Análisis de los factores que condicionan la producción de arena en pozos de producción de hidrocarburos aplicando la evaluación por confiabilidad
dc.contributor.advisor | Rodríguez Pineda, Carlos Eduardo | |
dc.contributor.author | Tinoco Robledo, Emilio José | |
dc.contributor.orcid | Tinoco Robledo, Emilio Jose [0000000295742271] | spa |
dc.contributor.researchgroup | Grupo de Geotecnia | spa |
dc.date.accessioned | 2023-01-23T13:13:15Z | |
dc.date.available | 2023-01-23T13:13:15Z | |
dc.date.issued | 2022 | |
dc.description | ilustraciones, graficas | spa |
dc.description.abstract | La producción de arena es un problema geomecánico complejo en la industria de hidrocarburos que involucra las propiedades de la roca, los esfuerzos, el cambio en la presión de poros del yacimiento y cambios operacionales en los pozos. Múltiples modelos analíticos y numéricos determinísticos se han desarrollado para investigar cuáles son las condiciones que desencadenan el inicio de la producción de arena. Basados en la evaluación por confiabilidad, buscamos identificar cuáles son los factores que condicionan el inicio de la producción de arena en pozos de producción de hidrocarburos. Para ello, mediante las técnicas de simulación de Hasofer Lind y Monte Carlo modelamos como variables aleatorias los parámetros y propiedades geomecánicas que representan la resistencia y las cargas de la función del margen de seguridad derivada de modelos analíticos propuestos en la literatura científica. Nuestros resultados muestran que la resistencia a la compresión no confinada de la roca, el esfuerzo horizontal máximo, el agotamiento de la presión de yacimiento y el drawdown tienen la mayor influencia en el inicio de la producción de arena. El análisis por confiabilidad en pozos con producción y sin producción de arena sugiere que valores del índice de confiabilidad menores o iguales a 2.6 representan una amenaza alta de iniciar producción de arena, valores mayores a 2.6 y menores a 3.0 una amenaza media y valores mayores o iguales a 3.0 una amenaza baja (Texto tomado de la fuente) | spa |
dc.description.abstract | Sand production is a complex geomechanical problem in the hydrocarbon industry involving rock properties, stresses, change in reservoir pore pressure and operational conditions. Multiple deterministic analytical and numerical models have been developed to examine the conditions that trigger the onset of sand production. Based on reliability assessment, we seek to identify the factors that influence the onset of sand production in hydrocarbon production wells. For this purpose, using Hasofer Lind and Monte Carlo simulation techniques, we model as random variables the geomechanical parameters and properties that represent the resistance and loads of the safety margin function derived from analytical models proposed in the scientific literature. Our results show that unconfined rock compressive strength, maximum horizontal stress, reservoir pressure depletion and drawdown significantly influence the onset of sand production. Reliability analysis in sand-producing and sand-free wells suggests that reliability index values less than or equal to 2.6 represent a high hazard of initiating sand production, values greater than 2.6 and less than 3.0 represent a medium hazard, and values greater than or equal to 3.0 are associated with a low hazard. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ingeniería - Geotecnia | spa |
dc.description.notes | Anexo digital que contiene el código desarrollado en Python de las simulaciones de Monte Carlo y Hasofer Lind | spa |
dc.description.researcharea | Geotecnia básica | spa |
dc.format.extent | 183 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/83055 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ingeniería - Maestría en Ingeniería - Geotecnia | spa |
dc.relation.references | Abbas, Ahmed K., Ralph E. Flori, Mortadha Alsaba, & Mohammed F. Al Dushaishi. 2020. “Application of Quantitative Risk Assessment for Optimum Mud Weight Window Design.” 54th U.S. Rock Mechanics/Geomechanics Symposium. | spa |
dc.relation.references | Ahad, Nur Aqilah, Morteza Jami, & Stephen Tyson. 2020. “A Review of Experimental Studies on Sand Screen Selection for Unconsolidated Sandstone Reservoirs.” Journal of Petroleum Exploration & Production Technology 10(4): 1675–88. https://doi.org/10.1007/s13202-019-00826-y. | spa |
dc.relation.references | Al-Ajmi, Adel M., & Robert W. Zimmerman. 2005. “Relation between the Mogi & the Coulomb Failure Criteria.” International Journal of Rock Mechanics & Mining Sciences 42(3): 431–39. | spa |
dc.relation.references | Al-Awad, Musaed N.J., Abdel Alim H. El-Sayed, & Saad El Din M. Desouky. 1999. “Factors Affecting Sand Production from Unconsolidated Sandstone Saudi Oil & Gas Reservoir.” Journal of King Saud University - Engineering Sciences 11(1): 151–72. http://dx.doi.org/10.1016/S1018-3639(18)30995-4. | spa |
dc.relation.references | Allahverdizadeh, P., D. V. Griffiths, & G. A. Fenton. 2015. “Influence of Different Input Distributions on Probabilistic Outcomes in Geotechnical Stability Analysis.” Geotechnical Engineering for Infrastructure & Development - Proceedings of the XVI European Conference on Soil Mechanics & Geotechnical Engineering, ECSMGE 2015 4(41572279): 1549–54. | spa |
dc.relation.references | Almalikee, Hussein Saeed. 2019. “Predicting Rock Mechanical Properties from Wireline Logs in Rumaila Oilfield , Southern Iraq.” 5(2): 69–77. | spa |
dc.relation.references | Araujo, Edson Felipe. 2015. “Modelo de Predicción y Cuantificación de La Producción de Arena En Yacimientos de Crudo Pesado.” [Tesis de Maestría, Universidad Nacional de Colombia]. Repositorio Institucional-Universidad Nacional de Colombia. | spa |
dc.relation.references | Baecher, Gregory, & John Christian. 2003. 47 Technometrics Reliability & Statistics in Geotechnical Engineering. John Wiley & Sons Ltd. | spa |
dc.relation.references | Barrero, Darío, &rés Pardo, Carlos Vargas, & Juan Martínez. 2007. Colombian Sedimentary Basins. ed. Agencia Nacional de Hidrocarburos. Bogotá: ANH & B&M Exploration Ltda. | spa |
dc.relation.references | Bastidas-Arteaga, Emilio, & Abdel-hamid Soubra. 2014. “Reliability Analysis Methods.” ALERT Doctoral School 2014 - Stochastic Analysis & In- verse Modelling: 53–77. | spa |
dc.relation.references | Bellarby, Jonathan. 2009. Elsevier Well Completion Design. | spa |
dc.relation.references | Bianco, L.C.B., & P.M. Halleck. 2007. “Mechanisms of Arch Instability & Sand Production in Two-Phase Saturated Poorly Consolidated Sandstones.” SPE - European Formation Damage Control Conference, Proceedings: 185–94. | spa |
dc.relation.references | Biot, Maurice A. 1941. “General Theory of Three-Dimensional Consolidation.” Journal of Applied Physics 12(2): 155–64. | spa |
dc.relation.references | Boutt, D.F., B.K. Cook, & J. R. Williams. 2010. “A Coupled Fluid–Solid Model for Problems in Geomechanics: Application to Sand Production.” International Journal for Numerical & Analytical Methods in Geomechanics 35(13): 997–1018. | spa |
dc.relation.references | Bratli, Rolf K., & Rasmus Risnes. 1981. “Stability & Failure of Sand Arches.” Society of Petroleum Engineers Journal: 236–48. | spa |
dc.relation.references | Carlson, Jon, Derrel Gurley, Colin Price-Smith, & Frank Waters. 1992. “Sanding Why & How” : 41–53. | spa |
dc.relation.references | Chang, Chanong, Mark D. Zoback, & Abbas Khaksar. 2006. “Empirical Relations between Rock Strength & Physical Properties in Sedimentary Rocks.” Journal of Petroleum Science & Engineering 51(3–4): 223–37. | spa |
dc.relation.references | Climent, Natalia. 2016. “A Coupled CFD-DEM Model for S& Production in Oil Wells.”[Tesis de Doctorado, Universidad Politécnica de Cataluña]: Repositorio Institucional- Universidad Politécnica de Cataluña | spa |
dc.relation.references | Drucker, D. C., & W. Prager. 1952. “Soil Mechanics & Plastic Analysis or Limit Design.” Quarterly of Applied Mathematics 10: 157–65. | spa |
dc.relation.references | Du, Xiaoping. 2005. “First-Order & Second-Order Reliability Methods.” Probabilistic Engineering Design: 34. https://pdesign.sitehost.iu.edu/me360/me360.html. | spa |
dc.relation.references | Fjaer, E. et al. 1992. 33 Developments Petroleum Science Petroleum Related Rock Mechanics. | spa |
dc.relation.references | Goyeneche, Jessica, & Ruby Hernámdez. 2009. Universidad Industrial de Sant&er “Predicción de la producción de arena en el Campo Maduro del Valle Medio del Magdalena 'Llanito' a partir de las propiedades petrofísicas y geomecánicas de las formaciones productoras.” [Trabajo de Grado, Universidad Industrial de Santander]. Repositorio Institucional- Universidad Industrial de Santander | spa |
dc.relation.references | Grajales, Santiago, & Laura Juliana Hoyos. 2018. Fundación Universidad de América “Metodología que permita estimar los factores Críticos Que Puedan Inducir La Producción de Arena Por Fuerzas de Arrastre.” [Trabajo de Grado, Fundación Universidad de América]. Repositorio Institucional- Fundación Universidad de América | spa |
dc.relation.references | Grami, Ali. 2020. Probability, Random Variables, Statistics, & Random Processes. Hoboken: John Wiley & Sons, Inc. | spa |
dc.relation.references | Hasofer, Abraham M., & Niels C Lind. 1974. “An Exact & Invariant First Order Reliability Format.” Journal Eng. Mech. Division (ASCE) 100(July): 111–21. | spa |
dc.relation.references | Hayavi, Mohammad Tabaeh, & Mohammad Abdideh. 2017. “Establishment of Tensile Failure Induced Sanding Onset Prediction Model for Cased-Perforated Gas Wells.” Journal of Rock Mechanics & Geotechnical Engineering 9(2): 260–66. http://dx.doi.org/10.1016/j.jrmge.2016.07.009. | spa |
dc.relation.references | Hilgedick, Steven Austin. 2012. “Investigation of Wellbore Stability in a North Sea Field Development.” Hoek, E, & E.T. Brown. 1982. Underground Excavations in Rock. First. | spa |
dc.relation.references | Jaimes, M. G., Y. A. Quintero, & D. P. Martin. 2014. “A Review at the Problem of Sanding in Colombia: Evolution & Cases of Evaluation for Sand Exclusion & Management Alternatives.” SPE Latin American & Caribbean Petroleum Engineering Conference Proceedings 1: 198–211. | spa |
dc.relation.references | Londoño, John Makario et al. 2019. “Seismicity of Valle Medio Del Magdalena Basin, Colombia.” Journal of South American Earth Sciences 92(April): 565–85. https://doi.org/10.1016/j.jsames.2019.04.003. | spa |
dc.relation.references | Low, Bak K., & Wilson H. Tang. 2004. “Reliability Analysis Using Object-Oriented Constrained Optimization.” Structural Safety 26(1): 69–89. | spa |
dc.relation.references | Ma, Y. Z. 2019. “Quantitative Geosciences: Data Analytics, Geostatistics, Reservoir Characterization & Modeling.” Quantitative Geosciences: Data Analytics, Geostatistics, Reservoir Characterization & Modeling. | spa |
dc.relation.references | McLellan, PJ, & CD Hawkes. 1998. “Application of Probabilistic Techniques for Assessing Sand Production & Wellbore Instability Risks: Society of Petroleum Engineers.” International Society for Rock Mechanics Eurock: 143–51. | spa |
dc.relation.references | Middleton, Gerard V., Rhodes W. Fairbridge, & Michael Rampino. 2011. Encyclopedia of sediments & sedimentary rocks. | spa |
dc.relation.references | Mohamad-Hussein, Assef, & Qinglai Ni. 2018. “Numerical Modeling of Onset & Rate of Sand Production in Perforated Wells.” Journal of Petroleum Exploration & Production Technology 8(4): 1255–71. https://doi.org/10.1007/s13202-018-0443-6. | spa |
dc.relation.references | Moos, Daniel, Pavel Peska, Thomas Finkbeiner, & Mark Zoback. 2003. “Comprehensive Wellbore Stability Analysis Utilizing Quantitative Risk Assessment.” Journal of Petroleum Science & Engineering 38(3–4): 97–109. | spa |
dc.relation.references | Moricca, G., G. Ripa, F. Sanfilippo, & F. J. Santarelli. 1994. “Basin Scale Rock Mechanics: Field Observations of Sand Production.” Society of Petroleum Engineers - Rock Mechanics in Petroleum Engineering 1994: 317–28. | spa |
dc.relation.references | Nauroy, Jean-François. 2011. Geomechanics Applied to the Petroleum Industry. | spa |
dc.relation.references | Nouri, Alireza, Hans Vaziri, Hadi Belhaj, & Rafiqul Islam. 2004. “Sand Production Prediction: A New Set of Criteria for Modeling Based on Large-Scale Transient Experiments & Numerical Investigation.” Proceedings - SPE Annual Technical Conference & Exhibition (June 2016): 2071–83. | spa |
dc.relation.references | Ong, Seehong, Rico Ramos, & Ziqiong Zheng. 2000. “Sand-Production Prediction in High-Rate Perforated & Openhole Gas Wells.” JPT, Journal of Petroleum Technology 52(3): 49–50. | spa |
dc.relation.references | Papamichos, E., & K. Furui. 2019. “Analytical Models for Sand Onset under Field Conditions.” Journal of Petroleum Science & Engineering 172: 171–89. https://doi.org/10.1016/j.petrol.2018.09.009. | spa |
dc.relation.references | Papamichos, Euripiedes. 2002. “Sand Mass Prediction in a North Sea Reservoir.” Proceedings of the SPE/ISRM Rock Mechanics in Petroleum Engineering Conference (1): 135–43. | spa |
dc.relation.references | Pham, Son Tung. 2017. “Estimation of Sand Production Rate Using Geomechanical & Hydromechanical Models.” Advances in Materials Science & Engineering 2017. | spa |
dc.relation.references | Phoon, Kok-Kwang, & Jianye Ching. 2018. Risk & Reliability in Geotechnical Engineering Risk & Reliability in Geotechnical Engineering. 3rd editio. eds. Kok-Kwang Phoon & Jianye Ching. CRC Press Taylor & Francis Group. | spa |
dc.relation.references | Rackwitz, Rüdiger, & Bernd Flessler. 1978. “Structural Reliability under Combined Random Load Sequences.” Computers & Structures 9(5): 489–94. | spa |
dc.relation.references | Reid, M. (2022). Reliability – a Python library for reliability engineering (Version 0.8.2) [Computer software]. Zenodo. https://doi.org/10.5281/ZENODO.3938000 | spa |
dc.relation.references | Risnes, Rasmus, Rolf K. Bratili, & Per Horsrud. 1982. “Sand Stresses Around a Wellbore.” Society of Petroleum Engineers journal 22(6): 883–98. | spa |
dc.relation.references | Russelli, Consolata. 2008. “Probabilistic Methods Applied to the Bearing Capacity Problem.” [Tesis de Doctorado, Universität Stuttgart]. Repositorio Institucional- Universität Stuttgart. | spa |
dc.relation.references | Sanfilippo, F., M. Brignoli, D. Giacca, & F. J. Santarelli. 1997. “Sand Production: From Prediction to Management.” SPE - European Formation Damage Control Conference, Proceedings: 389–96. | spa |
dc.relation.references | Sanfilippo, F., G. Ripa, M. Brignoli, & F. J. Santarelli. 1995. “Economical Management of Sand Production by a Methodology Validated on an Extensive Database of Field Data.” Proceedings - SPE Annual Technical Conference & Exhibition Delta: 227–40. | spa |
dc.relation.references | Schutjens, Peter M.T.M. et al. 2004. “Compaction-Induced Porosity/Permeability Reduction in Sandstone Reservoirs: Data & Model for Elasticity-Dominated Deformation.” SPE Reservoir Evaluation & Engineering 7(3): 202–16. | spa |
dc.relation.references | Selby, Rawya J., & S.M. Farouq Ali. 1987. “Flow of Fines & Sand Production in Unconsolidated Porous Media.” 339(3). | spa |
dc.relation.references | Subbiah, S. K., Samsuri, A., Mohamad-Hussein, A., Jaafar, M. Z., Chen, Y. R., & Kumar, R. R. (2021). Root cause of sand production and methodologies for prediction. Petroleum, 7(3), 263-271. | spa |
dc.relation.references | Torrado, Anggie Paola Charry, Diego Arm&o Vargas Silva, Hernan Darío Mantilla Hern&ez, & Yair &res Quintero Peña. 2020. “A Methodology to Identify the Root-Cause & Conditions of Sand Production, by Integrating Production, Reservoir & Completion Variables. Applied to a Colombian Field.” SPE Latin American & Caribbean Petroleum Engineering Conference Proceedings 2020-July. | spa |
dc.relation.references | Tronvoll, J., Papamichos, E., Skjaerstein, A., & Sanfilippo, F. (1997, August). Sand production in ultra-weak sandstones: Is sand control absolutely necessary?. In Latin American and Caribbean Petroleum Engineering Conference. OnePetro. | spa |
dc.relation.references | Tsitsiklis, John N, & Dimitri P Bertsekas. 2008. Introduction to Probability. 2nd Edition. Athena Scientific. | spa |
dc.relation.references | Ukaonu, Cyril et al. 2017. “Use of Petro-Elastic Analysis to Evaluate Potential for Sand Production in Petroleum Reservoirs.” Society of Petroleum Engineers - Nigeria Annual International Conference & Exhibition 2017: 1568–87. | spa |
dc.relation.references | Vaziri, H. H., & P. M. Byrne. 1990. “Analysis of Stress, Flow & Stability around Deep Wells.” Geotechnique 40(1): 63–77. | spa |
dc.relation.references | Vaziri, Hans H., Elise M. Lemoine, & Y. Xiao. 2002. “Quantification of Sand Production Induced Improvement in Productivity Index.” Canadian Geotechnical Journal 39(5): 1088–1102. | spa |
dc.relation.references | Wan, R. G., & J. Wang. 2000. “Modelling Sand Production within a Continuum Mechanics Framework.” Canadian International Petroleum Conference 2000, CIPC 2000. | spa |
dc.relation.references | Wan, R. G., & J. Wang. 2000. “Analysis of Sand Production in Unconsolidated Oil Sand Using a Coupled Erosional-Stress-Deformation Model.” Canadian International Petroleum Conference 2001, CIPC 2001 43(2). | spa |
dc.relation.references | Wang, Haotian, & Mukul M. Sharma. 2016. “A Fully 3-D, Multi-Phase, Poro-Elasto-Plastic Model for Sand Production.” Proceedings - SPE Annual Technical Conference & Exhibition 2016-Janua(September): 26–28. | spa |
dc.relation.references | Wang, J., Wan, R.G., Settari, A., Walters, D., & Liu, Y.N. “Sand Production & Instability Analysis in a Wellbore Using a Fully Coupled Reservoir-Geomechanics Model.” Gulf Rocks 2004 - 6th North America Rock Mechanics Symposium, NARMS 2004. | spa |
dc.relation.references | Wang, Jianlin, David Yale, & Ganesh Dasari. 2011. “Numerical Modeling of Massive S& Production.” Proceedings - SPE Annual Technical Conference & Exhibition 5(November): 3532–45. | spa |
dc.relation.references | Weingarten, J. S., & T. K. Perkins. 1995. “Prediction of Sand Production in Gas Wells: Methods & Gulf of Mexico Case Studies.” JPT, Journal of Petroleum Technology 47(7): 596–600. | spa |
dc.relation.references | Willson, S. M., Z. A. Moschovidis, J. R. Cameron, & I. D. Palmer. 2002. “New Model for Predicting the Rate of Sand Production.” Proceedings of the SPE/ISRM Rock Mechanics in Petroleum Engineering Conference: 152–60. | spa |
dc.relation.references | Yi, X. (2003). Numerical and analytical modeling of sanding onset prediction. Texas A&M University. | spa |
dc.relation.references | Zeng, Fanhui et al. 2019. “Predicting the Fracture Initiation Pressure for Perforated Water Injection Wells in Fossil Energy Development.” Journal of Petroleum Science & Engineering 44(31): 16257–70. | spa |
dc.relation.references | Zhang, Jon Jincai. 2019. Applied Petroleum Geomechanics. Gulf Professional Publishing. | spa |
dc.relation.references | Zoback, M.D. 2009. 32 Cambridge Reservoir Geomechanics. (1): 1–452. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Reconocimiento 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::624 - Ingeniería civil | spa |
dc.subject.ddc | 510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas | spa |
dc.subject.lemb | ARENA | spa |
dc.subject.lemb | Sand | eng |
dc.subject.lemb | METODO DE MONTECARLO | spa |
dc.subject.lemb | Monte carlo method | eng |
dc.subject.proposal | Producción de arena | spa |
dc.subject.proposal | Análisis por confiabilidad | spa |
dc.subject.proposal | Evaluación de la incertidumbre | spa |
dc.subject.proposal | Simulación de Monte Carlo | spa |
dc.subject.proposal | Hasofer Lind | spa |
dc.subject.proposal | Sand production | eng |
dc.subject.proposal | Reliability analysis | eng |
dc.subject.proposal | Uncertainty assessment | eng |
dc.subject.proposal | Monte Carlo simulation | eng |
dc.subject.proposal | Hasofer Lind | eng |
dc.title | Análisis de los factores que condicionan la producción de arena en pozos de producción de hidrocarburos aplicando la evaluación por confiabilidad | spa |
dc.title.translated | Reliability assessment of sand production onset in hydrocarbon production wells | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 2 de 2
Cargando...
- Nombre:
- Scripts_Python_Simulaciones.zip
- Tamaño:
- 104.08 KB
- Formato:
- Comprimido
- Descripción:
- Anexo digital, contiene el código desarrollado en Python de las simulaciones de Monte Carlo y Hasofer Lind
Cargando...
- Nombre:
- 1014218312_2022.pdf
- Tamaño:
- 11.04 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería Geotecnia
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: