Metodología para la estimación del deslastre de carga considerando la inercia mecánica del sistema de potencia

dc.contributor.advisorPérez González, Ernesto
dc.contributor.authorQuintero Zuluaga, Juan Felipe
dc.contributor.orcidQuintero Zuluaga, Juan Felipe [0000000151526422]spa
dc.date.accessioned2025-02-17T15:45:05Z
dc.date.available2025-02-17T15:45:05Z
dc.date.issued2024-12-22
dc.descriptionIlustraciones
dc.description.abstractEn años recientes, la integración de fuentes de energía renovable basada en inversores como solar, eólica y algunos tipos especiales de baterías ha ido creciendo rápidamente en la red eléctrica. Se espera que para el año 2045 la generación renovable basada en inversores alcance un 50%. Lo que hace que este tipo de generación juegue un papel fundamental en los sistemas de potencia. Las implicaciones de la incursión de tecnologías de generación basada en inversores y su impacto sobre la respuesta en frecuencia del sistema es un campo de estudio en auge. Se han desarrollado estudios, algoritmos y dispositivos que permiten mejorar la confiabilidad de la operación, que se puede ver afectada por la variabilidad inherente de los recursos asociados. En los sistemas actuales, con un crecimiento continuo de generación renovable, un reto importante para garantizar la operación segura tiene que ver con la disminución de la inercia mecánica; la cual se ve afectada por el poco o nulo aporte que ofrecen las fuentes basadas en inversores a la respuesta de la frecuencia cuando ocurre un desbalance entre la carga y la generación. Debido a esto, la frecuencia presenta un comportamiento más variable que en los sistemas de potencia tradicionales basados en generación síncrona. Igualmente, al ser la frecuencia más variable en sistemas con alta incorporación de energía renovable, ocasiona que la estimación del valor de potencia a deslastrar no sea directamente proporcional al cambio en la frecuencia. Por consiguiente, los esquemas convencionales que calculan el deslastre de carga, que en su mayoría son esquemas con cálculo proporcional a la variación de frecuencia, pueden presentar una actuación no adecuada, y posteriormente, ocasionar inestabilidades de frecuencia e incluso problemas de seguridad en el sistema eléctrico. Por lo tanto, en este trabajo se pretende desarrollar una metodología que permita estimar el deslastre de carga dependiendo de la inercia mecánica del sistema de potencia. El trabajo se divide de la siguiente forma. La primera parte se centra en una revisión del estado del arte de métodos para la estimación de la inercia. Se presentan algunas metodologías que permiten la estimación de la inercia en línea y de manera pos-operativa. En la segunda parte se desarrolla una metodología para la estimación del deslastre de carga, basado en una optimización entera lineal. Finalmente, se muestran los resultados de la metodología propuesta en un sistema de pruebas IEEE 30 Buses en una plataforma de simulación desarrollada desde cero en el lenguaje de programación python. (Texto tomado de la fuente)spa
dc.description.abstractIn recent years, the integration of renewable energy sources based on inverters, such as solar, wind, and some special types of batteries, has been rapidly growing in the electrical grid. By 2045, renewable generation based on inverters is expected to reach 50\%. This makes this type of generation play a fundamental role in power systems. The implications of the incorporation of inverter-based generation technologies and their impact on the system's frequency response is a field of study on the rise. Studies, algorithms, and devices have been developed to improve operational reliability, which can be affected by the inherent variability of associated resources. In current systems, with the continuous growth of renewable generation, an important challenge for ensuring safe operation is related to the decrease in mechanical inertia, which is affected by the little or no contribution that inverter-based sources offer to frequency response when an imbalance between load and generation occurs. As a result, the frequency shows a more variable behavior compared to traditional power systems based on synchronous generation. Likewise, since frequency is more variable in systems with high integration of renewable energy, the estimation of power to be shed is not directly proportional to the change in frequency. Consequently, conventional schemes that calculate load shedding, which are mostly proportional to frequency variation, may present inadequate performance, potentially causing frequency instabilities and even safety problems in the electrical system. Therefore, this work aims to develop a methodology that allows the estimation of load shedding based on the mechanical inertia of the power system. The work is divided as follows. The first part focuses on a review of the state-of-the-art methods for estimating inertia. Some methodologies that allow the estimation of inertia in real time and postoperatively are presented. In the second part, a methodology is developed for estimating load shedding is developed, based on an integer linear optimization. Finally, the results of the proposed methodology are shown in a test system, IEEE 30 buses, on a platform.eng
dc.description.curricularareaÁrea Curricular de Ingeniería Eléctrica e Ingeniería de Controlspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería Eléctricaspa
dc.description.researchareaSistemas de potenciaspa
dc.format.extent103 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87502
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Ingeniería Eléctricaspa
dc.relation.referencesH. Haes Alhelou, M. E. Hamedani Golshan, T. C. Njenda, and N. D. Hatziargyriou, “An Overview of UFLS in Conventional, Modern, and Future Smart Power Systems: Challenges and Opportunities,” Electric Power Systems Research, vol. 179, no. February 2019, p. 106054, 2020.spa
dc.relation.referencesF. M. Gonzalez-Longatt, “Effects of the synthetic inertia from wind power on the total system inertia: simulation study,” in 2012 2nd International Symposium On Environ- ment Friendly Energies And Applications, pp. 389–395, 2012.spa
dc.relation.referencesM. Dreidy, H. Mokhlis, and S. Mekhilef, “Inertia response and frequency control tech- niques for renewable energy sources: A review,” Renewable and Sustainable Energy Re- views, vol. 69, no. November 2015, pp. 144–155, 2017.spa
dc.relation.referencesC. Li, Y. Wu, Y. Sun, H. Zhang, Y. Liu, Y. Liu, and V. Terzija, “Continuous under- frequency load shedding scheme for power system adaptive frequency control,” IEEE Transactions on Power Systems, vol. 35, no. 2, pp. 950–961, 2020.spa
dc.relation.referencesWorld Nuclear Association, "Carbon dioxide emissions from electricity," World Nuclear Association, 2022. [Online]. Available: https://www.world-nuclear.org/information-library/energy-and-the-environment/carbon-dioxide-emissions-from-electricity.aspx. [Accessed: Jan. 29, 2023].spa
dc.relation.referencesIEA, "Data & Statistics - IEA," Electricity Information, 2022. [Online]. Available: https://www.iea.org/data-and-statistics?country=WORLD&fuel=Key%20indicators&indicator=CO2%20emissions%20per%20capita%0Ahttps://www.iea.org/data-and-statistics?country=WORLD&fuel=Energy%20supply&indicator=Electricity%20generation%20by%20source. [Accessed: Dec. 14, 2022].spa
dc.relation.referencesF. Federico, M. Milano, F. Doerfler, G. Hug, D. Hill, and G. Verbic, "Foundations and challenges of low-inertia systems," 2016, pp. 1–26.spa
dc.relation.referencesK. S. Ratnam, K. Palanisamy, and G. Yang, "Future low-inertia power systems: Requirements, issues, and solutions - A review," Renewable and Sustainable Energy Reviews, vol. 124, pp. 109773, May 2020. doi: 10.1016/j.rser.2020.109773.spa
dc.relation.referencesA. Fernández-Guillamón, E. Gómez-Lázaro, E. Muljadi, and Á. Molina-García, "Power systems with high renewable energy sources: A review of inertia and frequency control strategies over time," Renewable and Sustainable Energy Reviews, vol. 115, pp. 109369, Nov. 2019. doi: 10.1016/j.rser.2019.109369.spa
dc.relation.referencesL. Sigrist, L. Rouco, and F. M. Echavarren, "A review of the state of the art of UFLS schemes for isolated power systems," International Journal of Electrical Power & Energy Systems, vol. 99, pp. 525–539, 2018. doi: 10.1016/j.ijepes.2018.01.052.spa
dc.relation.referencesL. Zhang and J. Zhong, "UFLS Design by Using f and Integrating df/dt," 2006 IEEE PES Power Systems Conference and Exposition, pp. 1840–1844, 2006. doi: 10.1109/PSCE.2006.296192.spa
dc.relation.referencesU. Rudez and R. Mihalic, "WAMS-Based Underfrequency Load Shedding With Short-Term Frequency Prediction," IEEE Transactions on Power Delivery, vol. 31, no. 4, pp. 1912–1920, 2016. doi: 10.1109/TPWRD.2015.2503734.spa
dc.relation.referencesT. Shekari, F. Aminifar, and M. Sanaye-Pasand, "An Analytical Adaptive Load Shedding Scheme Against Severe Combinational Disturbances," IEEE Transactions on Power Systems, vol. 31, no. 5, pp. 4135–4143, 2016. doi: 10.1109/TPWRS.2015.2503563.spa
dc.relation.referencesS. Padrón, M. Hernández, and A. Falcón, "Reducing Under-Frequency Load Shedding in Isolated Power Systems Using Neural Networks. Gran Canaria: A Case Study," IEEE Transactions on Power Systems, vol. 31, no. 1, pp. 63–71, 2016. doi: 10.1109/TPWRS.2015.2395142.spa
dc.relation.referencesT. Amraee, M. G. Darebaghi, A. Soroudi, and A. Keane, "Probabilistic Under Frequency Load Shedding Considering RoCoF Relays of Distributed Generators," IEEE Transactions on Power Systems, vol. 33, no. 4, pp. 3587–3598, 2018. doi: 10.1109/TPWRS.2017.2787861.spa
dc.relation.referencesP. He, B. Wen, and H. Wang, "Decentralized Adaptive Under Frequency Load Shedding Scheme Based on Load Information," IEEE Access, vol. 7, pp. 52007–52014, 2019. doi: 10.1109/ACCESS.2019.2911665.spa
dc.relation.referencesR. G. Brown, Introductory Physics I, 1st ed., ISBN 9781430322450.spa
dc.relation.referencesP. Tielens and D. Van Hertem, "The relevance of inertia in power systems," Renewable and Sustainable Energy Reviews, vol. 55, pp. 999–1009, Mar. 2016. doi: 10.1016/j.rser.2015.11.016.spa
dc.relation.referencesH. R. Chamorro, M. Ghandhari, and R. Eriksson, "Wind power impact on power system frequency response," in 2013 North American Power Symposium (NAPS), 2013, pp. 1–6. doi: 10.1109/NAPS.2013.6666880.spa
dc.relation.referencesJ. Alipoor, Y. Miura, and T. Ise, "Power system stabilization using virtual synchronous generator with alternating moment of inertia," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 3, no. 2, pp. 451–458, 2015, doi: 10.1109/JESTPE.2014.2362530.spa
dc.relation.referencesJ. Fang, H. Li, Y. Tang, and F. Blaabjerg, "On the Inertia of Future More-Electronics Power Systems," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 7, no. 4, pp. 2130–2146, 2019, doi: 10.1109/JESTPE.2018.2877766.spa
dc.relation.referencesJ. Morren, "Grid support by power electronic converters of distributed generation units," Journal of Physics A: Mathematical and Theoretical, vol. 44, no. 8, p. 085201, 2011, doi: 10.1088/1751-8113/44/8/085201. Disponible en: http://repository.tudelft.nl/assets/uuid:ef7c350e-9292-4064-b1c9-81ed15e7cfc1/its_morren_20061113.pdf.spa
dc.relation.referencesJ. M. Mauricio, A. Marano, A. G. Expósito, J. L. Ramos, and M. Martínez, "Variable-Speed Wind Energy Conversion Systems," Power, vol. 24, no. 1, pp. 173–180, 2009.spa
dc.relation.referencesJ. Fang, H. Li, Y. Tang, and F. Blaabjerg, "Distributed power system virtual inertia implemented by grid-connected power converters," IEEE Transactions on Power Electronics, vol. 33, no. 10, pp. 8488–8499, 2018, doi: 10.1109/TPEL.2017.2785218.spa
dc.relation.referencesL. E. Erickson and G. Brase, "Paris agreement on climate change," en Reducing Greenhouse Gas Emissions and Improving Air Quality, CRC Press, 2019, pp. 11–22.spa
dc.relation.referencesP. S. Kundur and O. P. Malik, Power system stability and control, McGraw-Hill Education, 2022.spa
dc.relation.referencesA. Westberg, N. Modig, and R. Eriksson, "Fcr-N Design of Requirements Technical Requirements for Fcr in the Nordic (Draft)," 2017.spa
dc.relation.referencesK. Ogata, Ingeniería de control moderna, 5th ed., vol. 5, 2018, ISBN 9788483226605. doi: 10.29057/ess.v5i10.3323.spa
dc.relation.referencesP. Du and J. Matevosyan, "Forecast system inertia condition and its impact to integrate more renewables," IEEE Transactions on Smart Grid, vol. 9, no. 2, pp. 1531-1533, 2018, doi: 10.1109/TSG.2017.2662318.spa
dc.relation.referencesS. Stapleton, N. Krajisnik, K. Soon, and D. Hughes, "For internal use only / All Island TSO Facilitation of Renewables Studies WP1-Technical Studies," 2009.spa
dc.relation.referencesD. Sanford, "NEW SOUTH WALES QUEENSLAND SOUTH AUSTRALIA VICTORIA AUSTRALIAN CAPITAL TERRITORY TASMANIA WESTERN AUSTRALIA INERTIA REQUIREMENTS METHODOLOGY INERTIA REQUIREMENTS & SHORTFALLS PREPARED BY: Operational Analysis and Engineering, AEMO VERSION: 1.0 STATUS: FIN," 2018. Disponible en: www.aemo.com.au.spa
dc.relation.references"System Operability Framework 2015 UK electricity transmission," 2015, tech report.spa
dc.relation.referencesIndustry Practices, "Online inertia estimation & monitoring," pp. 1–11.spa
dc.relation.referencesC. Kimmett, "Inertia Estimation Methodologies vs Measurement Methodology: Impact on System Stability," 2019.spa
dc.relation.referencesGE, "O V E R V I E W Effective Inertia: The Frequency Alert Indicator," 2018. Disponible en: www.gepower.com/contact.spa
dc.relation.referencesUnidad de Planeación Minero Energética (UPME), "Plan Energético Nacional 2020-2050," Plan Energético Nacional 2020-2050, 2020, pp. 215. [Online]. Available: https://www1.upme.gov.co/DemandaEnergetica/PEN_2020_2050/Plan_Energetico_Nacional_2020_2050.pdfspa
dc.relation.referencesX. Cao, B. Stephen, I. F. Abdulhadi, C. D. Booth, and G. M. Burt, "Switching Markov Gaussian Models for Dynamic Power System Inertia Estimation," IEEE Transactions on Power Systems, vol. 31, no. 5, pp. 3394-3403, 2016, doi: 10.1109/TPWRS.2015.2501458.spa
dc.relation.referencesA. Poudyal, U. Tamrakar, R. D. Trevizan, R. Fourney, R. Tonkoski, and T. M. Hansen, "Multiarea Inertia Estimation Using Convolutional Neural Networks and Federated Learning," IEEE Systems Journal, vol. 16, no. 4, pp. 6401-6412, 2022, doi: 10.1109/JSYST.2021.3134599.spa
dc.relation.referencesD. Zografos, "Power System Inertia Estimation and Frequency Response Assessment," 1st ed. 2019, pp. 1-221, ISBN: 9789178733361.spa
dc.relation.referencesA. Drabandsari and T. Amraee, "Optimal Setting of Under Frequency Load Shedding Relays in Low Inertia Networks," in *Proceedings - 2018 Smart Grid Conference, SGC 2018*, 2018, pp. 2-7, doi: 10.1109/SGC.2018.8777850.spa
dc.relation.referencesB. Delfino, S. Massucco, A. Morini, P. Scalera, and F. Silvestro, "Implementation and comparison of different under frequency load-shedding schemes," in *2001 Power Engineering Society Summer Meeting. Conference Proceedings (Cat. No.01CH37262)*, vol. 1, pp. 307-312, 2001, doi: 10.1109/PESS.2001.970031.spa
dc.relation.referencesE. J. Thalassinakis and E. N. Dialynas, "A Monte-Carlo simulation method for setting the underfrequency load shedding relays and selecting the spinning reserve policy in autonomous power systems," IEEE Transactions on Power Systems, vol. 19, no. 4, pp. 2044-2052, 2004, doi: 10.1109/TPWRS.2004.835674.spa
dc.relation.referencesL. Sigrist, I. Egido, E. F. Sanchez-Ubeda, and L. Rouco, "Representative Operating and Contingency Scenarios for the Design of UFLS Schemes," IEEE Transactions on Power Systems, vol. 25, no. 2, pp. 906-913, 2010, doi: 10.1109/TPWRS.2009.2031839.spa
dc.relation.referencesR. W. Hamming, *Numerical Methods for Scientists and Engineers*, 1986.spa
dc.relation.referencesC. Li, Y. Sun, and Y. Yu, "An Under-frequency Load Shedding Scheme with Continuous Load Control Proportional to Frequency Deviation," IOP Conference Series: Materials Science and Engineering, vol. 199, no. 1, p. 012074, May 2017, doi: 10.1088/1757-899X/199/1/012074.spa
dc.relation.referencesM. Asghari, A. M. Fathollahi-Fard, S. M. J. Mirzapour Al-E-Hashem, and M. A. Dulebenets, "Transformation and linearization techniques in optimization: A state-of-the-art survey," Mathematics, vol. 10, no. 2, p. 283, 2022.spa
dc.relation.referencesR. D. Zimmerman, *AC Power Flows, Generalized OPF Costs and their Derivatives using Complex Matrix Notation*, Power Systems Engineering Research Center, 2010.spa
dc.relation.referencesF. Milano, *Power System Modelling and Scripting*, Springer Science & Business Media, 2010.spa
dc.relation.referencesP. W. Sauer, M. A. Pai, and J. H. Chow, *Power System Dynamics and Stability: With Synchrophasor Measurement and Power System Toolbox*, John Wiley & Sons, 2017.spa
dc.relation.referencesF. Milano, L. Vanfretti, and J. C. Morataya, "An Open Source Power System Virtual Laboratory: The PSAT Case and Experience," IEEE Transactions on Education, vol. 51, no. 1, pp. 17-23, 2008, doi: 10.1109/TE.2007.893354.spa
dc.relation.referencesM. Kheshti and L. Ding, *Particle Swarm Optimization Solution for Power System Operation Problems*, 2018.spa
dc.relation.referencesA. G. Gad, *Particle Swarm Optimization Algorithm and Its Applications: A Systematic Review*, Archives of Computational Methods in Engineering, 2021.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.armarcDistribución de energía eléctrica
dc.subject.ddc620 - Ingeniería y operaciones afines::621 - Física aplicadaspa
dc.subject.proposalEstimación de inerciaspa
dc.subject.proposalDeslastre de cargaspa
dc.subject.proposalRespuesta de la frecuenciaspa
dc.subject.proposalSimulación de sistemas de potenciaspa
dc.subject.proposalLoad sheddingeng
dc.subject.proposalInertia estimationeng
dc.subject.proposalFrequency responseeng
dc.subject.proposalPower system simulationeng
dc.titleMetodología para la estimación del deslastre de carga considerando la inercia mecánica del sistema de potenciaspa
dc.title.translatedMethodology for estimating load shedding considering the mechanical inertia of the power systemeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1036398723.2024.pdf
Tamaño:
3.03 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería Eléctrica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: