J. M. (2007). Measuring Drained Residual Strengths in the Bromhead Ring Shear. Geotechnical Testing Journal, 30(6), 1-10. doi:10.1520/GTJ101017spa
dc.relation.referencesMerchán, V., Romero, E., & Vaunat, J. (2011). An Adapted Ring Shear Apparatus for Testing Partly Saturated Soils in the High Suction Range. Geotechnical Testing Journal, 34(5), 1-12. doi:10.1520/GTJ103638spa
dc.relation.referencesMiao, T. D., Ma, C. W., & Wu, S. Z. (1999). Evolution model of progressive failure of landslides. Journal of Geotechnical and Geoenvironmental Engineering, 125(10), 827–831. doi:10.1061/(ASCE)1090-0241(1999)125:10(827)spa
dc.relation.referencesMitchell, J. K., & Soga, K. (2005). Fundamentals of Soil Behavior. New Jersey: John Wiley & Sons.spa
dc.relation.referencesMora, H., Díaz, F., & Cardona, L. (2020). Mapping land subsidence in Bogotá, Colombia, using the interferometric synthetic aperture radar (InSAR) technique with TerraSAR–X images. The Geology of Colombia, 4(38), 515–548. doi:10.32685/pub.esp.38.2019.16spa
dc.relation.referencesMoreno, C. A., & Rodríguez, E. E. (n.d.). Dynamic behavior of Bogota’s subsoil peat and its effect in seismic wave propagation. 13th World Conference on Earthquake Engineering, (p. 2004).spa
dc.relation.referencesMoya, J., & Rodriguez, J. (1987). El subsuelo de Bogota y los problemas de cimentaciones. 8th Panamerican Conference on Soil Mechanics and Foundation Engineering, (pp. 197-264).spa
dc.relation.referencesOdell, R. T. (1960). Relationships of Atterberg limits to some other properties of Illinois soils. Soil Science Society of America Journal, 297-300. doi:10.2136/sssaj1960.03615995002400040025xspa
dc.relation.referencesOrtolan, Z., & Mihalinec, Z. (1998). Plasticity index — Indicator of shear strength and a major axis of geotechnical modelling. In Geotechnical Hazards (p. 8). CRC Press.spa
dc.relation.referencesPineda, J. A., & Colmenares, J. E. (2007). Influencia de la desecación en el comportamiento volumétrico de la arcilla de Bogotá. 13th Panamerican Conference on Soil Mechanics and Geotechnical Engineering, 1-6. doi:10.13140/RG.2.1.1110.0004spa
dc.relation.referencesPulat, H. F., & Yukselen-Aksoy, Y. (2017). Factors affecting the shear strength behavior of municipal solid wastes. Waste Management, 215-224. doi:10.1016/j.wasman.2017.08.030spa
dc.relation.referencesReina, C. R. (2019). Influencia del contenido de Materia Orgánica en el cambio volumétrico de arcillas blandas (tesis de maestría). Bogotá D.C.: Universidad Nacional de Colombia.spa
dc.relation.referencesRomero, E., Vaunat, J., & Merchán, V. (2014). Suction effects on the residual shear strength of clays. Journal of Geo-engineering Sciences, 2(1), 17-37. doi:10.3233/JGS-141320spa
dc.relation.referencesSadrekarimi, A. (2009). Development of a New Ring Shear Apparatus for Investigating the Critical State of Sands (Thesis). Urbana: University of Illinois.spa
dc.relation.referencesSadrekarimi, A., & Olson, S. (2009). A New Ring Shear Device to Measure the Large Displacement Shearing Behavior of Sands. Geotechnical Testing Journal, 32(3), 197-208. doi:10.1520/GTJ101733spa
dc.relation.referencesSantamarina, J. C., & Díaz-Rodríguez, J. A. (2003). Friction in Soils: Micro and Macroscale Observations. 12th Panamerican Conference on Soil Mechanics and Geotechnical Engineering, (pp. 1-6). Massachusetts.spa
dc.relation.referencesScaringi, G., & Di Maio, C. (2016). Influence of displacement rate on residual shear strength of clays. Procedia Earth and Planetary Science, 16, 137-145. doi:10.1016/j.proeps.2016.10.015spa
dc.relation.referencesSeed, H. B., Woodward, R. J., & Lundgren, R. (1962). Prediction of swelling potential for compacted clays. Journal of Soil Mechanics and Foundations Division, 53-87.spa
dc.relation.referencesSelvakumar, S., Kulanthaivel, P., & Soundara, B. (2021). Infuence of nano silica and sodium silicate on the strength characteristics of clay soil. Nanotechnology for Environmental Engineering, 6(46), 45-55. doi:10.1007/s41204-021-00142-zspa
dc.relation.referencesShames, I. H., & Pitarresi, J. M. (2000). Introduction to Solid Mechanics (3ra ed.). New Jersey: Pearson.spa
dc.relation.referencesShen, P., Tang, H., Ning, Y., & Xia, D. (2019). A damage mechanics based constitutive model for strain-softening rocks. Engineering Fracture Mechanics. doi:10.1016/j.engfracmech.2019.106521spa
dc.relation.referencesShiwakoti, D. R., Tanaka, H., Tanaka, M., & Locat, J. (2002). Influences of diatom microfossils on engineering properties of soils. Soils and Foundations, 1-17. doi:10.3208/sandf.42.3_1spa
dc.relation.referencesSjöström, J. K., Bindler, R., Granberg, T., & Kylander, M. (2019). Procedure for Organic Matter Removal from Peat Samples for XRD Mineral Analysis. Wetlands, 473–481. doi:10.1007/s13157-018-1093-7spa
dc.relation.referencesSkempton, A. W. (1964). Long-term stability of clay slopes. Géotechnique, 14(2), 77-102. doi:https://doi.org/10.1680/geot.1964.14.2.77spa
dc.relation.referencesSkempton, A. W. (1985). Residual strength of clays in landslides, folded strata and the laboratory. Géotechnique, 35(1), 3-18. doi:10.1680/geot.1985.35.1.3spa
dc.relation.referencesSkempton, A. W., & Petley, D. J. (1967). The strength along structural discontinuities in stiff clays. Proc. Oslo Geot. Conf on Shear Strength Prop. of Natural Soils and Rocks, (pp. 29-46). Oslo. doi:10.1680/sposm.02050.0018spa
dc.relation.referencesStark, T. D., & Eid, H. T. (1994). Drained Residual Strength of Cohesive Soils. Journal of Geotechnical Engineering, 120(5), 856-871.spa
dc.relation.referencesTanaka, H., Locat, J., Shibuya, S., Thiam Soon, T., & Shiwakoti, D. (2001). Characterization of Singapore, Bangkok, and Ariake clays. Canadian Geotechnical Journal, 38(2), 378-400. doi:10.1139/t00-106spa
dc.relation.referencesTerzaghi, K. (1936). The shearing resistance of saturated soils and angle between the planes of shear. Conference on Soil Mechanics and Foundation Engineering (pp. 54-56). Cambridge: Harvard University Press.spa
dc.relation.referencesTiedemann, B. (1937). Über die Scherfestigkeit bindiger Böden. Bautechnik, 15(30), 400-403 .spa
dc.relation.referencesTika, T. E., Vaughan, P. R., & Lemos, L. J. (1996). Fast shearing of pre-existing shear zones in soil. Géotechnique, 46(2), 197-233. doi:10.1680/geot.1996.46.2.197spa
dc.relation.referencesTiwari, B., & Marui, H. (2005). A New Method for the Correlation of Residual Shear Strength of the Soil with Mineralogical Composition. Journal of Geotechnical and Geoenvironmental Engineering, 131(9), 1139-1150. doi:10.1061/(ASCE)1090-0241(2005)131:9(1139)spa
dc.relation.referencesTorres, V., Vandenberghe, J., & Hooghiemstra, H. (2005). An environmental reconstruction of the sediment infill of the Bogota´ basin (Colombia) during the last 3 million years from abiotic and biotic proxies. Palaeogeography, Palaeoclimatology, Palaeoecology, 226(1-2), 127–148. doi:10.1016/j.palaeo.2005.05.005spa
dc.relation.referencesToyota, H., Nakamura, K., Sugimoto, M., & Sakai, N. (2009). Ring shear tests to evaluate strength parameters in various remoulded soils. Géotechnique, 59(8), 649-659. doi:10.1680/geot.8.029.3671spa
dc.relation.referencesTran, V. Q., Dang, V. Q., Do, H. Q., & Ho, L. S. (2022). Investigation of ANN architecture for predicting residual strength of clay soil. Neural Computing and Applications, 34, 19253–19268. doi:10.1007/s00521-022-07547-0spa
dc.relation.referencesTresca, H. (1864). Mémoire sur l'écoulement des corps solides soumis à de fortes pressions. Comptes Rendus de l'Académie des Sciences, 754-758.spa
dc.relation.referencesVan der Hammen, T., Werner, J., & Van Dommelen, H. (1973). Palynological record of the upheaval of the Northern Andes: A study of the pliocene and lower quaternary of the Colombian Eastern Cordillera and the early evolution of its high-Andean biota. Review of Palaeobotany and Palynology, 16(1-2), 84-122. doi:10.1016/0034-6667(73)90031-6spa
dc.relation.referencesVaughan, P. R. (1988). Keynote lecture: characterizing the mechani- cal properties of in-situ residual soil. Proceedings of the 2nd International Conference on Geomechanics in Tropical Soils. Singapore.spa
dc.relation.referencesVithana, S. B., Nakamura, S., Gibo, S., Yoshinaga, A., & Kimura, S. (2011). Correlation of large displacement drained shear strength of landslide soils measured by direct shear and ring shear devices. Landslides, 9(3), 305-314. doi:10.1007/s10346-011-0301-9spa
dc.relation.referencesVithana, S. B., Nakamura, S., Kimura, S., & Gibo, S. (2012). Effects of overconsolidation ratios on the shear strength of remoulded slip surface soils in ring shear. Engineering Geology, 131-132, 29-36. doi:10.1016/j.enggeo.2012.01.015spa
dc.relation.referencesVon Mises, R. (1913). Mechanik der festen Koerper im plastisch deformablen Zustant. Goettingen Nachrichten Mathematisch — Physikalische Klass, 582-592.spa
dc.relation.referencesWang, G., Bian, X., Wang, Y., Cui, Y., & Zeng, L. (2022). Effect of organic matter content on Atterberg limits and undrained shear strength of river sediment. Marine Georesources & Geotechnology, 40(9), 1060-1072. doi:10.1080/1064119X.2021.1961955spa
dc.relation.referencesWebb, D. L. (1969). Residual strength in conventional triaxial tests. Conference on Soil Mechanics and Foundation Engineering, (pp. 433-441). Ciudad de Mexico.spa
dc.relation.referencesWeibull, W. (1951). A Statistical Distribution Function of Wide Applicability. J. Appl. Mech., 18(3), 293-297. doi:10.1115/1.4010337spa
dc.relation.referencesWesley, L. D. (2003). Residual strength of clays and correlations using Atterberg limits. Géotechnique, 53(7), 669-672. doi:10.1680/geot.2003.53.7.669spa
dc.relation.referencesWijninga, V. (1996). Paleobotany and palynology of Neogene sediments from the high plain of Bogota´ (Colombia). PhD Thesis. Amsterdam: University of Amsterdam.spa
dc.relation.referencesWood, D. (1991). Soil behaviour and critical state soil mechanics. Cambridge: Cambridge University Press.spa
dc.relation.referencesWright, S. G. (2005). Evaluation of Soil Shear Strengths for Slope and Retaining Wall Stability Analyses with Emphasis on High Plasticity Clays. Austin: The University of Texas.spa
dc.relation.referencesZou, Z., Yan, J., Tang, H., Wang, S., Xiong, C., & Hu, X. (2020). A shear constitutive model for describing the full process of the deformation and failure of slip zone soil. Engineering Geology, 276. doi:10.1016/j.enggeo.2020.105766spa
dc.relation.referencesBudhu, M. (1984). Nonuniformities imposed by simple shear apparatus. Canadian Geotechnical Journal, 21(1), 125-137. doi:10.1139/t84-010spa
dc.relation.referencesBudhu, M. (2015). Soil Mechanics Fundamentals (1ra ed.). Chichester, West Sussex, United Kingdom: John Wiley & Sons.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::624 - Ingeniería civilspa
dc.subject.proposalArcillas de Bogotáspa
dc.subject.proposalResistencia al corte residualspa
dc.subject.proposalContenido de materia orgánicaspa
dc.subject.proposalEquipo de corte anularspa
dc.subject.proposalModelo constitutivo de dañospa
dc.subject.proposalBogotá Clayseng
dc.subject.proposalResidual shear strengtheng
dc.subject.proposalOrganic matter contenteng
dc.subject.proposalDamage constitutive modeleng
dc.subject.proposalRing shear apparatuseng
dc.subject.unescoarcillaspa
dc.subject.unescoclayeng
dc.subject.wikidataMateriales de construcciónspa
dc.subject.wikidataBuilding materialseng
dc.subject.wikidataresistencia de materialesspa
dc.subject.wikidatastrength of materialseng
dc.titleInfluencia del contenido de materia orgánica en la resistencia al corte residual de la arcilla de Bogotáspa
dc.title.translatedInfluence of organic matter content on the residual shear strength of Bogotá clayeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1014253122.2024.pdf
Tamaño:
3.51 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Geotecnia

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: