Análisis de los factores que condicionan la producción de arena en pozos de producción de hidrocarburos aplicando la evaluación por confiabilidad

dc.contributor.advisorRodríguez Pineda, Carlos Eduardo
dc.contributor.authorTinoco Robledo, Emilio José
dc.contributor.orcidTinoco Robledo, Emilio Jose [0000000295742271]spa
dc.contributor.researchgroupGrupo de Geotecniaspa
dc.date.accessioned2023-01-23T13:13:15Z
dc.date.available2023-01-23T13:13:15Z
dc.date.issued2022
dc.descriptionilustraciones, graficasspa
dc.description.abstractLa producción de arena es un problema geomecánico complejo en la industria de hidrocarburos que involucra las propiedades de la roca, los esfuerzos, el cambio en la presión de poros del yacimiento y cambios operacionales en los pozos. Múltiples modelos analíticos y numéricos determinísticos se han desarrollado para investigar cuáles son las condiciones que desencadenan el inicio de la producción de arena. Basados en la evaluación por confiabilidad, buscamos identificar cuáles son los factores que condicionan el inicio de la producción de arena en pozos de producción de hidrocarburos. Para ello, mediante las técnicas de simulación de Hasofer Lind y Monte Carlo modelamos como variables aleatorias los parámetros y propiedades geomecánicas que representan la resistencia y las cargas de la función del margen de seguridad derivada de modelos analíticos propuestos en la literatura científica. Nuestros resultados muestran que la resistencia a la compresión no confinada de la roca, el esfuerzo horizontal máximo, el agotamiento de la presión de yacimiento y el drawdown tienen la mayor influencia en el inicio de la producción de arena. El análisis por confiabilidad en pozos con producción y sin producción de arena sugiere que valores del índice de confiabilidad menores o iguales a 2.6 representan una amenaza alta de iniciar producción de arena, valores mayores a 2.6 y menores a 3.0 una amenaza media y valores mayores o iguales a 3.0 una amenaza baja (Texto tomado de la fuente)spa
dc.description.abstractSand production is a complex geomechanical problem in the hydrocarbon industry involving rock properties, stresses, change in reservoir pore pressure and operational conditions. Multiple deterministic analytical and numerical models have been developed to examine the conditions that trigger the onset of sand production. Based on reliability assessment, we seek to identify the factors that influence the onset of sand production in hydrocarbon production wells. For this purpose, using Hasofer Lind and Monte Carlo simulation techniques, we model as random variables the geomechanical parameters and properties that represent the resistance and loads of the safety margin function derived from analytical models proposed in the scientific literature. Our results show that unconfined rock compressive strength, maximum horizontal stress, reservoir pressure depletion and drawdown significantly influence the onset of sand production. Reliability analysis in sand-producing and sand-free wells suggests that reliability index values less than or equal to 2.6 represent a high hazard of initiating sand production, values greater than 2.6 and less than 3.0 represent a medium hazard, and values greater than or equal to 3.0 are associated with a low hazard.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Geotecniaspa
dc.description.notesAnexo digital que contiene el código desarrollado en Python de las simulaciones de Monte Carlo y Hasofer Lindspa
dc.description.researchareaGeotecnia básicaspa
dc.format.extent183 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83055
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Geotecniaspa
dc.relation.referencesAbbas, Ahmed K., Ralph E. Flori, Mortadha Alsaba, & Mohammed F. Al Dushaishi. 2020. “Application of Quantitative Risk Assessment for Optimum Mud Weight Window Design.” 54th U.S. Rock Mechanics/Geomechanics Symposium.spa
dc.relation.referencesAhad, Nur Aqilah, Morteza Jami, & Stephen Tyson. 2020. “A Review of Experimental Studies on Sand Screen Selection for Unconsolidated Sandstone Reservoirs.” Journal of Petroleum Exploration & Production Technology 10(4): 1675–88. https://doi.org/10.1007/s13202-019-00826-y.spa
dc.relation.referencesAl-Ajmi, Adel M., & Robert W. Zimmerman. 2005. “Relation between the Mogi & the Coulomb Failure Criteria.” International Journal of Rock Mechanics & Mining Sciences 42(3): 431–39.spa
dc.relation.referencesAl-Awad, Musaed N.J., Abdel Alim H. El-Sayed, & Saad El Din M. Desouky. 1999. “Factors Affecting Sand Production from Unconsolidated Sandstone Saudi Oil & Gas Reservoir.” Journal of King Saud University - Engineering Sciences 11(1): 151–72. http://dx.doi.org/10.1016/S1018-3639(18)30995-4.spa
dc.relation.referencesAllahverdizadeh, P., D. V. Griffiths, & G. A. Fenton. 2015. “Influence of Different Input Distributions on Probabilistic Outcomes in Geotechnical Stability Analysis.” Geotechnical Engineering for Infrastructure & Development - Proceedings of the XVI European Conference on Soil Mechanics & Geotechnical Engineering, ECSMGE 2015 4(41572279): 1549–54.spa
dc.relation.referencesAlmalikee, Hussein Saeed. 2019. “Predicting Rock Mechanical Properties from Wireline Logs in Rumaila Oilfield , Southern Iraq.” 5(2): 69–77.spa
dc.relation.referencesAraujo, Edson Felipe. 2015. “Modelo de Predicción y Cuantificación de La Producción de Arena En Yacimientos de Crudo Pesado.” [Tesis de Maestría, Universidad Nacional de Colombia]. Repositorio Institucional-Universidad Nacional de Colombia.spa
dc.relation.referencesBaecher, Gregory, & John Christian. 2003. 47 Technometrics Reliability & Statistics in Geotechnical Engineering. John Wiley & Sons Ltd.spa
dc.relation.referencesBarrero, Darío, &rés Pardo, Carlos Vargas, & Juan Martínez. 2007. Colombian Sedimentary Basins. ed. Agencia Nacional de Hidrocarburos. Bogotá: ANH & B&M Exploration Ltda.spa
dc.relation.referencesBastidas-Arteaga, Emilio, & Abdel-hamid Soubra. 2014. “Reliability Analysis Methods.” ALERT Doctoral School 2014 - Stochastic Analysis & In- verse Modelling: 53–77.spa
dc.relation.referencesBellarby, Jonathan. 2009. Elsevier Well Completion Design.spa
dc.relation.referencesBianco, L.C.B., & P.M. Halleck. 2007. “Mechanisms of Arch Instability & Sand Production in Two-Phase Saturated Poorly Consolidated Sandstones.” SPE - European Formation Damage Control Conference, Proceedings: 185–94.spa
dc.relation.referencesBiot, Maurice A. 1941. “General Theory of Three-Dimensional Consolidation.” Journal of Applied Physics 12(2): 155–64.spa
dc.relation.referencesBoutt, D.F., B.K. Cook, & J. R. Williams. 2010. “A Coupled Fluid–Solid Model for Problems in Geomechanics: Application to Sand Production.” International Journal for Numerical & Analytical Methods in Geomechanics 35(13): 997–1018.spa
dc.relation.referencesBratli, Rolf K., & Rasmus Risnes. 1981. “Stability & Failure of Sand Arches.” Society of Petroleum Engineers Journal: 236–48.spa
dc.relation.referencesCarlson, Jon, Derrel Gurley, Colin Price-Smith, & Frank Waters. 1992. “Sanding Why & How” : 41–53.spa
dc.relation.referencesChang, Chanong, Mark D. Zoback, & Abbas Khaksar. 2006. “Empirical Relations between Rock Strength & Physical Properties in Sedimentary Rocks.” Journal of Petroleum Science & Engineering 51(3–4): 223–37.spa
dc.relation.referencesCliment, Natalia. 2016. “A Coupled CFD-DEM Model for S& Production in Oil Wells.”[Tesis de Doctorado, Universidad Politécnica de Cataluña]: Repositorio Institucional- Universidad Politécnica de Cataluñaspa
dc.relation.referencesDrucker, D. C., & W. Prager. 1952. “Soil Mechanics & Plastic Analysis or Limit Design.” Quarterly of Applied Mathematics 10: 157–65.spa
dc.relation.referencesDu, Xiaoping. 2005. “First-Order & Second-Order Reliability Methods.” Probabilistic Engineering Design: 34. https://pdesign.sitehost.iu.edu/me360/me360.html.spa
dc.relation.referencesFjaer, E. et al. 1992. 33 Developments Petroleum Science Petroleum Related Rock Mechanics.spa
dc.relation.referencesGoyeneche, Jessica, & Ruby Hernámdez. 2009. Universidad Industrial de Sant&er “Predicción de la producción de arena en el Campo Maduro del Valle Medio del Magdalena 'Llanito' a partir de las propiedades petrofísicas y geomecánicas de las formaciones productoras.” [Trabajo de Grado, Universidad Industrial de Santander]. Repositorio Institucional- Universidad Industrial de Santanderspa
dc.relation.referencesGrajales, Santiago, & Laura Juliana Hoyos. 2018. Fundación Universidad de América “Metodología que permita estimar los factores Críticos Que Puedan Inducir La Producción de Arena Por Fuerzas de Arrastre.” [Trabajo de Grado, Fundación Universidad de América]. Repositorio Institucional- Fundación Universidad de Américaspa
dc.relation.referencesGrami, Ali. 2020. Probability, Random Variables, Statistics, & Random Processes. Hoboken: John Wiley & Sons, Inc.spa
dc.relation.referencesHasofer, Abraham M., & Niels C Lind. 1974. “An Exact & Invariant First Order Reliability Format.” Journal Eng. Mech. Division (ASCE) 100(July): 111–21.spa
dc.relation.referencesHayavi, Mohammad Tabaeh, & Mohammad Abdideh. 2017. “Establishment of Tensile Failure Induced Sanding Onset Prediction Model for Cased-Perforated Gas Wells.” Journal of Rock Mechanics & Geotechnical Engineering 9(2): 260–66. http://dx.doi.org/10.1016/j.jrmge.2016.07.009.spa
dc.relation.referencesHilgedick, Steven Austin. 2012. “Investigation of Wellbore Stability in a North Sea Field Development.” Hoek, E, & E.T. Brown. 1982. Underground Excavations in Rock. First.spa
dc.relation.referencesJaimes, M. G., Y. A. Quintero, & D. P. Martin. 2014. “A Review at the Problem of Sanding in Colombia: Evolution & Cases of Evaluation for Sand Exclusion & Management Alternatives.” SPE Latin American & Caribbean Petroleum Engineering Conference Proceedings 1: 198–211.spa
dc.relation.referencesLondoño, John Makario et al. 2019. “Seismicity of Valle Medio Del Magdalena Basin, Colombia.” Journal of South American Earth Sciences 92(April): 565–85. https://doi.org/10.1016/j.jsames.2019.04.003.spa
dc.relation.referencesLow, Bak K., & Wilson H. Tang. 2004. “Reliability Analysis Using Object-Oriented Constrained Optimization.” Structural Safety 26(1): 69–89.spa
dc.relation.referencesMa, Y. Z. 2019. “Quantitative Geosciences: Data Analytics, Geostatistics, Reservoir Characterization & Modeling.” Quantitative Geosciences: Data Analytics, Geostatistics, Reservoir Characterization & Modeling.spa
dc.relation.referencesMcLellan, PJ, & CD Hawkes. 1998. “Application of Probabilistic Techniques for Assessing Sand Production & Wellbore Instability Risks: Society of Petroleum Engineers.” International Society for Rock Mechanics Eurock: 143–51.spa
dc.relation.referencesMiddleton, Gerard V., Rhodes W. Fairbridge, & Michael Rampino. 2011. Encyclopedia of sediments & sedimentary rocks.spa
dc.relation.referencesMohamad-Hussein, Assef, & Qinglai Ni. 2018. “Numerical Modeling of Onset & Rate of Sand Production in Perforated Wells.” Journal of Petroleum Exploration & Production Technology 8(4): 1255–71. https://doi.org/10.1007/s13202-018-0443-6.spa
dc.relation.referencesMoos, Daniel, Pavel Peska, Thomas Finkbeiner, & Mark Zoback. 2003. “Comprehensive Wellbore Stability Analysis Utilizing Quantitative Risk Assessment.” Journal of Petroleum Science & Engineering 38(3–4): 97–109.spa
dc.relation.referencesMoricca, G., G. Ripa, F. Sanfilippo, & F. J. Santarelli. 1994. “Basin Scale Rock Mechanics: Field Observations of Sand Production.” Society of Petroleum Engineers - Rock Mechanics in Petroleum Engineering 1994: 317–28.spa
dc.relation.referencesNauroy, Jean-François. 2011. Geomechanics Applied to the Petroleum Industry.spa
dc.relation.referencesNouri, Alireza, Hans Vaziri, Hadi Belhaj, & Rafiqul Islam. 2004. “Sand Production Prediction: A New Set of Criteria for Modeling Based on Large-Scale Transient Experiments & Numerical Investigation.” Proceedings - SPE Annual Technical Conference & Exhibition (June 2016): 2071–83.spa
dc.relation.referencesOng, Seehong, Rico Ramos, & Ziqiong Zheng. 2000. “Sand-Production Prediction in High-Rate Perforated & Openhole Gas Wells.” JPT, Journal of Petroleum Technology 52(3): 49–50.spa
dc.relation.referencesPapamichos, E., & K. Furui. 2019. “Analytical Models for Sand Onset under Field Conditions.” Journal of Petroleum Science & Engineering 172: 171–89. https://doi.org/10.1016/j.petrol.2018.09.009.spa
dc.relation.referencesPapamichos, Euripiedes. 2002. “Sand Mass Prediction in a North Sea Reservoir.” Proceedings of the SPE/ISRM Rock Mechanics in Petroleum Engineering Conference (1): 135–43.spa
dc.relation.referencesPham, Son Tung. 2017. “Estimation of Sand Production Rate Using Geomechanical & Hydromechanical Models.” Advances in Materials Science & Engineering 2017.spa
dc.relation.referencesPhoon, Kok-Kwang, & Jianye Ching. 2018. Risk & Reliability in Geotechnical Engineering Risk & Reliability in Geotechnical Engineering. 3rd editio. eds. Kok-Kwang Phoon & Jianye Ching. CRC Press Taylor & Francis Group.spa
dc.relation.referencesRackwitz, Rüdiger, & Bernd Flessler. 1978. “Structural Reliability under Combined Random Load Sequences.” Computers & Structures 9(5): 489–94.spa
dc.relation.referencesReid, M. (2022). Reliability – a Python library for reliability engineering (Version 0.8.2) [Computer software]. Zenodo. https://doi.org/10.5281/ZENODO.3938000spa
dc.relation.referencesRisnes, Rasmus, Rolf K. Bratili, & Per Horsrud. 1982. “Sand Stresses Around a Wellbore.” Society of Petroleum Engineers journal 22(6): 883–98.spa
dc.relation.referencesRusselli, Consolata. 2008. “Probabilistic Methods Applied to the Bearing Capacity Problem.” [Tesis de Doctorado, Universität Stuttgart]. Repositorio Institucional- Universität Stuttgart.spa
dc.relation.referencesSanfilippo, F., M. Brignoli, D. Giacca, & F. J. Santarelli. 1997. “Sand Production: From Prediction to Management.” SPE - European Formation Damage Control Conference, Proceedings: 389–96.spa
dc.relation.referencesSanfilippo, F., G. Ripa, M. Brignoli, & F. J. Santarelli. 1995. “Economical Management of Sand Production by a Methodology Validated on an Extensive Database of Field Data.” Proceedings - SPE Annual Technical Conference & Exhibition Delta: 227–40.spa
dc.relation.referencesSchutjens, Peter M.T.M. et al. 2004. “Compaction-Induced Porosity/Permeability Reduction in Sandstone Reservoirs: Data & Model for Elasticity-Dominated Deformation.” SPE Reservoir Evaluation & Engineering 7(3): 202–16.spa
dc.relation.referencesSelby, Rawya J., & S.M. Farouq Ali. 1987. “Flow of Fines & Sand Production in Unconsolidated Porous Media.” 339(3).spa
dc.relation.referencesSubbiah, S. K., Samsuri, A., Mohamad-Hussein, A., Jaafar, M. Z., Chen, Y. R., & Kumar, R. R. (2021). Root cause of sand production and methodologies for prediction. Petroleum, 7(3), 263-271.spa
dc.relation.referencesTorrado, Anggie Paola Charry, Diego Arm&o Vargas Silva, Hernan Darío Mantilla Hern&ez, & Yair &res Quintero Peña. 2020. “A Methodology to Identify the Root-Cause & Conditions of Sand Production, by Integrating Production, Reservoir & Completion Variables. Applied to a Colombian Field.” SPE Latin American & Caribbean Petroleum Engineering Conference Proceedings 2020-July.spa
dc.relation.referencesTronvoll, J., Papamichos, E., Skjaerstein, A., & Sanfilippo, F. (1997, August). Sand production in ultra-weak sandstones: Is sand control absolutely necessary?. In Latin American and Caribbean Petroleum Engineering Conference. OnePetro.spa
dc.relation.referencesTsitsiklis, John N, & Dimitri P Bertsekas. 2008. Introduction to Probability. 2nd Edition. Athena Scientific.spa
dc.relation.referencesUkaonu, Cyril et al. 2017. “Use of Petro-Elastic Analysis to Evaluate Potential for Sand Production in Petroleum Reservoirs.” Society of Petroleum Engineers - Nigeria Annual International Conference & Exhibition 2017: 1568–87.spa
dc.relation.referencesVaziri, H. H., & P. M. Byrne. 1990. “Analysis of Stress, Flow & Stability around Deep Wells.” Geotechnique 40(1): 63–77.spa
dc.relation.referencesVaziri, Hans H., Elise M. Lemoine, & Y. Xiao. 2002. “Quantification of Sand Production Induced Improvement in Productivity Index.” Canadian Geotechnical Journal 39(5): 1088–1102.spa
dc.relation.referencesWan, R. G., & J. Wang. 2000. “Modelling Sand Production within a Continuum Mechanics Framework.” Canadian International Petroleum Conference 2000, CIPC 2000.spa
dc.relation.referencesWan, R. G., & J. Wang. 2000. “Analysis of Sand Production in Unconsolidated Oil Sand Using a Coupled Erosional-Stress-Deformation Model.” Canadian International Petroleum Conference 2001, CIPC 2001 43(2).spa
dc.relation.referencesWang, Haotian, & Mukul M. Sharma. 2016. “A Fully 3-D, Multi-Phase, Poro-Elasto-Plastic Model for Sand Production.” Proceedings - SPE Annual Technical Conference & Exhibition 2016-Janua(September): 26–28.spa
dc.relation.referencesWang, J., Wan, R.G., Settari, A., Walters, D., & Liu, Y.N. “Sand Production & Instability Analysis in a Wellbore Using a Fully Coupled Reservoir-Geomechanics Model.” Gulf Rocks 2004 - 6th North America Rock Mechanics Symposium, NARMS 2004.spa
dc.relation.referencesWang, Jianlin, David Yale, & Ganesh Dasari. 2011. “Numerical Modeling of Massive S& Production.” Proceedings - SPE Annual Technical Conference & Exhibition 5(November): 3532–45.spa
dc.relation.referencesWeingarten, J. S., & T. K. Perkins. 1995. “Prediction of Sand Production in Gas Wells: Methods & Gulf of Mexico Case Studies.” JPT, Journal of Petroleum Technology 47(7): 596–600.spa
dc.relation.referencesWillson, S. M., Z. A. Moschovidis, J. R. Cameron, & I. D. Palmer. 2002. “New Model for Predicting the Rate of Sand Production.” Proceedings of the SPE/ISRM Rock Mechanics in Petroleum Engineering Conference: 152–60.spa
dc.relation.referencesYi, X. (2003). Numerical and analytical modeling of sanding onset prediction. Texas A&M University.spa
dc.relation.referencesZeng, Fanhui et al. 2019. “Predicting the Fracture Initiation Pressure for Perforated Water Injection Wells in Fossil Energy Development.” Journal of Petroleum Science & Engineering 44(31): 16257–70.spa
dc.relation.referencesZhang, Jon Jincai. 2019. Applied Petroleum Geomechanics. Gulf Professional Publishing.spa
dc.relation.referencesZoback, M.D. 2009. 32 Cambridge Reservoir Geomechanics. (1): 1–452.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::624 - Ingeniería civilspa
dc.subject.ddc510 - Matemáticas::519 - Probabilidades y matemáticas aplicadasspa
dc.subject.lembARENAspa
dc.subject.lembSandeng
dc.subject.lembMETODO DE MONTECARLOspa
dc.subject.lembMonte carlo methodeng
dc.subject.proposalProducción de arenaspa
dc.subject.proposalAnálisis por confiabilidadspa
dc.subject.proposalEvaluación de la incertidumbrespa
dc.subject.proposalSimulación de Monte Carlospa
dc.subject.proposalHasofer Lindspa
dc.subject.proposalSand productioneng
dc.subject.proposalReliability analysiseng
dc.subject.proposalUncertainty assessmenteng
dc.subject.proposalMonte Carlo simulationeng
dc.subject.proposalHasofer Lindeng
dc.titleAnálisis de los factores que condicionan la producción de arena en pozos de producción de hidrocarburos aplicando la evaluación por confiabilidadspa
dc.title.translatedReliability assessment of sand production onset in hydrocarbon production wellseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
Scripts_Python_Simulaciones.zip
Tamaño:
104.08 KB
Formato:
Comprimido
Descripción:
Anexo digital, contiene el código desarrollado en Python de las simulaciones de Monte Carlo y Hasofer Lind
Cargando...
Miniatura
Nombre:
1014218312_2022.pdf
Tamaño:
11.04 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería Geotecnia

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: