Study of the interaction between the oligomers from bio-oil heavy fraction and a catalyst in hydrotreatment process

dc.contributor.advisorChejne, Farid
dc.contributor.advisorGarcía Pérez, Manuel
dc.contributor.authorManrique Waldo, Raiza Johanna
dc.contributor.cvlacRaiza Manrique Waldospa
dc.contributor.googlescholarhttps://scholar.google.com/citations?user=vWdtrjUAAAAJ&hl=es&oi=aospa
dc.contributor.orcidChejne, Farid [0000-0003-0445-7609]
dc.contributor.orcidManrique Waldo, Raiza Johanna [0000-0002-6702-5419]
dc.contributor.researchgatehttps://www.researchgate.net/profile/Raiza-Manriquespa
dc.contributor.researchgroupTermodinámica Aplicada y Energías Alternativasspa
dc.contributor.scopushttps://www.scopus.com/authid/detail.uri?authorId=57195741838spa
dc.date.accessioned2023-06-02T15:17:24Z
dc.date.available2023-06-02T15:17:24Z
dc.date.issued2023-06-01
dc.descriptionilustraciones, diagramasspa
dc.description.abstractBiomass fast pyrolysis bio-oil is a promising alternative to be used as a source of fuels and chemicals. It hosts a wide variety of compounds and comes from renewable sources. Pyrolysis oil is formed by water, light organics (GC/MS detectable compounds), Oligomeric fractions derived from lignin and holocellulose. This dissertation focusses on the identification of oligomeric molecules in the pyrolytic lignin fraction and its catalytic hydrodeoxygenation. This fraction can potentially be used to produce fuels and chemicals via hydrodeoxygenation. The chemical structure of pyrolytic lignin oligomeric molecules is poorly known. In this study, quantum mechanical simulation was used to propose the structures based on calculations of the electronic structure. The DFT calculations were used to identify the thermodynamically most probable chemical structures of pyrolytic lignin molecules resulting from lignin pyrolysis followed by demethylation. The structure of new molecules of dimer, trimer and tetramer oligomers from pyrolytic lignin were proposed. The pyrolytic lignin fraction was further fractionated by solid-liquid extraction and the resulting subfraction thoroughly characterized using FTIR, UV-fluorescence and HSQC-NMR. Ethyl acetate subfractions was characterized by phenolic compounds with methoxyl substituents while acetone and isopropanol subfractions showed more aliphatic characteristics. Pyrolytic lignin fraction from BTG was hydrotreated with a sulfided NiMo/Al2O3 catalyst. Hydrotreating experiments were carried out with mixtures of pyrolytic lignin and yellow grease to obtain liquid fuels. All blends induced coke formation values between 0.7 and 2.5 wt. %, indicating that pyrolytic lignin has potential to reduce coke formation during the process. The results obtained in this thesis will allow the definition of strategies for the design of biorefineries including pyrolytic lignin to obtain products.eng
dc.description.abstractEl bioaceite de pirólisis rápida de biomasa es una alternativa prometedora para ser utilizada como fuente de combustibles y productos químicos. Alberga una amplia variedad de compuestos y proviene de fuentes renovables. El aceite de pirólisis está formado por agua, compuestos orgánicos ligeros (compuestos detectables por GC/MS), fracciones oligoméricas derivadas de la lignina y holocelulosa. Esta tesis se centra en la identificación de moléculas oligoméricas en la fracción pirolítica de lignina y su hidrodesoxigenación catalítica. Esta fracción se puede utilizar potencialmente para la producción de combustibles y productos químicos a través de la hidrodesoxigenación. La estructura química de las moléculas oligoméricas de lignina pirolítica es poco conocida. En este estudio, se utilizó simulación mecánica cuántica para proponer las estructuras basadas en cálculos de la estructura electrónica. Los cálculos DFT se utilizaron para identificar las estructuras químicas termodinámicamente más probables de las moléculas de lignina pirolítica resultantes de la pirólisis de lignina seguida de desmetilación. Se propuso la estructura de nuevas moléculas de oligómeros dímeros, trímeros y tetrámeros a partir de lignina pirolítica. La fracción de lignina pirolítica se fraccionó adicionalmente mediante extracción sólido-líquido y la subfracción resultante se caracterizó minuciosamente usando FTIR, UV-fluorescencia, HSQC-NMR. Las subfracciones de acetato de etilo se caracterizaron por compuestos fenólicos con sustituyentes metoxilo, mientras que la subfracción de acetona e isopropanol mostró características más alifáticas. Se realizó el hidrotratmiento de la fracción de lignina pirolítica de BTG con un catalizador de NiMo/Al2O3 sulfurado. Se realizaron experimentos de hidrotratamiento con mezclas de lignina pirolítica y grasa amarilla para obtener combustibles líquidos. Todas las mezclas obtuvieron valores de formación de coque entre 0,7 y 2,5 en peso. %, lo que indica que la lignina pirolítica tiene potencial para reducir la formación de coque durante el proceso. Los resultados obtenidos en esta tesis permitirán definir estrategias para el diseño de biorrefinerías que incluyan lignina pirolítica para la obtención de productos. (Texto tomado de la fuente)spa
dc.description.curricularareaÁrea curricular de Ingeniería Química e Ingeniería de Petróleosspa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingenieríaspa
dc.description.researchareaValorization of the pyrolytic ligninspa
dc.description.researchareaValorización de la lignina pirolíticaspa
dc.description.sponsorshipWorld Bankspa
dc.format.extentxviii, 96 páginas + 1 Anexospa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83957
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Doctorado en Ingeniería - Sistemas Energéticosspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.references[1] L. F. Cabeza, A. Palacios, S. Serrano, D. Ürge-Vorsatz, and C. Barreneche, “Comparison of past projections of global and regional primary and final energy consumption with historical data,” Renewable and Sustainable Energy Reviews, vol. 82. Elsevier Ltd, pp. 681–688, 2018. doi: 10.1016/j.rser.2017.09.073.spa
dc.relation.references[2] A. K. Vuppaladadiyam et al., “Biomass pyrolysis: A review on recent advancements and green hydrogen production,” Bioresource Technology, vol. 364. Elsevier Ltd, Nov. 01, 2022. doi: 10.1016/j.biortech.2022.128087.spa
dc.relation.references[3] J. Cai et al., “Review of physicochemical properties and analytical characterization of lignocellulosic biomass,” Renewable and Sustainable Energy Reviews, vol. 76. Elsevier Ltd, pp. 309–322, 2017. doi: 10.1016/j.rser.2017.03.072.spa
dc.relation.references[4] Unidad de Planeación Minero Energética, “Atlas del Potencial Energético de la Biomasa en Colombia,” Bogota D.C, 2008. [Online]. Available: http://www1.upme.gov.co/sites/default/files/article/1768/files/Atlas de Biomasa Residual Colombia__.pdfspa
dc.relation.references[5] V. Duc Bui et al., “Techno-economic assessment and logistics management of biomass in the conversion progress to bioenergy,” Sustainable Energy Technologies and Assessments, vol. 55, Feb. 2023, doi: 10.1016/j.seta.2022.102991.spa
dc.relation.references[6] V. Dhyani and T. Bhaskar, “A comprehensive review on the pyrolysis of lignocellulosic biomass,” Renew Energy, vol. 129, pp. 695–716, Dec. 2018, doi: 10.1016/j.renene.2017.04.035.spa
dc.relation.references[7] W. Yin, R. H. Venderbosch, and H. J. Heeres, 8 - Recent developments in the catalytic hydrotreatment of pyrolysis liquids. Elsevier Ltd., 2017. doi: 10.1016/B978-0-08-101029-7.00007-2.spa
dc.relation.references[8] X. Li et al., “Upgrading of bio-oil into advanced biofuels and chemicals. Part III. Changes in aromatic structure and coke forming propensity during the catalytic hydrotreatment of a fast pyrolysis bio-oil with Pd/C catalyst,” Fuel, vol. 116, pp. 642–649, 2014, doi: 10.1016/j.fuel.2013.08.046.spa
dc.relation.references[9] S. Kadarwati et al., “Coke formation during the hydrotreatment of bio-oil using NiMo and CoMo catalysts,” Fuel Processing Technology, vol. 155, pp. 261–268, 2017, doi: 10.1016/j.fuproc.2016.08.021.spa
dc.relation.references[10] W. Laosiripojana, W. Kiatkittipong, and C. Sakdaronnarong, “Catalytic hydrotreatment of pyrolysis-oil with bimetallic Ni-Cu catalysts supported by several mono-oxide and mixed-oxide materials,” Renew Energy, vol. 135, pp. 1048–1055, 2019, doi: 10.1016/j.renene.2018.12.069.spa
dc.relation.references[11] S. Kadarwati et al., “Polymerization and cracking during the hydrotreatment of bio-oil and heavy fractions obtained by fractional condensation using Ru/C and NiMo/Al 2 O 3 catalyst,” J Anal Appl Pyrolysis, vol. 118, pp. 136–143, 2016, doi: 10.1016/j.jaap.2016.01.011.spa
dc.relation.references[12] B. Scholze and D. Meier, “Characterization of the water-insoluble fraction from pyrolysis oil (pyrolytic lignin). Part I. PY-GC/MS, FTIR, and functional groups,” J Anal Appl Pyrolysis, vol. 60, no. 1, pp. 41–54, 2001, doi: 10.1016/S0165-2370(00)00110-8.spa
dc.relation.references[13] K. Iisa, A. C. Johansson, E. Pettersson, R. J. French, K. A. Orton, and H. Wiinikka, “Chemical and physical characterization of aerosols from fast pyrolysis of biomass,” J Anal Appl Pyrolysis, vol. 142, no. February, pp. 1–9, 2019, doi: 10.1016/j.jaap.2019.04.022.spa
dc.relation.references[14] A. P. Pinheiro Pires et al., “Challenges and opportunities for bio-oil refining: A review,” Energy and Fuels, vol. 33, no. 6, pp. 4683–4720, 2019, doi: 10.1021/acs.energyfuels.9b00039.spa
dc.relation.references[15] M. Matos et al., “Acetone:Water fractionation of pyrolytic lignin improves its antioxidant and antibacterial activity,” J Anal Appl Pyrolysis, vol. 156, Jun. 2021, doi: 10.1016/j.jaap.2021.105175.spa
dc.relation.references[16] M. B. Figueirêdo, “Valorization Strategies for Pyrolytic Lignin,” University of Groningen, 2020.spa
dc.relation.references[17] X. Zhang, H. Ma, T. Li, and S. Wu, “Oligomers obtained from sequential fractionation of lignin pyrolysis oil,” Energy Convers Manag, vol. 201, no. July, p. 112181, 2019, doi: 10.1016/j.enconman.2019.112181.spa
dc.relation.references[18] A. P. Pinheiro Pires et al., “Challenges and opportunities for bio-oil refining: A review,” Energy and Fuels, vol. 33, no. 6, pp. 4683–4720, 2019, doi: 10.1021/acs.energyfuels.9b00039.spa
dc.relation.references[19] M. U. Garba, U. Musa, A. G. Olugbenga, Y. S. Mohammad, M. Yahaya, and A. A. Ibrahim, “Catalytic upgrading of bio-oil from bagasse: Thermogravimetric analysis and fixed bed pyrolysis,” Beni Suef Univ J Basic Appl Sci, vol. 7, no. 4, pp. 776–781, 2018, doi: 10.1016/j.bjbas.2018.11.004.spa
dc.relation.references[20] J. Lehto, A. Oasmaa, Y. Solantausta, M. Kytö, and D. Chiaramonti, “Fuel oil quality and combustion of fast pyrolysis bio-oils,” VTT Publications, no. 87, p. 79, 2013, doi: http://dx.doi.org/10.1016/j.apenergy.2013.11.040.spa
dc.relation.references[21] I. Hita, E. Rodríguez, M. Olazar, J. Bilbao, J. M. Arandes, and P. Castaño, “Prospects for Obtaining High Quality Fuels from the Hydrocracking of a Hydrotreated Scrap Tires Pyrolysis Oil,” Energy & Fuels, vol. 29, no. 8, pp. 5458–5466, Aug. 2015, doi: 10.1021/acs.energyfuels.5b01181.spa
dc.relation.references[22] A. H. Zacher, M. v. Olarte, D. M. Santosa, D. C. Elliott, and S. B. Jones, “A review and perspective of recent bio-oil hydrotreating research,” Green Chemistry, vol. 16, no. 2, pp. 491–515, 2014, doi: 10.1039/c3gc41382a.spa
dc.relation.references[23] A. Abbas, Z. Wang, Y. Zhang, P. Peng, and D. She, “Lignin-based controlled release fertilizers: A review,” Int J Biol Macromol, Oct. 2022, doi: 10.1016/j.ijbiomac.2022.09.265.spa
dc.relation.references[24] A. J. Ragauskas et al., “Lignin valorization: Improving lignin processing in the biorefinery,” Science, vol. 344, no. 6185. American Association for the Advancement of Science, 2014. doi: 10.1126/science.1246843.spa
dc.relation.references[25] M. Saidi, F. Samimi, D. Karimipourfard, T. Nimmanwudipong, B. C. Gates, and M. R. Rahimpour, “Upgrading of lignin-derived bio-oils by catalytic hydrodeoxygenation,” Energy and Environmental Science, vol. 7, no. 1. Royal Society of Chemistry, pp. 103–129, 2014. doi: 10.1039/c3ee43081b.spa
dc.relation.references[26] A. Agarwal, M. Rana, and J. H. Park, “Advancement in technologies for the depolymerization of lignin,” Fuel Processing Technology, vol. 181. Elsevier B.V., pp. 115–132, Dec. 01, 2018. doi: 10.1016/j.fuproc.2018.09.017.spa
dc.relation.references[27] J. C. del Río, J. Rencoret, A. Gutiérrez, T. Elder, H. Kim, and J. Ralph, “Lignin Monomers from beyond the Canonical Monolignol Biosynthetic Pathway: Another Brick in the Wall,” ACS Sustainable Chemistry and Engineering, vol. 8, no. 13. American Chemical Society, pp. 4997–5012, Apr. 06, 2020. doi: 10.1021/acssuschemeng.0c01109spa
dc.relation.references[28] M. M. Campbell and R. R. Sederoff, “Variation in Lignin Content and Composition’ Mechanisms of Control and lmplications for the Genetic lmprovement of Plants.” [Online]. Available: https://academic.oup.com/plphys/article/110/1/3/6068918spa
dc.relation.references[29] L. Zhang, A. Larsson, A. Moldin, and U. Edlund, “Comparison of lignin distribution, structure, and morphology in wheat straw and wood,” Industrial Crops and Products, vol. 187. Elsevier B.V., Nov. 01, 2022. doi: 10.1016/j.indcrop.2022.115432.spa
dc.relation.references[30] Y. Pu, D. Zhang, P. M. Singh, and A. J. Ragauskas, “The new forestry biofuels sector,” Biofuels, Bioproducts and Biorefining, vol. 2, no. 1. pp. 58–73, Jan. 2008. doi: 10.1002/bbb.48.spa
dc.relation.references[31] S. Sethupathy et al., “Lignin valorization: Status, challenges and opportunities,” Bioresource Technology, vol. 347. Elsevier Ltd, Mar. 01, 2022. doi: 10.1016/j.biortech.2022.126696.spa
dc.relation.references[32] S. Wang et al., “Comparison of the pyrolysis behavior of lignins from different tree species,” Biotechnol Adv, vol. 27, no. 5, pp. 562–567, Sep. 2009, doi: 10.1016/j.biotechadv.2009.04.010.spa
dc.relation.references[33] R. Md Salim, J. Asik, and M. S. Sarjadi, “Chemical functional groups of extractives, cellulose and lignin extracted from native Leucaena leucocephala bark,” Wood Sci Technol, vol. 55, no. 2, pp. 295–313, Mar. 2021, doi: 10.1007/s00226-020-01258-2.spa
dc.relation.references[34] H. Yang, R. Yan, H. Chen, D. H. Lee, and C. Zheng, “Characteristics of hemicellulose, cellulose and lignin pyrolysis,” Fuel, vol. 86, no. 12–13, pp. 1781–1788, Aug. 2007, doi: 10.1016/j.fuel.2006.12.013.spa
dc.relation.references[35] S. Wang, H. Lin, B. Ru, W. Sun, Y. Wang, and Z. Luo, “Comparison of the pyrolysis behavior of pyrolytic lignin and milled wood lignin by using TG-FTIR analysis,” J Anal Appl Pyrolysis, vol. 108, pp. 78–85, 2014, doi: 10.1016/j.jaap.2014.05.014.spa
dc.relation.references[36] C. Chio, M. Sain, and W. Qin, “Lignin utilization: A review of lignin depolymerization from various aspects,” Renewable and Sustainable Energy Reviews, vol. 107. Elsevier Ltd, pp. 232–249, Jun. 01, 2019. doi: 10.1016/j.rser.2019.03.008.spa
dc.relation.references[37] H. B. Goyal, D. Seal, and R. C. Saxena, “Bio-fuels from thermochemical conversion of renewable resources: A review,” Renewable and Sustainable Energy Reviews, vol. 12, no. 2, pp. 504–517, 2008, doi: 10.1016/j.rser.2006.07.014.spa
dc.relation.references[38] R. E. Guedes, A. S. Luna, and A. R. Torres, “Operating parameters for bio-oil production in biomass pyrolysis: A review,” J Anal Appl Pyrolysis, vol. 129, no. July 2017, pp. 134–149, 2018, doi: 10.1016/j.jaap.2017.11.019.spa
dc.relation.references[39] Y. Shen and K. Yoshikawa, “Recent progresses in catalytic tar elimination during biomass gasification or pyrolysis - A review,” Renewable and Sustainable Energy Reviews, vol. 21. pp. 371–392, 2013. doi: 10.1016/j.rser.2012.12.062.spa
dc.relation.references[40] H. Yang, R. Yan, H. Chen, D. H. Lee, and C. Zheng, “Characteristics of hemicellulose, cellulose and lignin pyrolysis,” Fuel, vol. 86, no. 12–13, pp. 1781–1788, 2006, doi: 10.1016/j.fuel.2006.12.013.spa
dc.relation.references[41] M. Brebu and C. Vasile, “THERMAL DEGRADATION OF LIGNIN-A REVIEW,” 2010.spa
dc.relation.references[42] H. Kawamoto, “Lignin pyrolysis reactions,” Journal of Wood Science, vol. 63, no. 2, pp. 117–132, 2017, doi: 10.1007/s10086-016-1606-z.spa
dc.relation.references[43] C. A. Mullen and A. A. Boateng, “Catalytic pyrolysis-GC/MS of lignin from several sources,” Fuel Processing Technology, vol. 91, no. 11, pp. 1446–1458, 2010, doi: 10.1016/j.fuproc.2010.05.022.spa
dc.relation.references[44] M. Asmadi, H. Kawamoto, and S. Saka, “Thermal reactions of guaiacol and syringol as lignin model aromatic nuclei,” J Anal Appl Pyrolysis, vol. 92, no. 1, pp. 88–98, 2011, doi: 10.1016/j.jaap.2011.04.011.spa
dc.relation.references[45] T. Kotake, H. Kawamoto, and S. Saka, “Mechanisms for the formation of monomers and oligomers during the pyrolysis of a softwood lignin,” J Anal Appl Pyrolysis, vol. 105, pp. 309–316, 2014, doi: 10.1016/j.jaap.2013.11.018.spa
dc.relation.references[46] T. Kotake, H. Kawamoto, and S. Saka, “Pyrolytic formation of monomers from hardwood lignin as studied from the reactivities of the primary products,” J Anal Appl Pyrolysis, vol. 113, pp. 57–64, May 2015, doi: 10.1016/j.jaap.2014.09.029.spa
dc.relation.references[47] S. Saka, M. Asmadi, and H. Kawamoto, “Gas- and solid/liquid-phase reactions during pyrolysis of softwood and hardwood lignins,” J Anal Appl Pyrolysis, vol. 92, no. 2, pp. 417–425, 2011.spa
dc.relation.references[48] M. Asmadi, H. Kawamoto, and S. Saka, “Thermal reactions of guaiacol and syringol as lignin model aromatic nuclei,” J Anal Appl Pyrolysis, vol. 92, no. 1, pp. 88–98, 2011, doi: 10.1016/j.jaap.2011.04.011.spa
dc.relation.references[49] E. B. Ledesma, N. D. Marsh, A. K. Sandrowitz, and M. J. Wornat, “AN EXPERIMENTAL STUDY ON THE THERMAL DECOMPOSITION OF CATECHOL,” 2002.spa
dc.relation.references[50] K. Lopez Camas and A. Ullah, “Depolymerization of lignin into high-value products,” Biocatal Agric Biotechnol, vol. 40, Mar. 2022, doi: 10.1016/j.bcab.2022.102306.spa
dc.relation.references[51] T. Hosoya, H. Kawamoto, and S. Saka, “Role of methoxyl group in char formation from lignin-related compounds,” J Anal Appl Pyrolysis, vol. 84, no. 1, pp. 79–83, 2009, doi: 10.1016/j.jaap.2008.10.024.spa
dc.relation.references[52] Y. Han et al., “Hydrotreatment of pyrolysis bio-oil: A review,” Fuel Processing Technology, vol. 195, no. July, p. 106140, 2019, doi: 10.1016/j.fuproc.2019.106140.spa
dc.relation.references[53] Y. Han et al., “Hydrotreatment of pyrolysis bio-oil: A review,” Fuel Processing Technology, vol. 195, no. July, 2019, doi: 10.1016/j.fuproc.2019.106140.spa
dc.relation.references[54] F. Stankovikj, A. G. McDonald, G. L. Helms, and M. Garcia-Perez, Quantification of Bio-Oil Functional Groups and Evidences of the Presence of Pyrolytic Humins, vol. 30, no. 8. 2016. doi: 10.1021/acs.energyfuels.6b01242.spa
dc.relation.references[55] M. Garcia-Perez, S. Wang, J. Shen, M. Rhodes, W. J. Lee, and C. Z. Li, “Effects of temperature on the formation of lignin-derived oligomers during the fast pyrolysis of Mallee woody biomass,” Energy and Fuels, vol. 22, no. 3, pp. 2022–2032, 2008, doi: 10.1021/ef7007634.spa
dc.relation.references[56] M. Garcia-Perez et al., “Fast pyrolysis of oil mallee woody biomass: Effect of temperature on the yield and quality of pyrolysis products,” Ind Eng Chem Res, vol. 47, no. 6, pp. 1846–1854, 2008, doi: 10.1021/ie071497p.spa
dc.relation.references[57] F. Stankovikj and M. Garcia-Perez, “TG-FTIR Method for the Characterization of Bio-oils in Chemical Families,” Energy and Fuels, vol. 31, no. 2, pp. 1689–1701, 2017, doi: 10.1021/acs.energyfuels.6b03132.spa
dc.relation.references[58] F. Stankovikj, A. G. McDonald, G. L. Helms, M. V. Olarte, and M. Garcia-Perez, Characterization of the Water-Soluble Fraction of Woody Biomass Pyrolysis Oils, vol. 31, no. 2. 2017. doi: 10.1021/acs.energyfuels.6b02950.spa
dc.relation.references[59] S. Li, Z. Luo, W. Wang, K. Lu, Y. Yang, and X. Liang, “Characterization of pyrolytic lignin and insight into its formation mechanisms using novel techniques and DFT method,” Fuel, vol. 262, Feb. 2020, doi: 10.1016/j.fuel.2019.116516.spa
dc.relation.references[60] Z. Sun, B. Fridrich, A. de Santi, S. Elangovan, and K. Barta, “Bright Side of Lignin Depolymerization: Toward New Platform Chemicals,” Chemical Reviews, vol. 118, no. 2. American Chemical Society, pp. 614–678, Jan. 24, 2018. doi: 10.1021/acs.chemrev.7b00588.spa
dc.relation.references[61] L. Fan et al., “Bio-oil from fast pyrolysis of lignin: Effects of process and upgrading parameters,” Bioresource Technology, vol. 241. Elsevier Ltd, pp. 1118–1126, 2017. doi: 10.1016/j.biortech.2017.05.129spa
dc.relation.references[62] Y. H. Chan et al., “Fractionation and extraction of bio-oil for production of greener fuel and value-added chemicals: Recent advances and future prospects,” Chemical Engineering Journal, vol. 397. Elsevier B.V., Oct. 01, 2020. doi: 10.1016/j.cej.2020.125406.spa
dc.relation.references[63] Q. Cai, T. Gong, T. Yu, and S. Zhang, “Comparison of hydrocracking and cracking of pyrolytic lignin over different Ni-based catalysts for light aromatics production,” Fuel Processing Technology, vol. 240, p. 107564, Feb. 2023, doi: 10.1016/j.fuproc.2022.107564.spa
dc.relation.references[64] X. Zhu, L. L. Lobban, R. G. Mallinson, and D. E. Resasco, “Bifunctional transalkylation and hydrodeoxygenation of anisole over a Pt/HBeta catalyst,” J Catal, vol. 281, no. 1, pp. 21–29, Jul. 2011, doi: 10.1016/j.jcat.2011.03.030.spa
dc.relation.references[65] S. Chen, “Green Oil Production by Hydroprocessing,” International Journal of Clean Coal and Energy, vol. 01, no. 04, pp. 43–55, 2012, doi: 10.4236/ijcce.2012.14005.spa
dc.relation.references[66] Y. He, Y. Bie, J. Lehtonen, R. Liu, and J. Cai, “Hydrodeoxygenation of guaiacol as a model compound of lignin-derived pyrolysis bio-oil over zirconia-supported Rh catalyst: Process optimization and reaction kinetics,” Fuel, vol. 239, no. August 2018, pp. 1015–1027, 2019, doi: 10.1016/j.fuel.2018.11.103.spa
dc.relation.references[67] M. Auersvald et al., “Hydrotreatment of straw bio-oil from ablative fast pyrolysis to produce suitable refinery intermediates,” Fuel, vol. 238, no. June 2018, pp. 98–110, 2019, doi: 10.1016/j.fuel.2018.10.090.spa
dc.relation.references[68] M. B. Figueirêdo, P. J. Deuss, R. H. Venderbosch, and H. J. Heeres, “Catalytic hydrotreatment of pyrolytic lignins from different sources to biobased chemicals: Identification of feed-product relations,” Biomass Bioenergy, vol. 134, no. January, 2020, doi: 10.1016/j.biombioe.2020.105484.spa
dc.relation.references[69] C. Amen-Chen, H. Pakdel, and C. Roy, “Production of monomeric phenols by thermochemical conversion of biomass: a review.”spa
dc.relation.references[70] X. Zhang, Q. Chen, Q. Zhang, C. Wang, L. Ma, and Y. Xu, “Conversion of pyrolytic lignin to aromatic hydrocarbons by hydrocracking over pristine MoO3 catalyst,” J Anal Appl Pyrolysis, vol. 135, pp. 60–66, Oct. 2018, doi: 10.1016/j.jaap.2018.09.020.spa
dc.relation.references[71] B. Hu et al., “Advances on the fast pyrolysis of biomass for the selective preparation of phenolic compounds,” Fuel Processing Technology, vol. 237. Elsevier B.V., Dec. 01, 2022. doi: 10.1016/j.fuproc.2022.107465.spa
dc.relation.references[72] S. Wang, G. Dai, H. Yang, and Z. Luo, “Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review,” Prog Energy Combust Sci, vol. 62, pp. 33–86, 2017, doi: 10.1016/j.pecs.2017.05.004.spa
dc.relation.references[73] S. Wang et al., “Pyrolysis of wood/biomass for bio-oil: a critical review.,” Prog Energy Combust Sci, vol. 62, no. 4, pp. 848–889, 2017, doi: 10.1021/ef0502397.spa
dc.relation.references[74] L. Zhang, S. Zhang, X. Hu, and M. Gholizadeh, “Progress in application of the pyrolytic lignin from pyrolysis of biomass,” Chemical Engineering Journal, vol. 419. Elsevier B.V., Sep. 01, 2021. doi: 10.1016/j.cej.2021.129560.spa
dc.relation.references[75] V. K. Ponnusamy et al., “A review on lignin structure, pretreatments, fermentation reactions and biorefinery potential,” Bioresour Technol, vol. 271, no. September 2018, pp. 462–472, 2019, doi: 10.1016/j.biortech.2018.09.070.spa
dc.relation.references[76] J. Ralph, C. Lapierre, and W. Boerjan, “Lignin structure and its engineering,” Current Opinion in Biotechnology, vol. 56. Elsevier Ltd, pp. 240–249, Apr. 01, 2019. doi: 10.1016/j.copbio.2019.02.019.spa
dc.relation.references[77] E. Rosini et al., “Cascade enzymatic cleavage of the β-O-4 linkage in a lignin model compound,” Catal Sci Technol, vol. 6, no. 7, pp. 2195–2205, Apr. 2016, doi: 10.1039/c5cy01591j.spa
dc.relation.references[78] T. Hosoya, H. Kawamoto, and S. Saka, “Role of methoxyl group in char formation from lignin-related compounds,” J Anal Appl Pyrolysis, vol. 84, no. 1, pp. 79–83, 2009, doi: 10.1016/j.jaap.2008.10.024.spa
dc.relation.references[79] X. Jiang, Q. Lu, B. Hu, J. Liu, C. Dong, and Y. Yang, “Intermolecular interaction mechanism of lignin pyrolysis: A joint theoretical and experimental study,” Fuel, vol. 215, pp. 386–394, Mar. 2018, doi: 10.1016/j.fuel.2017.11.084.spa
dc.relation.references[80] B. Hu et al., “Hydroxyl-Assisted Hydrogen Transfer Interaction in Lignin Pyrolysis: An Extended Concerted Interaction Mechanism,” Energy and Fuels, vol. 35, no. 16, pp. 13170–13180, Aug. 2021, doi: 10.1021/acs.energyfuels.1c01606.spa
dc.relation.references[81] Y. Huang, H. Wang, X. Zhang, Q. Zhang, C. Wang, and L. Ma, “CO2 pyrolysis kinetics and characteristics of lignin-rich hydrolysis residue produced from a tandem process of steam-stripping and acid hydrolysis,” Fuel, vol. 316, May 2022, doi: 10.1016/j.fuel.2022.123361.spa
dc.relation.references[82] L. Wang et al., “Fast pyrolysis of guaiacyl-syringyl (GS) type milled wood lignin: Product characteristics and CH4 formation mechanism study,” Science of the Total Environment, vol. 838, Sep. 2022, doi: 10.1016/j.scitotenv.2022.156395.spa
dc.relation.references[83] E. Terrell and M. Garcia-Perez, “Vacuum Pyrolysis of Hybrid Poplar Milled Wood Lignin with Fourier Transform-Ion Cyclotron Resonance Mass Spectrometry Analysis of Feedstock and Products for the Elucidation of Reaction Mechanisms,” Energy and Fuels, vol. 34, no. 11, pp. 14249–14263, Nov. 2020, doi: 10.1021/acs.energyfuels.0c02928.spa
dc.relation.references[84] X. Fu, Q. Li, and C. Hu, “Identification and structural characterization of oligomers formed from the pyrolysis of biomass,” J Anal Appl Pyrolysis, vol. 144, Nov. 2019, doi: 10.1016/j.jaap.2019.104696.spa
dc.relation.references[85] V. Dhyani and T. Bhaskar, “A comprehensive review on the pyrolysis of lignocellulosic biomass,” Renew Energy, vol. 129, pp. 695–716, 2018, doi: 10.1016/j.renene.2017.04.035.spa
dc.relation.references[86] J. Huang, C. Liu, H. Tong, W. Li, and D. Wu, “A density functional theory study on formation mechanism of CO, CO2 and CH4 in pyrolysis of lignin,” Comput Theor Chem, vol. 1045, pp. 1–9, Oct. 2014, doi: 10.1016/j.comptc.2014.06.009.spa
dc.relation.references[87] I. Fonts et al., “Thermodynamic and physical property estimation of compounds derived from the fast pyrolysis of lignocellulosic materials,” Energy and Fuels, vol. 35, no. 21, pp. 17114–17137, Nov. 2021, doi: 10.1021/acs.energyfuels.1c01709.spa
dc.relation.references[88] E. Terrell, “Estimation of Hansen solubility parameters with regularized regression for biomass conversion products: An application of adaptable group contribution,” Chem Eng Sci, vol. 248, Feb. 2022, doi: 10.1016/j.ces.2021.117184.spa
dc.relation.references[89] E. Leng, Y. Guo, J. Chen, S. Liu, J. E, and Y. Xue, “A comprehensive review on lignin pyrolysis: Mechanism, modeling and the effects of inherent metals in biomass,” Fuel, vol. 309, no. October 2021, p. 122102, 2022, doi: 10.1016/j.fuel.2021.122102.spa
dc.relation.references[90] P. F. Britt, A. C. Buchanan, M. J. Cooney, and D. R. Martineau, “Flash vacuum pyrolysis of methoxy-substituted lignin model compounds,” Journal of Organic Chemistry, vol. 65, no. 5, pp. 1376–1389, Mar. 2000, doi: 10.1021/jo991479k.spa
dc.relation.references[91] P. F. Britt, A. C. Buchanan, and E. A. Malcolm, “Thermolysis of Phenethyl Phenyl Ether: A Model for Ether Linkages in Lignin and Low Rank Coal,” 1995. doi: https://doi.org/10.1021/jo00125a044.spa
dc.relation.references[92] S. Zhou, B. Pecha, M. van Kuppevelt, A. G. McDonald, and M. Garcia-Perez, “Slow and fast pyrolysis of Douglas-fir lignin: Importance of liquid-intermediate formation on the distribution of products,” Biomass Bioenergy, vol. 66, pp. 398–409, 2014, doi: 10.1016/j.biombioe.2014.03.064.spa
dc.relation.references[93] Y. Fan et al., “Elucidating radical-mediated pyrolysis behaviors of preoxidized lignins,” Bioresour Technol, vol. 350, Apr. 2022, doi: 10.1016/j.biortech.2022.126908.spa
dc.relation.references[94] M. Lei, S. Wu, J. Liang, and C. Liu, “Comprehensive understanding the chemical structure evolution and crucial intermediate radical in situ observation in enzymatic hydrolysis/mild acidolysis lignin pyrolysis,” J Anal Appl Pyrolysis, vol. 138, pp. 249–260, Mar. 2019, doi: 10.1016/j.jaap.2019.01.004.spa
dc.relation.references[95] J. M. Younker, A. Beste, and A. C. Buchanan, “Computational study of bond dissociation enthalpies for substituted β-O-4 lignin model compounds,” ChemPhysChem, vol. 12, no. 18, pp. 3556–3565, 2011, doi: 10.1002/cphc.201100477.spa
dc.relation.references[96] Y. Ünal, W. Nassif, B. C. Özaydin, and K. Sayin, “Scale factor database for the vibration frequencies calculated in M06-2X, one of the DFT methods,” Vib Spectrosc, vol. 112, Jan. 2021, doi: 10.1016/j.vibspec.2020.103189.spa
dc.relation.references[97] F. Stankovikj and M. Garcia-perez, “TG-FTIR Method for the Characterization of Bio-oils in Chemical Families,” Energy & Fuels, vol. 30, no. 8, pp. 1689–1701, 2017, doi: 10.1021/acs.energyfuels.6b03132.spa
dc.relation.references[98] S. E. Stein and R. L. Brown, “Estimation of Normal Boiling Points from Group Contributions,” 1994. doi: https://doi.org/10.1021/ci00019a016.spa
dc.relation.references[99] M. Satou, D. Itoh, H. Hattori, and T. Yoshida, “Evaluation of ring size distribution in a heavy oil based on boiling point and molecular weight distributions,” 2000. doi: https://doi.org/10.1016/S0016-2361(99)00168-4.spa
dc.relation.references[100] W. Yuan, A. C. Hansen, and Q. Zhang, “Vapor pressure and normal boiling point predictions for pure methyl esters and biodiesel fuels,” Fuel, vol. 84, no. 7–8, pp. 943–950, May 2005, doi: 10.1016/j.fuel.2005.01.007.spa
dc.relation.references[101] Al. L. Lydersen, R. A. Greenkorn, and O. A. Hougen, “Estimation of critical properties of organic compounds,” Madison, 1955. Accessed: Feb. 06, 2023. [Online]. Available: https://scholar.google.com/scholar_lookup?hl=en&publication_year=1955&author=A.+L.+Lydersen&author=R.+A.+Greenkorn&author=O.+A.+Hougen&title=Estimation+of+Critical+Properties+of+Organic+Compoundsspa
dc.relation.references[102] K. G. Joback, “A unified approach to physical property estimation using multivariate statistical techniques.” 1984.spa
dc.relation.references[103] E. Stefanis and C. Panayiotou, “Prediction of Hansen Solubility Parameters with a New Group-Contribution Method,” Int J Thermophys, vol. 29, pp. 568–585, 2008, doi: 10.1007/s10765-008-0415-z.spa
dc.relation.references[104] C. F. Chueh and A. C. Swanson, “Estimation of Liquid Heat Capacity,” Can J Chem Eng, vol. 51, 1973.spa
dc.relation.references[105] J. E. Hurst and B. K. Harrison, “Estimation of liquid and solid heat capacities using a modified kopp’s rule,” Chem Eng Commun, vol. 112, no. 1, pp. 21–30, 1992, doi: 10.1080/00986449208935989spa
dc.relation.references[106] B. Keith Harrison and W. H. Seaton, “Solution to Missing Group Problem for Estimation of Ideal Gas Heat Capacities,” Ind Eng Chem Res, vol. 27, no. 8, pp. 1536–1540, 1988, doi: 10.1021/ie00080a031.spa
dc.relation.references[107] I. Fonts et al., “Thermodynamic and Physical Property Estimation of Compounds Derived from the Fast Pyrolysis of Lignocellulosic Materials,” Energy and Fuels, 2021, doi: 10.1021/acs.energyfuels.1c01709.spa
dc.relation.references[108] M. Lei, S. Wu, C. Liu, J. Liang, and R. Xiao, “Revealing the pyrolysis behavior of 5-5′ biphenyl-type lignin fragment. Part I: A mechanistic study on fragmentation via experiments and theoretical calculation,” Fuel Processing Technology, vol. 217, Jun. 2021, doi: 10.1016/j.fuproc.2021.106812.spa
dc.relation.references[109] D. Chen, K. Cen, X. Cao, F. Chen, J. Zhang, and J. Zhou, “Insight into a new phenolic-leaching pretreatment on bamboo pyrolysis: Release characteristics of pyrolytic volatiles, upgradation of three phase products, migration of elements, and energy yield,” Renewable and Sustainable Energy Reviews, vol. 136, Feb. 2021, doi: 10.1016/j.rser.2020.110444.spa
dc.relation.references[110] C. Li et al., “Quantification of Nanoplastic Uptake in Cucumber Plants by Pyrolysis Gas Chromatography/Mass Spectrometry,” Environ Sci Technol Lett, vol. 8, no. 8, pp. 633–638, Aug. 2021, doi: 10.1021/acs.estlett.1c00369.spa
dc.relation.references[111] Z. Pan, A. Puente-Urbina, A. Bodi, J. A. van Bokhoven, and P. Hemberger, “Isomer-dependent catalytic pyrolysis mechanism of the lignin model compounds catechol, resorcinol and hydroquinone,” Chem Sci, vol. 12, no. 9, pp. 3161–3169, Mar. 2021, doi: 10.1039/d1sc00654a.spa
dc.relation.references[112] Q. Zhou, Z. Luo, G. Li, and S. Li, “EPR detection of key radicals during coking process of lignin monomer pyrolysis,” J Anal Appl Pyrolysis, vol. 152, Nov. 2020, doi: 10.1016/j.jaap.2020.104948spa
dc.relation.references[113] G. Paul and J. Gajewski, “Benzoquinone Methide: An Intermediate in the Gas-Phase Pyrolysis of Chroman,” J. Org. Chem, vol. 58, pp. 5060–5062, 1993.spa
dc.relation.references[114] T. Kotake, H. Kawamoto, and S. Saka, “Pyrolytic formation of monomers from hardwood lignin as studied from the reactivities of the primary products,” J Anal Appl Pyrolysis, vol. 113, pp. 57–64, May 2015, doi: 10.1016/j.jaap.2014.09.029.spa
dc.relation.references[115] E. Terrel and M. Garcia-Perez, “Novel Strategy to analyze FT-ICR MS data of biomass pyrolysis oil for oligomeric structure assignment,” 2020.spa
dc.relation.references[116] N. Aktaş, N. Şahiner, Ö. Kantoğlu, B. Salih, and A. Tanyolaç, “Biosynthesis and Characterization of Laccase Catalyzed Poly(Catechol),” J Polym Environ, vol. 11, no. 3, pp. 123–128, 2003, doi: 10.1023/A:1024639231900.spa
dc.relation.references[117] P. W. Hsieh, S. A. Al-Suwayeh, C. L. Fang, C. F. Lin, C. C. Chen, and J. Y. Fang, “The co-drug of conjugated hydroquinone and azelaic acid to enhance topical skin targeting and decrease penetration through the skin,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 81, no. 2, pp. 369–378, Jun. 2012, doi: 10.1016/j.ejpb.2012.03.006.spa
dc.relation.references[118] Y. Wang, S. Wang, F. Leng, J. Chen, L. Zhu, and Z. Luo, “Separation and characterization of pyrolytic lignins from the heavy fraction of bio-oil by molecular distillation,” Sep Purif Technol, vol. 152, pp. 123–132, Aug. 2015, doi: 10.1016/j.seppur.2015.08.011.spa
dc.relation.references[119] S. Wang, Y. Wang, Q. Cai, X. Wang, H. Jin, and Z. Luo, “Multi-step separation of monophenols and pyrolytic lignins from the water-insoluble phase of bio-oil,” Sep Purif Technol, vol. 122, pp. 248–255, Feb. 2014, doi: 10.1016/j.seppur.2013.11.017.spa
dc.relation.references[120] J. Y. Kim, H. Hwang, S. Oh, Y. S. Kim, U. J. Kim, and J. W. Choi, “Investigation of structural modification and thermal characteristics of lignin after heat treatment,” Int J Biol Macromol, vol. 66, pp. 57–65, May 2014, doi: 10.1016/j.ijbiomac.2014.02.013.spa
dc.relation.references[121] B. Scholze, C. Hanser, and D. Meier, “Characterization of the water-insoluble fraction from fast pyrolysis liquids (pyrolytic lignin) Part II. GPC, carbonyl goups, and 13 C-NMR,” 2001. [Online]. Available: www.elsevier.com/locate/jaapspa
dc.relation.references[122] A. R. Teixeira et al., “Aerosol generation by reactive boiling ejection of molten cellulose,” Energy Environ Sci, vol. 4, no. 10, pp. 4306–4321, 2011, doi: 10.1039/c1ee01876k.spa
dc.relation.references[123] M. B. Pecha et al., “Effect of Pressure on Pyrolysis of Milled Wood Lignin and Acid-Washed Hybrid Poplar Wood,” Ind Eng Chem Res, vol. 56, no. 32, pp. 9079–9089, Aug. 2017, doi: 10.1021/acs.iecr.7b02085.spa
dc.relation.references[124] S. E. Stein and R. L. Brown, “Estimation of Normal Boiling Points from Group Contributions,” 1994. [Online]. Available: https://pubs.acs.org/sharingguidelinesspa
dc.relation.references[125] C. Stephan, M. Dicko, P. Stringari, and C. Coquelet, “Liquid-liquid equilibria of water + solutes (acetic acid/ acetol/furfural/guaiacol/methanol/phenol/propanal) + solvents (isopropyl acetate/toluene) ternary systems for pyrolysis oil fractionation,” Fluid Phase Equilib, vol. 468, pp. 49–57, Jul. 2018, doi: 10.1016/j.fluid.2018.04.016.spa
dc.relation.references[126] Y. Wang, S. Wang, F. Leng, J. Chen, L. Zhu, and Z. Luo, “Separation and characterization of pyrolytic lignins from the heavy fraction of bio-oil by molecular distillation,” Sep Purif Technol, vol. 152, pp. 123–132, Aug. 2015, doi: 10.1016/j.seppur.2015.08.011.spa
dc.relation.references[127] R. V. S. Silva, V. B. Pereira, K. T. Stelzer, T. A. Almeida, G. A. Romeiro, and D. A. Azevedo, “Comprehensive study of the liquid products from slow pyrolysis of crambe seeds: Bio-oil and organic compounds of the aqueous phase,” Biomass Bioenergy, vol. 123, pp. 78–88, Apr. 2019, doi: 10.1016/j.biombioe.2019.02.014.spa
dc.relation.references[128] B. Scholze and D. Meier, “Characterization of the water-insoluble fraction from pyrolysis oil ( pyrolytic lignin ). Part I . PY – GC / MS , FTIR , and functional groups,” vol. 60, pp. 41–54, 2001.spa
dc.relation.references[129] A. Oasmaa, I. Fonts, M. R. Pelaez-Samaniego, M. E. Garcia-Perez, and M. Garcia-Perez, Pyrolysis Oil Multiphase Behavior and Phase Stability: A Review, vol. 30, no. 8. 2016. doi: 10.1021/acs.energyfuels.6b01287.spa
dc.relation.references[130] F. Stankovikj, A. G. McDonald, G. L. Helms, M. V. Olarte, and M. Garcia-Perez, “Characterization of the Water-Soluble Fraction of Woody Biomass Pyrolysis Oils,” Energy and Fuels, vol. 31, no. 2, pp. 1650–1664, Feb. 2017, doi: 10.1021/acs.energyfuels.6b02950.spa
dc.relation.references[131] J. Shi, D. Xing, and J. Li, “FTIR studies of the changes in wood chemistry from wood forming tissue under inclined treatment,” in Energy Procedia, Elsevier Ltd, 2012, pp. 758–762. doi: 10.1016/j.egypro.2012.01.122.spa
dc.relation.references[132] T. Kishimoto, Y. Uraki, and M. Ubukata, “Synthesis of β-O-4-type artificial lignin polymers and their analysis by NMR spectroscopy,” Org Biomol Chem, vol. 6, no. 16, pp. 2982–2987, 2008, doi: 10.1039/b805460f.spa
dc.relation.references[133] B. Sukhbaatar, P. H. Steele, and M. G. Kim, “Bio-oil lignin for OSB binder,” 2009.spa
dc.relation.references[134] X. Dong, M. Dong, Y. Lu, A. Turley, T. Jin, and C. Wu, “Antimicrobial and antioxidant activities of lignin from residue of corn stover to ethanol production,” Ind Crops Prod, vol. 34, no. 3, pp. 1629–1634, Nov. 2011, doi: 10.1016/j.indcrop.2011.06.002.spa
dc.relation.references[135] X. Huang, T. I. Korányi, M. D. Boot, and E. J. M. Hensen, “Ethanol as capping agent and formaldehyde scavenger for efficient depolymerization of lignin to aromatics,” Green Chemistry, vol. 17, no. 11, pp. 4941–4950, Jun. 2015, doi: 10.1039/c5gc01120e.spa
dc.relation.references[136] F. Leng, Y. Wang, J. Chen, S. Wang, J. Zhou, and Z. Luo, “Characterization of pyrolytic lignins with different activities obtained from bio-oil,” Chin J Chem Eng, vol. 25, no. 3, pp. 324–329, Mar. 2017, doi: 10.1016/j.cjche.2016.06.015.spa
dc.relation.references[137] B. Panchal et al., “Synthesis of Generation-2 polyamidoamine based ionic liquid: Efficient dendrimer based catalytic green fuel production from yellow grease,” Energy, vol. 219, Mar. 2021, doi: 10.1016/j.energy.2020.119637.spa
dc.relation.references[138] L. Zhang, S. Zhang, X. Hu, and M. Gholizadeh, “Progress in application of the pyrolytic lignin from pyrolysis of biomass,” Chemical Engineering Journal, vol. 419. Elsevier B.V., Sep. 01, 2021. doi: 10.1016/j.cej.2021.129560.spa
dc.relation.references[139] X. Hu et al., “Polymerization on heating up of bio-oil: A model compound study,” AIChE Journal, vol. 59, no. 3, pp. 888–900, Mar. 2013, doi: 10.1002/aic.13857.spa
dc.relation.references[140] A. Afshar Taromi and S. Kaliaguine, “Green diesel production via continuous hydrotreatment of triglycerides over mesostructured Γ-alumina supported NiMo/CoMo catalysts,” Fuel Processing Technology, vol. 171, pp. 20–30, Mar. 2018, doi: 10.1016/j.fuproc.2017.10.024.spa
dc.relation.references[141] Y. Han, F. Stankovikj, and M. Garcia-Perez, “Co-hydrotreatment of tire pyrolysis oil and vegetable oil for the production of transportation fuels,” Fuel Processing Technology, vol. 159, pp. 328–339, 2017, doi: 10.1016/j.fuproc.2017.01.048.spa
dc.relation.references[142] D. C. Lv, K. Jiang, K. Li, Y. Q. Liu, D. Wang, and Y. Y. Ye, “Effective suppression of coke formation with lignin-derived oil during the upgrading of pyrolysis oils,” Biomass Bioenergy, vol. 159, Apr. 2022, doi: 10.1016/j.biombioe.2022.106425.spa
dc.relation.references[143] Y. Han, A. P. P. Pires, and M. Garcia-Perez, “Co-hydrotreatment of the Bio-oil Lignin-Rich Fraction and Vegetable Oil,” Energy and Fuels, vol. 34, no. 1, pp. 516–529, Jan. 2020, doi: 10.1021/acs.energyfuels.9b03344.spa
dc.relation.references[144] P. Vozka and G. Kilaz, “How to obtain a detailed chemical composition for middle distillates via GC × GC-FID without the need of GC × GC-TOF/MS,” Fuel, vol. 247, pp. 368–377, Jul. 2019, doi: 10.1016/j.fuel.2019.03.009.spa
dc.relation.references[145] A. P. P. Pires, Y. Han, J. Kramlich, and M. Garcia-Perez, “Alternative jet fuel properties,” 2018.spa
dc.relation.references[146] S. A. Channiwala and P. P. Parikh, “A unified correlation for estimating HHV of solid, liquid and gaseous fuels.” [Online]. Available: http://www.fuelspa
dc.relation.references[147] A. P. Richards, D. Haycock, J. Frandsen, and T. H. Fletcher, “A review of coal heating value correlations with application to coal char, tar, and other fuels,” Fuel, vol. 283. Elsevier Ltd, Jan. 01, 2021. doi: 10.1016/j.fuel.2020.118942.spa
dc.relation.references[148] S. G. Sourelis, “The hydrogenation process,” J Am Oil Chem Soc, vol. 33, no. 10, pp. 488–494, 1956, doi: 10.1007/BF02612307.spa
dc.relation.references[149] M. C. Vásquez, E. E. Silva, and E. F. Castillo, “Hydrotreatment of vegetable oils: A review of the technologies and its developments for jet biofuel production,” Biomass and Bioenergy, vol. 105. Elsevier Ltd, pp. 197–206, 2017. doi: 10.1016/j.biombioe.2017.07.008.spa
dc.relation.references[150] Z. Zhang et al., “LDH derived Co-Al nanosheet for lipid hydrotreatment to produce green diesel,” Fuel, vol. 333, Feb. 2023, doi: 10.1016/j.fuel.2022.126341.spa
dc.relation.references[151] S. Kadarwati et al., “Coke formation during the hydrotreatment of bio-oil using NiMo and CoMo catalysts,” Fuel Processing Technology, vol. 155, pp. 261–268, Jan. 2017, doi: 10.1016/j.fuproc.2016.08.021.spa
dc.relation.references[152] R. H. Venderbosch, A. R. Ardiyanti, J. Wildschut, A. Oasmaa, and H. J. Heeres, “Stabilization of biomass-derived pyrolysis oils,” Journal of Chemical Technology and Biotechnology, vol. 85, no. 5, pp. 674–686, May 2010, doi: 10.1002/jctb.2354.spa
dc.relation.references[153] Z. Tang, Y. Zhang, and Q. Guo, “Catalytic hydrocracking of pyrolytic lignin to liquid fuel in supercritical ethanol,” Ind Eng Chem Res, vol. 49, no. 5, pp. 2040–2046, Mar. 2010, doi: 10.1021/ie9015842.spa
dc.relation.references[154] C. C. Schmitt et al., “Hydrotreatment of Fast Pyrolysis Bio-oil Fractions Over Nickel-Based Catalyst,” Top Catal, vol. 61, no. 15–17, pp. 1769–1782, Oct. 2018, doi: 10.1007/s11244-018-1009-z.spa
dc.relation.references[155] T. A. Al-Attas et al., “Recent Advances in Heavy Oil Upgrading Using Dispersed Catalysts,” Energy and Fuels, vol. 33, no. 9, pp. 7917–7949, Sep. 2019, doi: 10.1021/acs.energyfuels.9b01532.spa
dc.relation.references[156] Y. W. Chua, Y. Yu, and H. Wu, “Thermal decomposition of pyrolytic lignin under inert conditions at low temperatures,” Fuel, vol. 200, pp. 70–75, 2017, doi: 10.1016/j.fuel.2017.03.035.spa
dc.relation.references[157] M. B. Figueirêdo, Z. Jotic, P. J. Deuss, R. H. Venderbosch, and H. J. Heeres, “Hydrotreatment of pyrolytic lignins to aromatics and phenolics using heterogeneous catalysts,” Fuel Processing Technology, vol. 189, pp. 28–38, Jun. 2019, doi: 10.1016/j.fuproc.2019.02.020.spa
dc.relation.references[158] A. Afshar Taromi and S. Kaliaguine, “Green diesel production via continuous hydrotreatment of triglycerides over mesostructured Γ-alumina supported NiMo/CoMo catalysts,” Fuel Processing Technology, vol. 171, pp. 20–30, Mar. 2018, doi: 10.1016/j.fuproc.2017.10.024.spa
dc.relation.references[159] G. Zhou et al., “Preparation and characterization of NiW-nHA composite catalyst for hydrocracking,” Nanoscale, vol. 4, no. 24, pp. 7698–7703, 2012, doi: 10.1039/c2nr31486j.spa
dc.relation.references[160] L. M. Orozco, D. A. Echeverri, L. Sánchez, and L. A. Rios, “Second-generation green diesel from castor oil: Development of a new and efficient continuous-production process,” Chemical Engineering Journal, vol. 322, pp. 149–156, 2017, doi: 10.1016/j.cej.2017.04.027.spa
dc.relation.references[161] S. Zhou, M. Garcia-Perez, B. Pecha, A. G. McDonald, S. R. A. Kersten, and R. J. M. Westerhof, “Secondary vapor phase reactions of lignin-derived oligomers obtained by fast pyrolysis of pine wood,” Energy and Fuels, vol. 27, no. 3, pp. 1428–1438, Mar. 2013, doi: 10.1021/ef3019832.spa
dc.relation.references[162] S. Wang, H. Lin, B. Ru, W. Sun, Y. Wang, and Z. Luo, “Comparison of the pyrolysis behavior of pyrolytic lignin and milled wood lignin by using TG-FTIR analysis,” J Anal Appl Pyrolysis, vol. 108, pp. 78–85, 2014, doi: 10.1016/j.jaap.2014.05.014.spa
dc.relation.references[163] C.-Z. Li, F. Wu, H.-Y. Cai, and R. Kandiyoti, “UV-Fluorescence Spectroscopy of Coal Pyrolysis Tars,” 1994. [Online]. Available: https://pubs.acs.org/sharingguidelinesspa
dc.relation.references[164] M. Gholizadeh et al., “Different reaction behaviours of the light and heavy components of bio-oil during the hydrotreatment in a continuous pack-bed reactor,” Fuel Processing Technology, vol. 146, pp. 76–84, Jun. 2016, doi: 10.1016/j.fuproc.2016.01.026.spa
dc.relation.references[165] R. K. Sharma et al., “Jatropha-oil conversion to liquid hydrocarbon fuels using mesoporous titanosilicate supported sulfide catalysts,” Catal Today, vol. 198, no. 1, pp. 314–320, Dec. 2012, doi: 10.1016/j.cattod.2012.05.036.spa
dc.relation.references[166] L. M. Balster, S. Zabarnick, R. C. Striebich, L. M. Shafer, and Z. J. West, “Analysis of polar species in jet fuel and determination of their role in autoxidative deposit formation,” Energy and Fuels, vol. 20, no. 6, pp. 2564–2571, Nov. 2006, doi: 10.1021/ef060275l.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc660 - Ingeniería química::661 - Tecnología de químicos industrialesspa
dc.subject.ddc660 - Ingeniería química::662 - Tecnología de explosivos, combustibles, productos relacionadosspa
dc.subject.lembPirólisisspa
dc.subject.lembHidrogenaciónspa
dc.subject.lembHydrogenationeng
dc.subject.lembPyrolysiseng
dc.subject.proposalPyrolysis bio-oileng
dc.subject.proposalPyrolytic lignineng
dc.subject.proposalOligomerseng
dc.subject.proposalStructureseng
dc.subject.proposalFractionationeng
dc.subject.proposalBio-oil upgradingeng
dc.subject.proposalBioaceite de pirólisisspa
dc.subject.proposalLignina pirolíticaspa
dc.subject.proposalOligómerosspa
dc.subject.proposalEstructurasspa
dc.subject.proposalFraccionamientospa
dc.subject.proposalMejoramiento del bioaceitespa
dc.titleStudy of the interaction between the oligomers from bio-oil heavy fraction and a catalyst in hydrotreatment processeng
dc.title.translatedEstudio de la interacción entre los oligómeros de la fracción pesada del bioaceite de pirólisis rápida y un catalizador en el proceso de hidrotratamientospa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentDataPaperspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleStudy of the interaction between the oligomers from bio-oil heavy fraction and a catalyst in hydrotreatment process - Contract number FP44842-210-2018spa
oaire.fundernameCall 788 of Minciencias Scientific Ecosystemspa

Archivos

Bloque original

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
1152186564.2023.pdf
Tamaño:
3.69 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería - Sistemas Energéticos
Cargando...
Miniatura
Nombre:
1152186564.2023.SupplementaryMaterial.pdf
Tamaño:
3.27 MB
Formato:
Adobe Portable Document Format
Descripción:
ANEXO Tesis de Doctorado en Ingeniería - Sistemas Energéticos

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: