Monitoreo de la actividad sísmica del territorio colombiano usando aprendizaje profundo

dc.contributor.advisorPrieto Gómez, Germán Andrés
dc.contributor.authorCastillo Taborda, Emmanuel David
dc.contributor.cvlacCastillo, Emmanuel [0001730420]spa
dc.contributor.datamanagerServicio Geológico Colombiano
dc.contributor.datamanagerLevander, Alan
dc.contributor.googlescholarCastillo, Emmanuelspa
dc.contributor.orcidCastillo, Emmanuel [0000-0002-9799-9775]spa
dc.contributor.projectmemberSiervo Plata, Daniel David
dc.contributor.researchgateCastillo, Emmanuel [https://www.researchgate.net/profile/Emmanuel_Castillo4]spa
dc.coverage.countryColombia
dc.date.accessioned2023-01-27T20:46:46Z
dc.date.available2023-01-27T20:46:46Z
dc.date.issued2022
dc.descriptionilustraciones, mapas + anexospa
dc.description.abstractLas redes sismológicas, ya sean mundiales, regionales o locales, tienen como objetivo vigilar la actividad sísmica. Esto implica la detección de eventos sísmicos y la determinación de su localización (latitud, longitud, profundidad y tiempo de origen) con un nivel aceptable de incertidumbre. Aplicamos estos pasos en tres redes sísmicas de forma automática. Una red sísmica regional (Red Sismológica Colombiana-CM, separación entre estaciones ~ 100 km), y dos redes locales y temporales (separación entre estaciones ~ 10-30 km) en el norte de Suramérica: Las redes sísmicas locales del Valle Medio de Magdalena (VMM) y de los Andes del Caribe-Mérida (YU). Para ello, es necesario procesar los datos continuos de múltiples estaciones para detectar y picar las fases sísmicas (normalmente ondas de cuerpo). En muchas redes, este proceso lo lleva a cabo un analista que, examinando visualmente las trazas, determina el tiempo de llegada de cada onda a una estación. Sin embargo, en redes sísmicas densas o en despliegues temporales, esta tarea puede ser muy laboriosa y requerir varios analistas. Para detectar y picar las fases sísmicas automáticamente de la red CM, utilizamos dos modelos de Deep Learning pre-entrenados: EQTransformer y PhaseNet. Derivamos algunas estadísticas para comparar el rendimiento tanto en fiabilidad como en compatibilidad con el algoritmo de asociación y localización Scanloc. Basándonos en lo anterior, utilizamos solo EQTransformer para las dos redes locales. El catálogo CM generado por los picks de PhaseNet y EQTransformer se comparó con el catálogo manual. Ambos catálogos son suficientemente confiables para mostrar una distribución similar de la sismicidad intermedia y somera del territorio colombiano. Las redes locales muestran un patrón más detallado de la localización de la sismicidad. Por último, fusionamos los catálogos en uno solo catálogo sísmico automático y usamos algunos cortes para identificar estructuras tectónicas regionales y resaltar fallas regionales. Los resultados muestran que esta implementación es lo suficientemente fiable como para generar catálogos sísmicos automáticos con la calidad adecuada en términos de errores de localización de eventos y es capaz de definir las principales estructuras tectónicas. Mejor aún, puede mejorar los tiempos de procesamiento de terremotos y complementar los catálogos manuales gracias a su buen rendimiento para terremotos pequeños y réplicas. (Texto tomado de la fuente)spa
dc.description.abstractSeismological networks, whether global, regional, or local, have the objective of monitoring seismic activity. This implies the detection of seismic events and determination of their location (latitude, longitude, depth and origin time) with an acceptable level of uncertainty. We apply these steps in three seismic networks automatically. A regional seismic network (Colombian Seismological Network-CM, station separation ~ 100 km), and two local and temporary networks (station separation ~ 10-30 km) in northern South America: the Middle Magdalena Valley Array (VMM), and the Carribean-Mérida Andes seismic array (YU). To achieve this, continuous data of multiple stations needs to be processed to detect and pick seismic phases (usually body waves). In many networks this process is carried out by an analyst who, visually examining the traces, determines the arrival time of a wave at a station. However, for dense seismic networks or temporary deployments, this task can be very laborious, requiring several analysts. To detect and pick the seismic phases automatically of the CM network, we use two pre-trained Deep Learning models: EQTransformer and PhaseNet. We derive some statistics to compare the performance in both reliability and compatibility with the Scanloc association and location algorithm. Based on the above, we use only EQTransformer for the two local networks. The CM catalog generated by the PhaseNet and EQTransformer picks was compared with the manual catalog. Both catalogs are sufficiently reliable to show asimilar distribution of intermediate and shallow seismicity in the Colombian territory. The local networks show a more detailed patterns of seismicity locations. At last, we merge the catalogs in only one automatic seismic catalog and use some transects to identify regional tectonic structures and highlight regional faults. The results show that this implementation is reliable enough to generate automatic seismic catalogs with the appropriate quality in terms of the event location errors and is capable of defining major tectonic structures. Better yet, it can improve earthquake processing times and complement manual catalogs due to its good performance for small earthquakes and aftershocks.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Geofísicaspa
dc.description.researchareaSismologíaspa
dc.description.researchareaSeismologyspa
dc.format.extentxii, 64 páginas + anexosspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83173
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá - Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Geofísicaspa
dc.relation.references[Al-Hashmi et al., 2013] Al-Hashmi, S., Rawlins, A., and Vernon, F. (2013). A wavelet transform method to detect p and s-phases in three component seismic data. Open Journal of Earthquake Research, 2:1–20spa
dc.relation.references[Alan Levander, 2016] Alan Levander (2016). Caribbean-merida andes experiment.spa
dc.relation.references[Allen, 1978] Allen, R. V. (1978). Automatic earthquake recognition and timing from single traces. Bulletin of the Seismological Society of America, 68(5):1521–1532.spa
dc.relation.references[Anant and Dowla, 1997] Anant, K. S. and Dowla, F. U. (1997). Wavelet transform methods for phase identification in three-component seismograms. Bulletin of the Seismological Society of America, 87(6):1598–1612.spa
dc.relation.references[Baer and Kradolfer, 1987] Baer, M. and Kradolfer, U. (1987). An automatic phase picker for local and teleseismic events. Bulletin of the Seismological Society of America, 77(4):1437–1445spa
dc.relation.references[Bergen and Beroza, 2019] Bergen, K. and Beroza, G. (2019). Earthquake fingerprints: Extracting waveform features for similarity-based earthquake detection. Pure and Applied Geophysics, 176.spa
dc.relation.references[Bernal Olaya and Vargas, 2015] Bernal Olaya, R. and Vargas, C. (2015). Earthquake, Tomographic, Seismic Reflection, and Gravity Evidence for a Shallowly Dipping Subduction Zone beneath the Caribbean Margin of Northwestern Colombia, pages 247–270.spa
dc.relation.references[Bormann and Saul, 2008] Bormann, P. and Saul, J. (2008). The New IASPEI Standard Broadband Magnitude mB. Seismological Research Letters, 79(5):698–705.spa
dc.relation.references[Chiarabba et al., 2016] Chiarabba, C., Gori, P. D., Faccenna, C., Speranza, F., Seccia, D., Dionicio, V., and Prieto, G. A. (2016). Subduction system and flat slab beneath the eastern cordillera of colombia. Geochemistry, 17:16 – 27.spa
dc.relation.references[Cichowicz, 1993] Cichowicz, A. (1993). An automatic s-phase picker. Bulletin of the Seismological Society of America, 83:180–189.spa
dc.relation.references[Cornthwaite et al., 2021] Cornthwaite, J., Bezada, M. J., Miao, W., Schmitz, M., Prieto, G. A., Dionicio, V., Niu, F., and Levander, A. (2021). Caribbean Slab Segmentation Beneath North-west South America Revealed by 3-D Finite Frequency Teleseismic P-Wave Tomography. Geo chemistry, Geophysics, Geosystems, 22(4):1–19.spa
dc.relation.references[Cornthwaite et al., 2017] Cornthwaite, J., Miao, W., Levander, A., Niu, F., Schmitz, M., Dionicio, V., Nader, M., and Bezada, M. (2017). Initial results from the carmarray seismic experiment in northern colombia and estern venezuelspa
dc.relation.references[Cortés et al., 2005] Cortés, M., Angelier, J., and Colletta, B. (2005). Paleostress evolution of the northern andes (eastern cordillera of colombia): Implications on plate kinematics of the south caribbean region. Tectonics, 24.spa
dc.relation.references[Dai and MacBeth, 1997] Dai, H. and MacBeth, C. (1997). The application of back-propagation neural network to automatic picking seismic arrivals from single-component recordings. Journal of Geophysical Research: Solid Earth, 102(B7):15105–15113spa
dc.relation.references[Dokht et al., 2019] Dokht, R. M. H., Kao, H., Visser, R., and Smith, B. (2019). Seismic Event and Phase Detection Using Time–Frequency Representation and Convolutional Neural Networks. Seismological Research Letters, 90(2A):481–490spa
dc.relation.references[Earle and Shearer, 1994] Earle, P. S. and Shearer, P. M. (1994). Characterization of global seismograms using an automatic-picking algorithm. Bulletin of the Seismological Society of America, 84(2):366–376.spa
dc.relation.references[Fuenzalida et al., 1998] Fuenzalida, H., Dimate, C., and Taboada, A. (1998). Sismotectónica de colombia: deformación continental activa y subducción. Física de la tierra, ISSN 0214-4557, Nº 10, 1998 (Ejemplar dedicado a: Sismicidad y sismotectónica de Centro y Sudamérica), pags. 111-148.spa
dc.relation.references[Gentili and Michelini, 2006] Gentili, S. and Michelini, A. (2006). Automatic picking of P and S phases using a neural tree. Journal of Seismology, 10(1):39–63.spa
dc.relation.references[Gibbons and Ringdal, 2006] Gibbons, S. J. and Ringdal, F. (2006). The detection of low magnitude seismic events using array-based waveform correlation. Geophysical Journal International, 165(1):149–166.spa
dc.relation.references[Hilst and Mann, 1994] Hilst, R. v. d. and Mann, P. (1994). Tectonic implications of tomographic images of subducted lithosphere beneath northwestern South America. Geology, 22(5):451–454spa
dc.relation.references[INGEOMINAS - Servicio Geologico Colombiano (SGC Colombia), 1993] INGEOMINAS - Servicio Geologico Colombiano (SGC Colombia) (1993). Red sismologica nacional de colombia.spa
dc.relation.references[Kellogg et al., 2019] Kellogg, J., Camelio, G., and Mora-Paez, H. (2019). Cenozoic tectonic evolution of the North Andes with constraints from volcanic ages, seismic reflection, and satellite geodesy, pages 69–102.spa
dc.relation.references[Kumar et al., 2018] Kumar, S., Vig, R., and Kapur, P. (2018). Development of earthquake event detection technique based on sta/lta algorithm for seismic alert system. Journal of the Geological Society of India, 92(6):679–686.spa
dc.relation.references[Lee et al., 2020] Lee, E.-J., Mu, D., Wang, W., and Chen, P. (2020). Weighted template-matching algorithm (wtma) for improved foreshock detection of the 2019 ridgecrest earthquake se quence. Bulletin of the Seismological Society of America, 110(4):1832–1844.spa
dc.relation.references[Liu and Zhang, 2014] Liu, H. and Zhang, J.-z. (2014). Sta/lta algorithm analysis and improvement of microseismic signal automatic detection. Progress in Geophysics, 29(4):1708–1714spa
dc.relation.references[Lomax et al., 2000] Lomax, A., Virieux, J., Volant, P., and Berge-Thierry, C. (2000). Probabilistic Earthquake Location in 3D and Layered Models, pages 101–134.spa
dc.relation.references[Londoño et al., 2019] Londoño, J. M., Quintero, S., Vallejo, K., Muñoz, F., and Romero, J. (2019). Seismicity of valle medio del magdalena basin, colombia. Journal of South American Earth Sciences, 92:565–585.spa
dc.relation.references[Londoño et al., 2020] Londoño, J. M., Vallejo, K., and Quintero, S. (2020). Detailed seismic velocity structure of the caribbean and nazca plates beneath valle medio del magdalena region of ne colombia. Journal of South American Earth Sciences, 103:102762.spa
dc.relation.references[Lopez et al., 2020] Lopez, C. M., Velasquez, L., and Dionicio, V. (2020). Calibration of local magnitude scale for colombia. Bulletin of the Seismological Society of America, 110:1971–1981spa
dc.relation.references[Magrini et al., 2020] Magrini, F., Jozinović, D., Cammarano, F., Michelini, A., and Boschi, L. (2020). Local earthquakes detection: A benchmark dataset of 3-component seismograms built on a global scale. Artificial Intelligence in Geosciences, 1:1–10.spa
dc.relation.references[Malavé and Suárez, 1995] Malavé, G. and Suárez, G. (1995). Intermediate-depth seismicity in northern colombia and western venezuela and its relationship to caribbean plate subduction. Tectonics, 14(3):617–628.spa
dc.relation.references[Marmureanu, 2009] Marmureanu, A. (2009). Rapid magnitude determination for vrancea early warning system. Romanian Journal of Physics, 54.spa
dc.relation.references[Martinez, 2016] Martinez, D. (2016). Nazcla plate geometry through seimological data. Undergraduate thesis, Universidad de Caldas, Manizales, Colombia.spa
dc.relation.references[Martínez and Prieto, 2020] Martínez, D. and Prieto, G. A. (2020). Implementación del método de relocalización source specific station terms para colombia: Aplicación para el occidente colombiano. Master’s thesis, Universidad Nacional de Colombia, Bogotá, Colombia.spa
dc.relation.references[Mayorga et al., 2020] Mayorga, E., Dionicio, V., Lizarazo, M., Pedraza, P., Poveda, E., Mercado, O., Siervo, D., Aguirre, L., Bolaños, R., Garzón, F., et al. (2020). El sismo de mesetas, meta del 24 de diciembre de 2019 aspectos sismológicos, movimiento fuerte y consideraciones geodésicas. Bogotá: Servicio Geológico Colombianospa
dc.relation.references[McBrearty, 2021] McBrearty, I., . B. G. C. (2021). Earthquake Phase Association with Graph Neural Networks.spa
dc.relation.references[McBrearty et al., 2019a] McBrearty, I. W., Delorey, A. A., and Johnson, P. A. (2019a). Pairwise Association of Seismic Arrivals with Convolutional Neural Networks. Seismological Research Letters, 90(2A):503–509.spa
dc.relation.references[McBrearty et al., 2019b] McBrearty, I. W., Gomberg, J., Delorey, A. A., and Johnson, P. A. (2019b). Earthquake Arrival Association with Backprojection and Graph Theory. Bulletin of the Seismological Society of America, 109(6):2510–2531spa
dc.relation.references[McEvilly and Majer, 1982] McEvilly, T. V. and Majer, E. L. (1982). ASP: An Automated Seismic Processor for microearthquake networks. Bulletin of the Seismological Society of America, 72(1):303–325.spa
dc.relation.references[Micallef, 2019] Micallef, T. (2019). Earthquake detection and localisation using the NARS-Botswana data. Master’s thesis, Uthrecht University, Utrecht, Netherlands.spa
dc.relation.references[Molina et al., 2020] Molina, I., Velasquez, J., Rubinstein, J., Garcia, A., and Dionicio, V. (2020). Seismicity induced by massive wastewater injection near puerto gaitán, colombia. Geophysical Journal International, 223:777–791.spa
dc.relation.references[Mousavi et al., 2020] Mousavi, S. M., Ellsworth, W. L., Zhu, W., Chuang, L. Y., and Beroza, G. C. (2020). Earthquake transformer—an attentive deep-learning model for simultaneous earthquake detection and phase picking. Nature Communications, 11(1):1–12.spa
dc.relation.references[Mousavi et al., 2019] Mousavi, S. M., Sheng, Y., Zhu, W., and Beroza, G. C. (2019). Stanford earthquake dataset (stead): A global data set of seismic signals for ai. IEEE Access, 7:179464–179476.spa
dc.relation.references[Ojeda and Havskov, 2001] Ojeda, A. and Havskov, J. (2001). Crustal structure and local seismicity in Colombia. Journal of Seismology, 5:575–593.spa
dc.relation.references[Pardo et al., 2019] Pardo, E., Garfias, C., and Malpica, N. (2019). Seismic phase picking using convolutional networks. IEEE Transactions on Geoscience and Remote Sensing, 57(9):7086–7092.spa
dc.relation.references[Pardo Trujillo, 2007] Pardo Trujillo, A., V. C. B. D. M. J. (2007). Colombian Sedimentary Basins: Nomenclature, Boundaries and Petroleum Geology. Agencia Nacional De Hidrocarburos-ANH and BM Exploration Ltd. Bogota, Colombia.spa
dc.relation.references[Potsdam, 2018] Potsdam, G. (2018). SeisComP3 documentation.spa
dc.relation.references[Prieto, 2022] Prieto, G. A. (2022). The Multitaper Spectrum Analysis Package in Python. Seismological Research Letters, 93(3):1922–1929.spa
dc.relation.references[Prieto et al., 2012] Prieto, G. A., Beroza, G. C., Barrett, S. A., López, G. A., and Florez, M. (2012). Earthquake nests as natural laboratories for the study of intermediate-depth earthquake mechanics. Tectonophysics, 570:42–56.spa
dc.relation.references[Richards-Dinger and Shearer, 2000] Richards-Dinger, K. and Shearer, P. (2000). Earthquake locations in southern california obtained using source-specific station terms. Journal of Geophys ical Research, 105:10939–10960.spa
dc.relation.references[Ringler et al., 2019] Ringler, A., Steim, J., Wilson, D., Widmer-Schnidrig, R., and Anthony, R. (2019). Improvements in seismic resolution and current limitations in the global seismographic network. Geophysical Journal International, 220.spa
dc.relation.references[Ronneberger et al., 2015] Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation. CoRR, abs/1505.04597.spa
dc.relation.references[Ross et al., 2018a] Ross, Z., Meier, M.-A., and Hauksson, E. (2018a). P wave arrival picking and first-motion polarity determination with deep learning. Journal of Geophysical Research: Solid Earth, 123spa
dc.relation.references[Ross and Ben-Zion, 2014] Ross, Z. E. and Ben-Zion, Y. (2014). Automatic picking of direct P, S seismic phases and fault zone head waves. Geophysical Journal International, 199(1):368–381.spa
dc.relation.references[Ross et al., 2018b] Ross, Z. E., Meier, M., Hauksson, E., and Heaton, T. H. (2018b). Generalized Seismic Phase Detection with Deep Learning. Bulletin of the Seismological Society of America, 108(5A):2894–2901.spa
dc.relation.references[Ross et al., 2019a] Ross, Z. E., Trugman, D. T., Hauksson, E., and Shearer, P. M. (2019a). Searching for hidden earthquakes in southern california. Science, 364(6442):767–771.spa
dc.relation.references[Ross et al., 2019b] Ross, Z. E., Yue, Y., Meier, M.-A., Hauksson, E., and Heaton, T. H. (2019b). Phaselink: A deep learning approach to seismic phase association. Journal of Geophysical Research: Solid Earth, 124(1):856–869.spa
dc.relation.references[Sheen and Friberg, 2021] Sheen, D.-H. and Friberg, P. A. (2021). Seismic phase association based on the maximum likelihood method. Frontiers in Earth Science, 9.spa
dc.relation.references[Sleeman and van Eck, 1999] Sleeman, R. and van Eck, T. (1999). Robust automatic p-phase picking: an on-line implementation in the analysis of broadband seismogram recordings. Physics of the Earth and Planetary Interiors, 113(1):265–275.spa
dc.relation.references[Sun et al., 2022] Sun, M., Bezada, M. J., Cornthwaite, J., Prieto, G. A., Niu, F., and Levander, A. (2022). Overlapping slabs: Untangling subduction in nw south america through finite-frequency teleseismic tomography. Earth and Planetary Science Letters, 577:117253spa
dc.relation.references[Suárez et al., 2008] Suárez, G., Eck, T., Giardini, D., Ahern, T., Butler, R., and Tsuboi, S. (2008). The international federation of digital seismograph networks (fdsn): An integrated system of seismological observatories. Systems Journal, IEEE, 2:431 – 438.spa
dc.relation.references[Syracuse et al., 2016] Syracuse, E., Maceira, M., Prieto, G., Zhang, H., and Ammon, C. (2016). Multiple plates subducting beneath colombia, as illuminated by seismicity and velocity from the joint inversion of seismic and gravity data. Earth and Planetary Science Letters, 444:139–149.spa
dc.relation.references[Taboada et al., 2000] Taboada, A., Rivera, L., Fuenzalida, H., Cisternas, A., Philip, H., Bijwaard, H., Olaya, J., and Rivera, C. (2000). Geodynamics of the northern andes: Subductions and intracontinental deformation (colombia). Tectonics, 19.spa
dc.relation.references[Trnkoczy, 2009] Trnkoczy, A. (2009). Understanding and parameter setting of sta/lta trigger algorithm. In New Manual of Seismological Observatory Practice (NMSOP), pages 1–20. Deutsches GeoForschungsZentrum GFZ.spa
dc.relation.references[Trugman and Shearer, 2017] Trugman, D. T. and Shearer, P. M. (2017). GrowClust: A Hierarchical Clustering Algorithm for Relative Earthquake Relocation, with Application to the Spanish Springs and Sheldon, Nevada, Earthquake Sequences. Seismological Research Letters, 88(2A):379–391spa
dc.relation.references[van Benthem et al., 2013] van Benthem, S., Govers, R., Spakman, W., and Wortel, R. (2013). Tectonic evolution and mantle structure of the caribbean. Journal of Geophysical Research: Solid Earth, 118(6):3019–3036.spa
dc.relation.references[Vargas and Mann, 2013] Vargas, C. A. and Mann, P. (2013). Tearing and Breaking Off of Subducted Slabs as the Result of Collision of the Panama ArcffIndenter with Northwestern South America. Bulletin of the Seismological Society of America, 103(3):2025–2046.spa
dc.relation.references[Wagner et al., 2017] Wagner, L., Jaramillo, J., Ramirez-Hoyos, L., Monsalve, G., Cardona, A., and Becker, T. (2017). Transient slab flattening beneath colombia. Geophysical Research Letters, 44.spa
dc.relation.references[Waldhauser, 2001] Waldhauser, F. (2001). hypodd–a program to compute double-difference hypocenter locations.spa
dc.relation.references[Wang et al., 2019] Wang, J., Xiao, Z., Liu, C., Zhao, D., and Yao, Z. (2019). Deep learning for picking seismic arrival times. Journal of Geophysical Research: Solid Earth, 124(7):6612–6624.spa
dc.relation.references[White et al., 2020] White, M., Fang, H., Nakata, N., and Ben-Zion, Y. (2020). Pykonal: A python package for solving the eikonal equation in spherical and cartesian coordinates using the fast marching method. Seismological Research Letters, 91.spa
dc.relation.references[Wielandt et al., 2021] Wielandt, E., Caneva, A., and Vargas, C. A. (2021). Desarrollo de los instrumentos de detección y de registro de señales sísmicas. metadatos de las redes sismológicas de la región de latinoamérica y el caribe. RACCEFYN, 45(174):313–332.spa
dc.relation.references[Woollam et al., 2019] Woollam, J., Rietbrock, A., Bueno, A., and De Angelis, S. (2019). Convolutional Neural Network for Seismic Phase Classification, Performance Demonstration over a Local Seismic Network. Seismological Research Letters, 90(2A):491–502.spa
dc.relation.references[Yarce et al., 2014] Yarce, J., Monsalve, G., Becker, T., Cardona, A., Poveda, E., Alvira, D., and Ordóñez-Carmona, O. (2014). Seismological observations in northwestern south america: Evidence for two subduction segments, contrasting crustal thicknesses and upper mantle flow. Tectonophysics, 637.spa
dc.relation.references[Yeck et al., 2019] Yeck, W. L., Patton, J. M., Johnson, C. E., Kragness, D., Benz, H. M., Earle, P. S., Guy, M. R., and Ambruz, N. B. (2019). GLASS3: A standalone multiscale seismic detection associator. Bulletin of the Seismological Society of America, 109(4):1469–1478.spa
dc.relation.references[Zarifi et al., 2007] Zarifi, Z., Havskov, J., and Hanyga, A. (2007). An insight into the bucaramanga nest. Tectonophysics, 443:93–105.spa
dc.relation.references[Zhu and Beroza, 2019] Zhu, W. and Beroza, G. C. (2019). PhaseNet: A deep-neural-network-based seismic arrival-time picking method. Geophysical Journal International, 216(1):261–273.spa
dc.relation.references[Zhu et al., 2021] Zhu, W., McBrearty, I. W., Mousavi, S. M., Ellsworth, W. L., and Beroza, G. C. (2021). Earthquake Phase Association using a Bayesian Gaussian Mixture Model. pages 1–16.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadoresspa
dc.subject.ddc550 - Ciencias de la tierra::558 - Ciencias de la tierra de América del Surspa
dc.subject.lembProtección y prevención ante los sismosspa
dc.subject.lembEarthquakes - prevention and protectioneng
dc.subject.lembPredicción sísmicaspa
dc.subject.lembEarthquake predictioneng
dc.subject.proposalAutopickingeng
dc.subject.proposalPhaseNeteng
dc.subject.proposalEQTransformereng
dc.subject.proposalColombian seismicityeng
dc.subject.proposalDeep Learningeng
dc.subject.proposalAprendizaje Profundospa
dc.subject.proposalSismicidad Colombianaspa
dc.subject.proposalAutopicadospa
dc.titleMonitoreo de la actividad sísmica del territorio colombiano usando aprendizaje profundospa
dc.title.translatedMonitoring seismic activity in the Colombian territory using Deep Learningeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentMedios de comunicaciónspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
1037658661.2022.pdf
Tamaño:
28.05 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Geofísica
Cargando...
Miniatura
Nombre:
1037658661.2022.Exposicion.pdf
Tamaño:
6.75 MB
Formato:
Adobe Portable Document Format
Descripción:
Presentación de la sustentación de Tesis de Maestría en Ciencias Geofísica

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: