Metodología para la estimación del deslastre de carga considerando la inercia mecánica del sistema de potencia
dc.contributor.advisor | Pérez González, Ernesto | |
dc.contributor.author | Quintero Zuluaga, Juan Felipe | |
dc.contributor.orcid | Quintero Zuluaga, Juan Felipe [0000000151526422] | spa |
dc.date.accessioned | 2025-02-17T15:45:05Z | |
dc.date.available | 2025-02-17T15:45:05Z | |
dc.date.issued | 2024-12-22 | |
dc.description | Ilustraciones | |
dc.description.abstract | En años recientes, la integración de fuentes de energía renovable basada en inversores como solar, eólica y algunos tipos especiales de baterías ha ido creciendo rápidamente en la red eléctrica. Se espera que para el año 2045 la generación renovable basada en inversores alcance un 50%. Lo que hace que este tipo de generación juegue un papel fundamental en los sistemas de potencia. Las implicaciones de la incursión de tecnologías de generación basada en inversores y su impacto sobre la respuesta en frecuencia del sistema es un campo de estudio en auge. Se han desarrollado estudios, algoritmos y dispositivos que permiten mejorar la confiabilidad de la operación, que se puede ver afectada por la variabilidad inherente de los recursos asociados. En los sistemas actuales, con un crecimiento continuo de generación renovable, un reto importante para garantizar la operación segura tiene que ver con la disminución de la inercia mecánica; la cual se ve afectada por el poco o nulo aporte que ofrecen las fuentes basadas en inversores a la respuesta de la frecuencia cuando ocurre un desbalance entre la carga y la generación. Debido a esto, la frecuencia presenta un comportamiento más variable que en los sistemas de potencia tradicionales basados en generación síncrona. Igualmente, al ser la frecuencia más variable en sistemas con alta incorporación de energía renovable, ocasiona que la estimación del valor de potencia a deslastrar no sea directamente proporcional al cambio en la frecuencia. Por consiguiente, los esquemas convencionales que calculan el deslastre de carga, que en su mayoría son esquemas con cálculo proporcional a la variación de frecuencia, pueden presentar una actuación no adecuada, y posteriormente, ocasionar inestabilidades de frecuencia e incluso problemas de seguridad en el sistema eléctrico. Por lo tanto, en este trabajo se pretende desarrollar una metodología que permita estimar el deslastre de carga dependiendo de la inercia mecánica del sistema de potencia. El trabajo se divide de la siguiente forma. La primera parte se centra en una revisión del estado del arte de métodos para la estimación de la inercia. Se presentan algunas metodologías que permiten la estimación de la inercia en línea y de manera pos-operativa. En la segunda parte se desarrolla una metodología para la estimación del deslastre de carga, basado en una optimización entera lineal. Finalmente, se muestran los resultados de la metodología propuesta en un sistema de pruebas IEEE 30 Buses en una plataforma de simulación desarrollada desde cero en el lenguaje de programación python. (Texto tomado de la fuente) | spa |
dc.description.abstract | In recent years, the integration of renewable energy sources based on inverters, such as solar, wind, and some special types of batteries, has been rapidly growing in the electrical grid. By 2045, renewable generation based on inverters is expected to reach 50\%. This makes this type of generation play a fundamental role in power systems. The implications of the incorporation of inverter-based generation technologies and their impact on the system's frequency response is a field of study on the rise. Studies, algorithms, and devices have been developed to improve operational reliability, which can be affected by the inherent variability of associated resources. In current systems, with the continuous growth of renewable generation, an important challenge for ensuring safe operation is related to the decrease in mechanical inertia, which is affected by the little or no contribution that inverter-based sources offer to frequency response when an imbalance between load and generation occurs. As a result, the frequency shows a more variable behavior compared to traditional power systems based on synchronous generation. Likewise, since frequency is more variable in systems with high integration of renewable energy, the estimation of power to be shed is not directly proportional to the change in frequency. Consequently, conventional schemes that calculate load shedding, which are mostly proportional to frequency variation, may present inadequate performance, potentially causing frequency instabilities and even safety problems in the electrical system. Therefore, this work aims to develop a methodology that allows the estimation of load shedding based on the mechanical inertia of the power system. The work is divided as follows. The first part focuses on a review of the state-of-the-art methods for estimating inertia. Some methodologies that allow the estimation of inertia in real time and postoperatively are presented. In the second part, a methodology is developed for estimating load shedding is developed, based on an integer linear optimization. Finally, the results of the proposed methodology are shown in a test system, IEEE 30 buses, on a platform. | eng |
dc.description.curriculararea | Área Curricular de Ingeniería Eléctrica e Ingeniería de Control | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ingeniería - Ingeniería Eléctrica | spa |
dc.description.researcharea | Sistemas de potencia | spa |
dc.format.extent | 103 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87502 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | spa |
dc.publisher.faculty | Facultad de Minas | spa |
dc.publisher.place | Medellín, Colombia | spa |
dc.publisher.program | Medellín - Minas - Maestría en Ingeniería - Ingeniería Eléctrica | spa |
dc.relation.references | H. Haes Alhelou, M. E. Hamedani Golshan, T. C. Njenda, and N. D. Hatziargyriou, “An Overview of UFLS in Conventional, Modern, and Future Smart Power Systems: Challenges and Opportunities,” Electric Power Systems Research, vol. 179, no. February 2019, p. 106054, 2020. | spa |
dc.relation.references | F. M. Gonzalez-Longatt, “Effects of the synthetic inertia from wind power on the total system inertia: simulation study,” in 2012 2nd International Symposium On Environ- ment Friendly Energies And Applications, pp. 389–395, 2012. | spa |
dc.relation.references | M. Dreidy, H. Mokhlis, and S. Mekhilef, “Inertia response and frequency control tech- niques for renewable energy sources: A review,” Renewable and Sustainable Energy Re- views, vol. 69, no. November 2015, pp. 144–155, 2017. | spa |
dc.relation.references | C. Li, Y. Wu, Y. Sun, H. Zhang, Y. Liu, Y. Liu, and V. Terzija, “Continuous under- frequency load shedding scheme for power system adaptive frequency control,” IEEE Transactions on Power Systems, vol. 35, no. 2, pp. 950–961, 2020. | spa |
dc.relation.references | World Nuclear Association, "Carbon dioxide emissions from electricity," World Nuclear Association, 2022. [Online]. Available: https://www.world-nuclear.org/information-library/energy-and-the-environment/carbon-dioxide-emissions-from-electricity.aspx. [Accessed: Jan. 29, 2023]. | spa |
dc.relation.references | IEA, "Data & Statistics - IEA," Electricity Information, 2022. [Online]. Available: https://www.iea.org/data-and-statistics?country=WORLD&fuel=Key%20indicators&indicator=CO2%20emissions%20per%20capita%0Ahttps://www.iea.org/data-and-statistics?country=WORLD&fuel=Energy%20supply&indicator=Electricity%20generation%20by%20source. [Accessed: Dec. 14, 2022]. | spa |
dc.relation.references | F. Federico, M. Milano, F. Doerfler, G. Hug, D. Hill, and G. Verbic, "Foundations and challenges of low-inertia systems," 2016, pp. 1–26. | spa |
dc.relation.references | K. S. Ratnam, K. Palanisamy, and G. Yang, "Future low-inertia power systems: Requirements, issues, and solutions - A review," Renewable and Sustainable Energy Reviews, vol. 124, pp. 109773, May 2020. doi: 10.1016/j.rser.2020.109773. | spa |
dc.relation.references | A. Fernández-Guillamón, E. Gómez-Lázaro, E. Muljadi, and Á. Molina-García, "Power systems with high renewable energy sources: A review of inertia and frequency control strategies over time," Renewable and Sustainable Energy Reviews, vol. 115, pp. 109369, Nov. 2019. doi: 10.1016/j.rser.2019.109369. | spa |
dc.relation.references | L. Sigrist, L. Rouco, and F. M. Echavarren, "A review of the state of the art of UFLS schemes for isolated power systems," International Journal of Electrical Power & Energy Systems, vol. 99, pp. 525–539, 2018. doi: 10.1016/j.ijepes.2018.01.052. | spa |
dc.relation.references | L. Zhang and J. Zhong, "UFLS Design by Using f and Integrating df/dt," 2006 IEEE PES Power Systems Conference and Exposition, pp. 1840–1844, 2006. doi: 10.1109/PSCE.2006.296192. | spa |
dc.relation.references | U. Rudez and R. Mihalic, "WAMS-Based Underfrequency Load Shedding With Short-Term Frequency Prediction," IEEE Transactions on Power Delivery, vol. 31, no. 4, pp. 1912–1920, 2016. doi: 10.1109/TPWRD.2015.2503734. | spa |
dc.relation.references | T. Shekari, F. Aminifar, and M. Sanaye-Pasand, "An Analytical Adaptive Load Shedding Scheme Against Severe Combinational Disturbances," IEEE Transactions on Power Systems, vol. 31, no. 5, pp. 4135–4143, 2016. doi: 10.1109/TPWRS.2015.2503563. | spa |
dc.relation.references | S. Padrón, M. Hernández, and A. Falcón, "Reducing Under-Frequency Load Shedding in Isolated Power Systems Using Neural Networks. Gran Canaria: A Case Study," IEEE Transactions on Power Systems, vol. 31, no. 1, pp. 63–71, 2016. doi: 10.1109/TPWRS.2015.2395142. | spa |
dc.relation.references | T. Amraee, M. G. Darebaghi, A. Soroudi, and A. Keane, "Probabilistic Under Frequency Load Shedding Considering RoCoF Relays of Distributed Generators," IEEE Transactions on Power Systems, vol. 33, no. 4, pp. 3587–3598, 2018. doi: 10.1109/TPWRS.2017.2787861. | spa |
dc.relation.references | P. He, B. Wen, and H. Wang, "Decentralized Adaptive Under Frequency Load Shedding Scheme Based on Load Information," IEEE Access, vol. 7, pp. 52007–52014, 2019. doi: 10.1109/ACCESS.2019.2911665. | spa |
dc.relation.references | R. G. Brown, Introductory Physics I, 1st ed., ISBN 9781430322450. | spa |
dc.relation.references | P. Tielens and D. Van Hertem, "The relevance of inertia in power systems," Renewable and Sustainable Energy Reviews, vol. 55, pp. 999–1009, Mar. 2016. doi: 10.1016/j.rser.2015.11.016. | spa |
dc.relation.references | H. R. Chamorro, M. Ghandhari, and R. Eriksson, "Wind power impact on power system frequency response," in 2013 North American Power Symposium (NAPS), 2013, pp. 1–6. doi: 10.1109/NAPS.2013.6666880. | spa |
dc.relation.references | J. Alipoor, Y. Miura, and T. Ise, "Power system stabilization using virtual synchronous generator with alternating moment of inertia," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 3, no. 2, pp. 451–458, 2015, doi: 10.1109/JESTPE.2014.2362530. | spa |
dc.relation.references | J. Fang, H. Li, Y. Tang, and F. Blaabjerg, "On the Inertia of Future More-Electronics Power Systems," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 7, no. 4, pp. 2130–2146, 2019, doi: 10.1109/JESTPE.2018.2877766. | spa |
dc.relation.references | J. Morren, "Grid support by power electronic converters of distributed generation units," Journal of Physics A: Mathematical and Theoretical, vol. 44, no. 8, p. 085201, 2011, doi: 10.1088/1751-8113/44/8/085201. Disponible en: http://repository.tudelft.nl/assets/uuid:ef7c350e-9292-4064-b1c9-81ed15e7cfc1/its_morren_20061113.pdf. | spa |
dc.relation.references | J. M. Mauricio, A. Marano, A. G. Expósito, J. L. Ramos, and M. Martínez, "Variable-Speed Wind Energy Conversion Systems," Power, vol. 24, no. 1, pp. 173–180, 2009. | spa |
dc.relation.references | J. Fang, H. Li, Y. Tang, and F. Blaabjerg, "Distributed power system virtual inertia implemented by grid-connected power converters," IEEE Transactions on Power Electronics, vol. 33, no. 10, pp. 8488–8499, 2018, doi: 10.1109/TPEL.2017.2785218. | spa |
dc.relation.references | L. E. Erickson and G. Brase, "Paris agreement on climate change," en Reducing Greenhouse Gas Emissions and Improving Air Quality, CRC Press, 2019, pp. 11–22. | spa |
dc.relation.references | P. S. Kundur and O. P. Malik, Power system stability and control, McGraw-Hill Education, 2022. | spa |
dc.relation.references | A. Westberg, N. Modig, and R. Eriksson, "Fcr-N Design of Requirements Technical Requirements for Fcr in the Nordic (Draft)," 2017. | spa |
dc.relation.references | K. Ogata, Ingeniería de control moderna, 5th ed., vol. 5, 2018, ISBN 9788483226605. doi: 10.29057/ess.v5i10.3323. | spa |
dc.relation.references | P. Du and J. Matevosyan, "Forecast system inertia condition and its impact to integrate more renewables," IEEE Transactions on Smart Grid, vol. 9, no. 2, pp. 1531-1533, 2018, doi: 10.1109/TSG.2017.2662318. | spa |
dc.relation.references | S. Stapleton, N. Krajisnik, K. Soon, and D. Hughes, "For internal use only / All Island TSO Facilitation of Renewables Studies WP1-Technical Studies," 2009. | spa |
dc.relation.references | D. Sanford, "NEW SOUTH WALES QUEENSLAND SOUTH AUSTRALIA VICTORIA AUSTRALIAN CAPITAL TERRITORY TASMANIA WESTERN AUSTRALIA INERTIA REQUIREMENTS METHODOLOGY INERTIA REQUIREMENTS & SHORTFALLS PREPARED BY: Operational Analysis and Engineering, AEMO VERSION: 1.0 STATUS: FIN," 2018. Disponible en: www.aemo.com.au. | spa |
dc.relation.references | "System Operability Framework 2015 UK electricity transmission," 2015, tech report. | spa |
dc.relation.references | Industry Practices, "Online inertia estimation & monitoring," pp. 1–11. | spa |
dc.relation.references | C. Kimmett, "Inertia Estimation Methodologies vs Measurement Methodology: Impact on System Stability," 2019. | spa |
dc.relation.references | GE, "O V E R V I E W Effective Inertia: The Frequency Alert Indicator," 2018. Disponible en: www.gepower.com/contact. | spa |
dc.relation.references | Unidad de Planeación Minero Energética (UPME), "Plan Energético Nacional 2020-2050," Plan Energético Nacional 2020-2050, 2020, pp. 215. [Online]. Available: https://www1.upme.gov.co/DemandaEnergetica/PEN_2020_2050/Plan_Energetico_Nacional_2020_2050.pdf | spa |
dc.relation.references | X. Cao, B. Stephen, I. F. Abdulhadi, C. D. Booth, and G. M. Burt, "Switching Markov Gaussian Models for Dynamic Power System Inertia Estimation," IEEE Transactions on Power Systems, vol. 31, no. 5, pp. 3394-3403, 2016, doi: 10.1109/TPWRS.2015.2501458. | spa |
dc.relation.references | A. Poudyal, U. Tamrakar, R. D. Trevizan, R. Fourney, R. Tonkoski, and T. M. Hansen, "Multiarea Inertia Estimation Using Convolutional Neural Networks and Federated Learning," IEEE Systems Journal, vol. 16, no. 4, pp. 6401-6412, 2022, doi: 10.1109/JSYST.2021.3134599. | spa |
dc.relation.references | D. Zografos, "Power System Inertia Estimation and Frequency Response Assessment," 1st ed. 2019, pp. 1-221, ISBN: 9789178733361. | spa |
dc.relation.references | A. Drabandsari and T. Amraee, "Optimal Setting of Under Frequency Load Shedding Relays in Low Inertia Networks," in *Proceedings - 2018 Smart Grid Conference, SGC 2018*, 2018, pp. 2-7, doi: 10.1109/SGC.2018.8777850. | spa |
dc.relation.references | B. Delfino, S. Massucco, A. Morini, P. Scalera, and F. Silvestro, "Implementation and comparison of different under frequency load-shedding schemes," in *2001 Power Engineering Society Summer Meeting. Conference Proceedings (Cat. No.01CH37262)*, vol. 1, pp. 307-312, 2001, doi: 10.1109/PESS.2001.970031. | spa |
dc.relation.references | E. J. Thalassinakis and E. N. Dialynas, "A Monte-Carlo simulation method for setting the underfrequency load shedding relays and selecting the spinning reserve policy in autonomous power systems," IEEE Transactions on Power Systems, vol. 19, no. 4, pp. 2044-2052, 2004, doi: 10.1109/TPWRS.2004.835674. | spa |
dc.relation.references | L. Sigrist, I. Egido, E. F. Sanchez-Ubeda, and L. Rouco, "Representative Operating and Contingency Scenarios for the Design of UFLS Schemes," IEEE Transactions on Power Systems, vol. 25, no. 2, pp. 906-913, 2010, doi: 10.1109/TPWRS.2009.2031839. | spa |
dc.relation.references | R. W. Hamming, *Numerical Methods for Scientists and Engineers*, 1986. | spa |
dc.relation.references | C. Li, Y. Sun, and Y. Yu, "An Under-frequency Load Shedding Scheme with Continuous Load Control Proportional to Frequency Deviation," IOP Conference Series: Materials Science and Engineering, vol. 199, no. 1, p. 012074, May 2017, doi: 10.1088/1757-899X/199/1/012074. | spa |
dc.relation.references | M. Asghari, A. M. Fathollahi-Fard, S. M. J. Mirzapour Al-E-Hashem, and M. A. Dulebenets, "Transformation and linearization techniques in optimization: A state-of-the-art survey," Mathematics, vol. 10, no. 2, p. 283, 2022. | spa |
dc.relation.references | R. D. Zimmerman, *AC Power Flows, Generalized OPF Costs and their Derivatives using Complex Matrix Notation*, Power Systems Engineering Research Center, 2010. | spa |
dc.relation.references | F. Milano, *Power System Modelling and Scripting*, Springer Science & Business Media, 2010. | spa |
dc.relation.references | P. W. Sauer, M. A. Pai, and J. H. Chow, *Power System Dynamics and Stability: With Synchrophasor Measurement and Power System Toolbox*, John Wiley & Sons, 2017. | spa |
dc.relation.references | F. Milano, L. Vanfretti, and J. C. Morataya, "An Open Source Power System Virtual Laboratory: The PSAT Case and Experience," IEEE Transactions on Education, vol. 51, no. 1, pp. 17-23, 2008, doi: 10.1109/TE.2007.893354. | spa |
dc.relation.references | M. Kheshti and L. Ding, *Particle Swarm Optimization Solution for Power System Operation Problems*, 2018. | spa |
dc.relation.references | A. G. Gad, *Particle Swarm Optimization Algorithm and Its Applications: A Systematic Review*, Archives of Computational Methods in Engineering, 2021. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.armarc | Distribución de energía eléctrica | |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::621 - Física aplicada | spa |
dc.subject.proposal | Estimación de inercia | spa |
dc.subject.proposal | Deslastre de carga | spa |
dc.subject.proposal | Respuesta de la frecuencia | spa |
dc.subject.proposal | Simulación de sistemas de potencia | spa |
dc.subject.proposal | Load shedding | eng |
dc.subject.proposal | Inertia estimation | eng |
dc.subject.proposal | Frequency response | eng |
dc.subject.proposal | Power system simulation | eng |
dc.title | Metodología para la estimación del deslastre de carga considerando la inercia mecánica del sistema de potencia | spa |
dc.title.translated | Methodology for estimating load shedding considering the mechanical inertia of the power system | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1036398723.2024.pdf
- Tamaño:
- 3.03 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería Eléctrica
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: