Influencia del contenido de materia orgánica en la resistencia al corte residual de la arcilla de Bogotá
dc.contributor.advisor | Colmenares Montañez, Julio Esteban | spa |
dc.contributor.author | Rodríguez Ramírez, Daniel Felipe | spa |
dc.contributor.researchgroup | Geotechnical Engineering Knowledge and Innovation Genki | spa |
dc.coverage.city | Bogotá | spa |
dc.coverage.country | Colombia | spa |
dc.coverage.region | Cundinamarca | spa |
dc.coverage.tgn | http://vocab.getty.edu/page/tgn/1000838 | |
dc.date.accessioned | 2025-03-27T20:13:58Z | |
dc.date.available | 2025-03-27T20:13:58Z | |
dc.date.issued | 2024 | |
dc.description | ilustraciones, diagramas, fotografías | spa |
dc.description.abstract | Se realizó un estudio experimental de la resistencia al corte residual de las arcillas de Bogotá con alto contenido de materia orgánica (CMO). Para lo anterior, se desarrolló un equipo de corte anular, diseñado para evaluar la resistencia al corte de las arcillas a grandes desplazamientos. Las muestras analizadas fueron extraídas del campus de la Universidad Nacional de Colombia y caracterizadas física, química y mineralógicamente con el objetivo de evaluar su comportamiento mecánico. Los resultados obtenidos mostraron que el alto CMO de las muestras analizadas aumentó el contenido de agua natural y los límites de consistencia mientras que disminuyó la gravedad especifica debido a su estructura porosa y su baja densidad. El CMO no influye directamente el ángulo de resistencia pico (𝜙), manteniéndose aproximadamente constante; mientras que la cohesión aparente (𝑐′) tiende a disminuir a medida que aumenta el CMO. Respecto a la resistencia residual se identificó una disminución significativa con el incremento del CMO. El coeficiente de resistencia residual (𝜏𝑟/𝜎′) disminuyó hasta un 40% y en ángulo de resistencia residual (𝜙 ) disminuyó un 20% con un aumento de 38% del CMO. La materia orgánica no fibrosa reduce la fricción interna entre las partículas de arcilla, disminuyendo los puntos de contacto y, por ende, la resistencia al deslizamiento de las partículas de suelo. Adicionalmente, comparando los parámetros de resistencia al corte residual con resultados obtenidos en estudios previos, se identificó que la arcilla con alto CMO no sigue las tendencias de comportamiento observadas en otros suelos arcillosos. A diferencia de los suelos convencionales, en las arcillas de Bogotá con alto CMO, un mayor contenido de fracción de arcilla se asocia con una mayor resistencia al corte residual. Esta singularidad implica que las correlaciones propuestas en otros contextos no son aplicables, identificando la necesidad de estudios locales específicos. Finalmente, la aplicación y calibración de un modelo constitutivo de daño permitió predecir eficazmente el comportamiento de las arcillas de Bogotá bajo grandes desplazamientos de corte. Suelos con alto CMO presentan una rigidez cortante y desplazamientos de cedencia significativamente menores comparados con suelos con bajo CMO, lo que resulta en una rápida degradación de la resistencia al corte y una transición rápida hacia el estado residual. Lo anterior tiene implicaciones en el diseño, análisis y construcción de proyectos geotécnicos en suelos con altos CMO, puesto que una menor resistencia residual puede comprometer la estabilidad y seguridad de estas obras. (Texto tomado de la fuente). | spa |
dc.description.abstract | An experimental study was conducted to investigate the residual shear strength of Bogotá clay with high organic matter content (OMC). To achieve this, a ring shear apparatus was developed, specifically designed to evaluate the shear strength of clays following large displacements. The samples analysed were extracted, from the campus of the Universidad Nacional de Colombia, and characterized physically, chemically, and mineralogically previously to assess their mechanical behaviour. The results indicated that the high OMC of the samples increased their natural water content and Atterberg Limits while decreasing their specific gravity due to their porous structure and low density. The OMC does not affect the peak shear strength angle (𝜙), which remained approximately constant; however, the apparent cohesion (𝑐′) tended to decrease with increasing OMC. Regarding the residual shear strength, a significant reduction was observed with higher OMC. The residual shear strength coefficient (𝜏𝑟/𝜎′) decreased by 40%, and the residual shear strength angle (𝜙) decreased by 20% with a 38% increase in OMC. Non-fibrous organic matter reduces internal friction between clay particles by decreasing contact points, thereby reducing the resistance to sliding of soil particles. Furthermore, when comparing the residual shear strength parameters with results from previous studies, it was found that clays with high OMC do not follow the behavioural trends observed in other clayey soils. Unlike conventional soils, in Bogotá clay with high OMC, a higher clay fraction is associated with greater residual shear strength. This anomaly implies that correlations proposed in other contexts are not applicable, spotlighting the need for specific local studies. Finally, the application and calibration of a damage constitutive model effectively predicted the behaviour of Bogotá clays under large shear displacements. Soils with high OCM exhibit significantly lower shear stiffness and lower yield displacements compared to soils with low OCM, leading to rapid degradation of the shear strength and a quick transition to the residual state. This has implications for the design, analysis, and construction of geotechnical projects in soils with high OCM, as lower residual strength can compromise the stability and safety of these structures. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ingeniería - Geotecnia | spa |
dc.description.researcharea | Relaciones constitutivas de suelos, rocas y materiales afines | spa |
dc.format.extent | xix, 138 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87769 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ingeniería - Maestría en Ingeniería - Geotecnia | spa |
dc.relation.references | Adejumo, T. E. (2012). Effect of organic content on compaction and consolidation characteristics of Lagos organic clay. Electronic Journal of Geotechnical Engineering, 2201-2211. | spa |
dc.relation.references | Al-Adhadh, A. R., Abbas, B. J., & Ali, A. M. (2021). Factors Influencing the Shear Strength of Clays: A review. IOP Conference Series: Materials Science and Engineering, 1090. doi:10.1088/1757-899X/1090/1/012009 | spa |
dc.relation.references | Atkinson, J. (2007). The Mechanics of Soils and Foundations. Abingdon, United Kingdom: Taylor & Francis. | spa |
dc.relation.references | Atkinson, J. H., & Bransby, P. L. (1978). The Mechanics of Soils: An Introduction to Critical State Soil Mechanics. London: McGraw-Hill Book Company. | spa |
dc.relation.references | Ávila, G., Ledesma, A., & Lloret, A. (2005). Hydro-mechanical processes in soil desiccation problems. Application to Bogotá clay. Proceedings of the 16th International Conference on Soil Mechanics and Geotechnical Engineering (pp. 2353-2356). Osaka: IOS Press. doi:10.3233/978-1-61499-656-9-2353 | spa |
dc.relation.references | Ávila, G., Ledesma, A., & Lloret, A. (2013). Soil characterization and compressibility parameters of Bogotá clay due to suction changes. En B. Caicedo, C. Murillo, L. Hoyos, J. Colmenares, & I. Berdugo, Advances in Unsaturated Soils (págs. 285- 290). Londres: CRC Press. doi:10.1201/b14393 | spa |
dc.relation.references | Bareither, C. A., Benson, C. H., & Edil, T. B. (2008). Reproducibility of direct shear tests conducted on granular backfill materials. Geotechnical Testing Journal, 31(1), 1-9. doi:10.1520/GTJ100878 | spa |
dc.relation.references | Belokas, G. (2015). Correlating the residual strength to index properties. Proceedings of the XVI ECSMGE: Geotechnical Engineering for Infrastructure and Development (pp. 3105-3110). Edinburgh: ICE Publishing. doi:10.1680/ecsmge.60678.vol6.484 | spa |
dc.relation.references | Bhat, D. R., Bhandary, N. P., & Yatabe, R. (2013). Effect of Shearing Rate on Residual Strength of Kaolin Clay. Electronic Journal of Geotechnical Engineering, 18, 1387- 1396. | spa |
dc.relation.references | Binnie, G. M., Clark, J. F., & Skempton, A. W. (1967). The effect of discontinuities in clay bedrock on the design of dams in the Mangla project. 9th International Congress on Large Dams, (pp. 165-183). doi:10.1680/sposm.02050.0017 | spa |
dc.relation.references | Bishop, A. W., & Henkel, D. J. (1962). The measurement of soil properties in the triaxial test. London: Edward Arnold Publishers Limited. | spa |
dc.relation.references | Bishop, A. W., Green, G. E., Garga, V. K., Andresen, A., & Brown, J. D. (1971). A new ring shear apparatus and its application to the measurement of residual strength. Géotechnique, 21(4), 273-328. doi:https://doi.org/10.1680/geot.1971.21.4.273 | spa |
dc.relation.references | Bjerrum, L., & Landva, A. (1966). Direct simple-shear tests on a Norwegian quick clay. Géotechnique, 16(1), 1-20. doi:10.1680/geot.1966.16.1.1 | spa |
dc.relation.references | Blondeau, F., & Josseaume, H. (1976). Mesure de la résistance au cisailIement résiduelle en Laboratoize. Bulletin de Liaison des Laboratoires des Ponts et Chaussées. | spa |
dc.relation.references | Booth, J. S., & Dahl, A. G. (1985). A note on the relationships between organic matter and some geotechnical properties of a marine sediment. Marine Geotechnology, 281-297. doi:10.1080/10641198609388191 | spa |
dc.relation.references | Borowicka, H. (1965). The Influence of the Colloidal Content on the Shear Strength of Clay. 6th International Conference on Soil Mechanics and Foundation Engineering. Montréal. | spa |
dc.relation.references | Bowles, J. E. (2012). Engineering Properties of Soils and their Measurements. New Delhi: McGraw Hill Education. | spa |
dc.relation.references | Braida, J. A. (2007). Coesão e atrito interno associados aos teores de carbono orgânico e de água de um solo franco arenoso. Ciência Rural, 1646-1653. doi:10.1590/S0103-84782007000600022 | spa |
dc.relation.references | Briaud, J. L. (2023). Geotechnical Engineering: Unsaturated and Saturated Soils. New Jersey: John Wiley & Sons, Inc. | spa |
dc.relation.references | Bromhead, E. (1992). The Stability of Slopes (Segunda ed.). Londres: CRC Press. doi:10.4324/9780203975350 | spa |
dc.relation.references | Bromhead, E. N. (1979). A simple ring shear apparatus. Ground Engineering, 12(5), 40-44. | spa |
dc.relation.references | Budhu, M. (2010). Soil mechanics and foundations. John Wiley & Sons. | spa |
dc.relation.references | Burland, J. (2007). Terzaghi: back to the future. Bulletin of Engineering Geology and the Environment, 66, 29-33. doi:10.1007/s10064-006-0083-9 | spa |
dc.relation.references | Burland, J. B. (1990). On the compressibility and shear strength of natural clays. Géotechnique, 40(3), 329-378. doi:10.1680/geot.1990.40.3.329 | spa |
dc.relation.references | Burland, J. B., Rampello, S., Georgiannou, V. N., & Calabresi, G. (1996). A laboratory study of the strength of four stiff clays. Géotechnique, 46(3), 491-514. doi:10.1680/geot.1996.46.3.49 | spa |
dc.relation.references | Busch, W. H., & Keller, G. H. (1981). The physical properties of Peru-Chile continental margin sediments: The influence of coastal upwelling on sediment properties. Journal of Sedimentary Research(51), 705–719. doi:10.1306/212F7D83-2B24-11D7-8648000102C1865D | spa |
dc.relation.references | Caicedo, B., Mendoza, C., López, F., & Lizcano, A. (2018). Behavior of diatomaceous soil in lacustrine deposits of Bogotá, Colombia. Journal of Rock Mechanics and Geotechnical Engineering, 10(2), 367-379. doi:10.1016/j.jrmge.2017.10.005 | spa |
dc.relation.references | Caicedo, B., Zuluaga, D., & Slebi, C. (2019). Effects of micro-features of fossil diatom on the macroscopic behaviour of soils. Géotechnique Letters, 9(4), 322-327. doi:10.1680/jgele.18.00204 | spa |
dc.relation.references | Camp, W. M. (2002). Drilled Shaft Axial Design Values: Predicted Versus Measured Response in a Calcareous Clay. Deep Foundations 2002: An International Perspective on Theory, Design, Construction, and Performance. doi:10.1061/40601(256)108 | spa |
dc.relation.references | Cancelli, A. (1977). Residual shear strength and stability analysis of a landslide in fissured overconsolidated clays. Bull. Int. Assoc. Eng. Geol, 193-197. | spa |
dc.relation.references | Cao, W. G., Zhao, H., & Li, X. (2010). Statistical damage model with strain softening and hardening for rocks under the influence of voids and volume changes. Canadian Geotechnical Journal, 47(8), 857–871. doi:10.1139/T09-148 | spa |
dc.relation.references | Chan, D. H., & Morgenstern, N. R. (1987). Analysis of progressive deformation of the Edmonton Convention Centre excavation. Canadian Geotechnical Journal(24), 430–440. doi:10.1139/t87-053 | spa |
dc.relation.references | Chandler, R. J. (1966). The Measurement of Residual Strength in Triaxial Compression. Géotechnique, 16(3), 181-186. doi:10.1680/geot.1966.16.3.181 | spa |
dc.relation.references | Chandler, R. J. (1969). The Effect of Weathering on the Shear Strength Properties of Keuper Marl. Géotechnique, 19(3), 321-334. doi:10.1680/geot.1969.19.3.321 | spa |
dc.relation.references | Chen, Z., Morgenstern, N. R., & Chan, D. H. (1992). Progressive failure of the Carsington Dam: A numerical study. Canadian Geotechnical Journal, 29(6), 971–988. doi:10.1139/t92-107 | spa |
dc.relation.references | Chester, F. M. (1994). Effects of temperature on friction: constitutive equations and experiments with quartz gouge. Journal of Geophysical Research: Solid Earth, 99(B4), 7247–7261. doi:10.1029/93JB03110 | spa |
dc.relation.references | Cole, E. R. (1967). The behavior of soils in the simple shear apparatus (Thesis). (C. University, Ed.) Cambridge, Reino Unido. | spa |
dc.relation.references | Collotta, T., Cantoni, R., Pavesi, U., Ruberl, E., & Moretti, P. C. (1989). A correlation between residual friction angle, gradation and the index properties of cohesive soils. Géotechnique, 39(2), 343-346. doi:10.1680/geot.1989.39.2.343 | spa |
dc.relation.references | Desikachary, T., & Dweltz, N. (1961). The chemical composition of the diatom frustule. Proc. Indian Acad. Sci, 53, pp. 157-165. doi:10.1007/BF03051518 | spa |
dc.relation.references | Díaz-Rodríguez, J., & Cruz, R. L.-A. (1998). Physical, chemical, and mineralogical properties of Mexico City sediments: a geotechnical perspective. Canadian Ge otechnical Journal, 600-610. doi:10.1139/t98-026 | spa |
dc.relation.references | Duncan, J. M., Wright, S. G., & Brandon, T. L. (2014). Soil Strength and Slope Stability. New Jersey: John Wiley & Sons, Inc. | spa |
dc.relation.references | Edil, T. B., & Wang, X. (2000). Shear strength and Kₒ of peats and organic soils. In Geotechnics of High Water Content Materials (pp. 209–225). | spa |
dc.relation.references | Garcia, L. M., Pinyol, N. M., Lloret, A., & Soncco, E. A. (2023). Influence of temperature on residual strength of clayey soils. Engineering Geology, 323, 1-19. doi:10.1016/j.enggeo.2023.107220 | spa |
dc.relation.references | Ghobadi, M. H., Abdilor, Y., & Babazadeh, R. (2014). Stabilization of clay soils using lime and effect of pH variations on shear strength parameters. Bulletin of Engineering Geology and the Environment, 73(3), 611–619. doi:10.1007/s10064-013-0563-7 | spa |
dc.relation.references | Gui, Y., Zhang, Q., Qin, X., & Wang, J. (2021). Influence of Organic Matter Content on Engineering Properties of Clays. Advances in Civil Engineering. doi:10.1155/2021/6654121 | spa |
dc.relation.references | Hamouche, F., & Zentar, R. (2020). Effects of organic matter on physical properties of dredged marine sediments. Waste and Biomass Valorization, 389-401. | spa |
dc.relation.references | Helmens, K. (1990). Neogene–Quaternary geology of the high plain of Bogota´, Eastern Cordillera, Colombia (stratigraphy, palaeoenvironments and landscape evolution). Dissertationes Botanicae, 163, 189-196. | spa |
dc.relation.references | Helmens, K., & Van der Hammen, T. (1994). The Pliocene and Quaternary of the high plain of Bogotá (Colombia): A history of tectonic uplift, basin development and climatic change. Quaternary International, 21, 41-61. doi:10.1016/1040-6182(94)90020-5 | spa |
dc.relation.references | Holtz, R. D., Kovacs, W. D., & Sheahan, T. C. (2023). Introduction to Geotechnical Engineering. Hoboken: Pearson. | spa |
dc.relation.references | Hoyos, L. R., Velosa, C. L., & Puppala, A. J. (2012). A Novel Suction-Controlled Ring Shear Testing Apparatus for Unsaturated Soils. Experimental and Applied Modeling of Unsaturated Soils. Shanhai. doi:10.1061/41103(376)5 | spa |
dc.relation.references | Hoyos, L. R., Yepes, J. E., Velosa, C. L., & Puppala, A. J. (2020). Unsaturated Shear Strength of Compacted Clayey Soil via Suction-controlled Ring Shear Testing. 4th European Conference on Unsaturated Soils (E-UNSAT 2020) (pp. 1-4). EDP Sciences. doi:10.1051/e3sconf/202019503024 | spa |
dc.relation.references | Huat, B., Afshin, A., & Kazemian, S. (2009). Experimental investigation on geomechanical properties of tropical organic soils and peat. American Journal of Engineering & Applied Sciences, 2(1), 184–188. doi:10.3844/ajeassp.2009.184.188 | spa |
dc.relation.references | Hubach, E. (1957). Estratigrafía de la Sabana de Bogotá y alrededores. Boletín Geológico, 5(2), 95-112. | spa |
dc.relation.references | Hvorslev, M. J. (1937). Uber die Festigkeitseigenschaften Gestorter Bindinger Boden. Danmarks Naturvidenskabelige Samfund. | spa |
dc.relation.references | Hvorslev, M. J. (1939). Torsion shear tests and their place in the determination of the shearing resistance. Proceedings-American society for testing and materials, 39, 999-1022. | spa |
dc.relation.references | Chandler, R. J. (1984). Recent European experience of landslides in overconsolidated clays and soft rocks. 4th Int. Symp. on Landslides, (pp. 61-81). Toronto. | spa |
dc.relation.references | Kanji, M. A. (1974). The relationship between drained friction angles and Atterberg limits of natural soils. Géotechnique, 24(4), 671-674. doi:10.1680/geot.1974.24.4.671 | spa |
dc.relation.references | Keller, W. D. (1963). The Origin of High-Alumina Clay Minerals—A Review. Symposium on Mechanism of Emplacement (Formation) of Clay Minerals, 12, pp. 129–151. doi:10.1346/CCMN.1963.0120115 | spa |
dc.relation.references | Krajcinovic, D., & Silva, M. A. (1982). Statistical aspects of the continuous damage theory. International Journal of Solids and Structures, 18(7), 551–562. doi:10.1016/0020-7683(82)90039-7 | spa |
dc.relation.references | Kulhawy, F. H., & Mayne, P. W. (1990). Manual on Estimating Soil Properties for Foundation Design. Electric Power Research Institute. | spa |
dc.relation.references | La Rochelle, P. (1960). The short-term stability of slopes in London Clay. Ph.D. Thesis. Imperial College. | spa |
dc.relation.references | Lambe, T. W. (1985). Amuay landslides. Proceedings of the 10th International Conference on Soil Mechanics and Foundation, (pp. 137-158). San Francisco. | spa |
dc.relation.references | Lemaitre, J. (1984). How to use damage mechanics. Nuclear Engineering and Design, 233-245. doi:10.1016/0029-5493(84)90169-9 | spa |
dc.relation.references | Lemaitre, J. (1984). How to use damage mechanics. Nuclear Engineering and Design, 80(2), 233–245. doi:10.1016/0029-5493(84)90169-9 | spa |
dc.relation.references | Li, D., Yin, K., Glade, T., & Leo, C. (2017). Effect of over-consolidation and shear rate on the residual strength of soils of silty sand in the Three Gorges Reservoir. Scientific Reports, 7(1), 1-11. Retrieved from 10.1038/s41598-017-05749-4 | spa |
dc.relation.references | Li, X., Cao, W. G., & Su, Y. H. (2012). A statistical damage constitutive model for softening behavior of rocks. Engineering Geology. doi:0.1016/j.enggeo.2012.05.005 | spa |
dc.relation.references | Liu, C. N. (2009). Progressive failure mechanism in one-dimensional stability analysis of shallow slope failures. Landslides, 6(2), 129–137. doi: 10.1007/s10346-009-0153-8 | spa |
dc.relation.references | Lobo-Guerrero, A. (1992). Geología e Hidrogeología de Santafé de Bogotá y su Sabana. VII Jornadas Geotecnicas de la Ingeniería de Colombia, (pp. 1-20). Bogotá D.C. | spa |
dc.relation.references | Luo, Y., Zou, Z., Li, C., Duan, H., T. N., Zhang, B., . . . Zhang, J. (2022). Analysis of shear constitutive models of the slip zone soil based on various statistical damage distributions. Applied Sciences, 12(7). doi:10.3390/app12073493 | spa |
dc.relation.references | Lupini, J. F. (1981). The residual strength of soils (Thesis). London: Imperial College London. | spa |
dc.relation.references | Lupini, J. F., Skinner, A. E., & Vaughan, P. R. (1981). The drained residual strength of cohesive soils. Géotechnique, 31(2), 181-213. doi:10.1680/geot.1981.31.2.181 | spa |
dc.relation.references | Maksimović, M. (1989). On the residual shearing strength of clays . Géotechnique, 39(2), 347-351. | spa |
dc.relation.references | Meehan, C. L., Brandron, T. L., & Duncan, J. M. (2007). Measuring Drained Residual Strengths in the Bromhead Ring Shear. Geotechnical Testing Journal, 30(6), 1-10. doi:10.1520/GTJ101017 | spa |
dc.relation.references | Merchán, V., Romero, E., & Vaunat, J. (2011). An Adapted Ring Shear Apparatus for Testing Partly Saturated Soils in the High Suction Range. Geotechnical Testing Journal, 34(5), 1-12. doi:10.1520/GTJ103638 | spa |
dc.relation.references | Miao, T. D., Ma, C. W., & Wu, S. Z. (1999). Evolution model of progressive failure of landslides. Journal of Geotechnical and Geoenvironmental Engineering, 125(10), 827–831. doi:10.1061/(ASCE)1090-0241(1999)125:10(827) | spa |
dc.relation.references | Mitchell, J. K., & Soga, K. (2005). Fundamentals of Soil Behavior. New Jersey: John Wiley & Sons. | spa |
dc.relation.references | Mora, H., Díaz, F., & Cardona, L. (2020). Mapping land subsidence in Bogotá, Colombia, using the interferometric synthetic aperture radar (InSAR) technique with TerraSAR–X images. The Geology of Colombia, 4(38), 515–548. doi:10.32685/pub.esp.38.2019.16 | spa |
dc.relation.references | Moreno, C. A., & Rodríguez, E. E. (n.d.). Dynamic behavior of Bogota’s subsoil peat and its effect in seismic wave propagation. 13th World Conference on Earthquake Engineering, (p. 2004). | spa |
dc.relation.references | Moya, J., & Rodriguez, J. (1987). El subsuelo de Bogota y los problemas de cimentaciones. 8th Panamerican Conference on Soil Mechanics and Foundation Engineering, (pp. 197-264). | spa |
dc.relation.references | Odell, R. T. (1960). Relationships of Atterberg limits to some other properties of Illinois soils. Soil Science Society of America Journal, 297-300. doi:10.2136/sssaj1960.03615995002400040025x | spa |
dc.relation.references | Ortolan, Z., & Mihalinec, Z. (1998). Plasticity index — Indicator of shear strength and a major axis of geotechnical modelling. In Geotechnical Hazards (p. 8). CRC Press. | spa |
dc.relation.references | Pineda, J. A., & Colmenares, J. E. (2007). Influencia de la desecación en el comportamiento volumétrico de la arcilla de Bogotá. 13th Panamerican Conference on Soil Mechanics and Geotechnical Engineering, 1-6. doi:10.13140/RG.2.1.1110.0004 | spa |
dc.relation.references | Pulat, H. F., & Yukselen-Aksoy, Y. (2017). Factors affecting the shear strength behavior of municipal solid wastes. Waste Management, 215-224. doi:10.1016/j.wasman.2017.08.030 | spa |
dc.relation.references | Reina, C. R. (2019). Influencia del contenido de Materia Orgánica en el cambio volumétrico de arcillas blandas (tesis de maestría). Bogotá D.C.: Universidad Nacional de Colombia. | spa |
dc.relation.references | Romero, E., Vaunat, J., & Merchán, V. (2014). Suction effects on the residual shear strength of clays. Journal of Geo-engineering Sciences, 2(1), 17-37. doi:10.3233/JGS-141320 | spa |
dc.relation.references | Sadrekarimi, A. (2009). Development of a New Ring Shear Apparatus for Investigating the Critical State of Sands (Thesis). Urbana: University of Illinois. | spa |
dc.relation.references | Sadrekarimi, A., & Olson, S. (2009). A New Ring Shear Device to Measure the Large Displacement Shearing Behavior of Sands. Geotechnical Testing Journal, 32(3), 197-208. doi:10.1520/GTJ101733 | spa |
dc.relation.references | Santamarina, J. C., & Díaz-Rodríguez, J. A. (2003). Friction in Soils: Micro and Macroscale Observations. 12th Panamerican Conference on Soil Mechanics and Geotechnical Engineering, (pp. 1-6). Massachusetts. | spa |
dc.relation.references | Scaringi, G., & Di Maio, C. (2016). Influence of displacement rate on residual shear strength of clays. Procedia Earth and Planetary Science, 16, 137-145. doi:10.1016/j.proeps.2016.10.015 | spa |
dc.relation.references | Seed, H. B., Woodward, R. J., & Lundgren, R. (1962). Prediction of swelling potential for compacted clays. Journal of Soil Mechanics and Foundations Division, 53-87. | spa |
dc.relation.references | Selvakumar, S., Kulanthaivel, P., & Soundara, B. (2021). Infuence of nano silica and sodium silicate on the strength characteristics of clay soil. Nanotechnology for Environmental Engineering, 6(46), 45-55. doi:10.1007/s41204-021-00142-z | spa |
dc.relation.references | Shames, I. H., & Pitarresi, J. M. (2000). Introduction to Solid Mechanics (3ra ed.). New Jersey: Pearson. | spa |
dc.relation.references | Shen, P., Tang, H., Ning, Y., & Xia, D. (2019). A damage mechanics based constitutive model for strain-softening rocks. Engineering Fracture Mechanics. doi:10.1016/j.engfracmech.2019.106521 | spa |
dc.relation.references | Shiwakoti, D. R., Tanaka, H., Tanaka, M., & Locat, J. (2002). Influences of diatom microfossils on engineering properties of soils. Soils and Foundations, 1-17. doi:10.3208/sandf.42.3_1 | spa |
dc.relation.references | Sjöström, J. K., Bindler, R., Granberg, T., & Kylander, M. (2019). Procedure for Organic Matter Removal from Peat Samples for XRD Mineral Analysis. Wetlands, 473–481. doi:10.1007/s13157-018-1093-7 | spa |
dc.relation.references | Skempton, A. W. (1964). Long-term stability of clay slopes. Géotechnique, 14(2), 77-102. doi:https://doi.org/10.1680/geot.1964.14.2.77 | spa |
dc.relation.references | Skempton, A. W. (1985). Residual strength of clays in landslides, folded strata and the laboratory. Géotechnique, 35(1), 3-18. doi:10.1680/geot.1985.35.1.3 | spa |
dc.relation.references | Skempton, A. W., & Petley, D. J. (1967). The strength along structural discontinuities in stiff clays. Proc. Oslo Geot. Conf on Shear Strength Prop. of Natural Soils and Rocks, (pp. 29-46). Oslo. doi:10.1680/sposm.02050.0018 | spa |
dc.relation.references | Stark, T. D., & Eid, H. T. (1994). Drained Residual Strength of Cohesive Soils. Journal of Geotechnical Engineering, 120(5), 856-871. | spa |
dc.relation.references | Tanaka, H., Locat, J., Shibuya, S., Thiam Soon, T., & Shiwakoti, D. (2001). Characterization of Singapore, Bangkok, and Ariake clays. Canadian Geotechnical Journal, 38(2), 378-400. doi:10.1139/t00-106 | spa |
dc.relation.references | Terzaghi, K. (1936). The shearing resistance of saturated soils and angle between the planes of shear. Conference on Soil Mechanics and Foundation Engineering (pp. 54-56). Cambridge: Harvard University Press. | spa |
dc.relation.references | Tiedemann, B. (1937). Über die Scherfestigkeit bindiger Böden. Bautechnik, 15(30), 400-403 . | spa |
dc.relation.references | Tika, T. E., Vaughan, P. R., & Lemos, L. J. (1996). Fast shearing of pre-existing shear zones in soil. Géotechnique, 46(2), 197-233. doi:10.1680/geot.1996.46.2.197 | spa |
dc.relation.references | Tiwari, B., & Marui, H. (2005). A New Method for the Correlation of Residual Shear Strength of the Soil with Mineralogical Composition. Journal of Geotechnical and Geoenvironmental Engineering, 131(9), 1139-1150. doi:10.1061/(ASCE)1090-0241(2005)131:9(1139) | spa |
dc.relation.references | Torres, V., Vandenberghe, J., & Hooghiemstra, H. (2005). An environmental reconstruction of the sediment infill of the Bogota´ basin (Colombia) during the last 3 million years from abiotic and biotic proxies. Palaeogeography, Palaeoclimatology, Palaeoecology, 226(1-2), 127–148. doi:10.1016/j.palaeo.2005.05.005 | spa |
dc.relation.references | Toyota, H., Nakamura, K., Sugimoto, M., & Sakai, N. (2009). Ring shear tests to evaluate strength parameters in various remoulded soils. Géotechnique, 59(8), 649-659. doi:10.1680/geot.8.029.3671 | spa |
dc.relation.references | Tran, V. Q., Dang, V. Q., Do, H. Q., & Ho, L. S. (2022). Investigation of ANN architecture for predicting residual strength of clay soil. Neural Computing and Applications, 34, 19253–19268. doi:10.1007/s00521-022-07547-0 | spa |
dc.relation.references | Tresca, H. (1864). Mémoire sur l'écoulement des corps solides soumis à de fortes pressions. Comptes Rendus de l'Académie des Sciences, 754-758. | spa |
dc.relation.references | Van der Hammen, T., Werner, J., & Van Dommelen, H. (1973). Palynological record of the upheaval of the Northern Andes: A study of the pliocene and lower quaternary of the Colombian Eastern Cordillera and the early evolution of its high-Andean biota. Review of Palaeobotany and Palynology, 16(1-2), 84-122. doi:10.1016/0034-6667(73)90031-6 | spa |
dc.relation.references | Vaughan, P. R. (1988). Keynote lecture: characterizing the mechani- cal properties of in-situ residual soil. Proceedings of the 2nd International Conference on Geomechanics in Tropical Soils. Singapore. | spa |
dc.relation.references | Vithana, S. B., Nakamura, S., Gibo, S., Yoshinaga, A., & Kimura, S. (2011). Correlation of large displacement drained shear strength of landslide soils measured by direct shear and ring shear devices. Landslides, 9(3), 305-314. doi:10.1007/s10346-011-0301-9 | spa |
dc.relation.references | Vithana, S. B., Nakamura, S., Kimura, S., & Gibo, S. (2012). Effects of overconsolidation ratios on the shear strength of remoulded slip surface soils in ring shear. Engineering Geology, 131-132, 29-36. doi:10.1016/j.enggeo.2012.01.015 | spa |
dc.relation.references | Von Mises, R. (1913). Mechanik der festen Koerper im plastisch deformablen Zustant. Goettingen Nachrichten Mathematisch — Physikalische Klass, 582-592. | spa |
dc.relation.references | Wang, G., Bian, X., Wang, Y., Cui, Y., & Zeng, L. (2022). Effect of organic matter content on Atterberg limits and undrained shear strength of river sediment. Marine Georesources & Geotechnology, 40(9), 1060-1072. doi:10.1080/1064119X.2021.1961955 | spa |
dc.relation.references | Webb, D. L. (1969). Residual strength in conventional triaxial tests. Conference on Soil Mechanics and Foundation Engineering, (pp. 433-441). Ciudad de Mexico. | spa |
dc.relation.references | Weibull, W. (1951). A Statistical Distribution Function of Wide Applicability. J. Appl. Mech., 18(3), 293-297. doi:10.1115/1.4010337 | spa |
dc.relation.references | Wesley, L. D. (2003). Residual strength of clays and correlations using Atterberg limits. Géotechnique, 53(7), 669-672. doi:10.1680/geot.2003.53.7.669 | spa |
dc.relation.references | Wijninga, V. (1996). Paleobotany and palynology of Neogene sediments from the high plain of Bogota´ (Colombia). PhD Thesis. Amsterdam: University of Amsterdam. | spa |
dc.relation.references | Wood, D. (1991). Soil behaviour and critical state soil mechanics. Cambridge: Cambridge University Press. | spa |
dc.relation.references | Wright, S. G. (2005). Evaluation of Soil Shear Strengths for Slope and Retaining Wall Stability Analyses with Emphasis on High Plasticity Clays. Austin: The University of Texas. | spa |
dc.relation.references | Zou, Z., Yan, J., Tang, H., Wang, S., Xiong, C., & Hu, X. (2020). A shear constitutive model for describing the full process of the deformation and failure of slip zone soil. Engineering Geology, 276. doi:10.1016/j.enggeo.2020.105766 | spa |
dc.relation.references | Budhu, M. (1984). Nonuniformities imposed by simple shear apparatus. Canadian Geotechnical Journal, 21(1), 125-137. doi:10.1139/t84-010 | spa |
dc.relation.references | Budhu, M. (2015). Soil Mechanics Fundamentals (1ra ed.). Chichester, West Sussex, United Kingdom: John Wiley & Sons. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Reconocimiento 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::624 - Ingeniería civil | spa |
dc.subject.proposal | Arcillas de Bogotá | spa |
dc.subject.proposal | Resistencia al corte residual | spa |
dc.subject.proposal | Contenido de materia orgánica | spa |
dc.subject.proposal | Equipo de corte anular | spa |
dc.subject.proposal | Modelo constitutivo de daño | spa |
dc.subject.proposal | Bogotá Clays | eng |
dc.subject.proposal | Residual shear strength | eng |
dc.subject.proposal | Organic matter content | eng |
dc.subject.proposal | Damage constitutive model | eng |
dc.subject.proposal | Ring shear apparatus | eng |
dc.subject.unesco | arcilla | spa |
dc.subject.unesco | clay | eng |
dc.subject.wikidata | Materiales de construcción | spa |
dc.subject.wikidata | Building materials | eng |
dc.subject.wikidata | resistencia de materiales | spa |
dc.subject.wikidata | strength of materials | eng |
dc.title | Influencia del contenido de materia orgánica en la resistencia al corte residual de la arcilla de Bogotá | spa |
dc.title.translated | Influence of organic matter content on the residual shear strength of Bogotá clay | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1014253122.2024.pdf
- Tamaño:
- 3.51 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Geotecnia
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: