Optimizing process design and control development for free-radical polymerization in continuous reactors
dc.contributor.advisor | Prado-Rubio, Oscar Andrés | |
dc.contributor.advisor | Cuellar Burgos, Alneira | |
dc.contributor.author | García Méndez, Juan Miguel | |
dc.contributor.orcid | García Méndez, Juan Miguel [0000000217360163] | spa |
dc.contributor.researchgroup | Grupo de Investigación en Aplicación de Nuevas Tecnologías | spa |
dc.date.accessioned | 2023-10-30T21:25:29Z | |
dc.date.available | 2023-10-30T21:25:29Z | |
dc.date.issued | 2023 | |
dc.description | graficas, tablas | spa |
dc.description.abstract | The polymeric industry has been exhibiting remarkable economic growth, in recent years due to increasing product demand. Just like other processes with remarkable development, the polymeric industry carries environmental and economic problems with the generation of a substantial amount of waste. An important percentage of the waste generated by polymerization processes is the off-specification product due to a lack of process control. Also, polymerization processes are challenging, where complex interactions of mass and energy are handled, thus intricate mathematical models are obtained, whose solution might not be straightforward. Those depend on the polymer type and the synthesis methods used in the process, in some cases presenting simplification compared with other polymerization systems. Among the most interesting polymers, there is polystyrene, which is highly used in the industry for production versatility, and relevant markets, among others. The most employed production route is through bulk polymerization by free radicals due to the properties, kinetic mechanisms and operation of the polymerization reactor are still highly studied. Also, separation is not required after the reaction, simplifying the flowsheet. For this kind of system, a high process understanding leads to better design and enhanced control which are essential to ensure the production of a high-quality final product. Due to its relevance, polystyrene is highly investigated to cope with production limitations such as poor temperature and viscosity control. Having those problems in mind, this research aims improving the environmental impact and economic potential in a complex system as such the bulk polymerization by free radicals, through optimal design and implementing of advanced control structures (focused on polystyrene but potentially appliable for any polymer produced by this process). Herein, two systems are investigated for bulk polymerization by free radicals of polystyrene using different reactor configurations. The first study case is based on a continuous stirred-tank reactor (CSTR) from the literature. The second study case investigates potential process improvements when the reaction takes place in a plug flow reactor (PFR), taking some elements to the CSTR study case. In order to determine the best production scenarios, optimal design is performed using a global approach through a genetic algorithm (GA), obtaining an optimal point to perform the reaction. Employing an optimization with two objective functions, providing a robust selection for the optimal point (operation point). Evaluating two technical criteria, namely efficiency and economic aspects, assessed by the productivity and the operational cost. Giving a robust design to obtain the operational point in the system, accomplishing physics characteristics desired for the final product (mass average molecular weight) and the reactor (conversion). Taking as case study a relatively big pilot scale reactor (reactor volume of 3000 L), results show an operational cost of 521932.83 USD/year and productivity of 6.21e-5 mol/L*h for the CSTR case, also, conversion values of 0.38 and mass average molecular weight values of 72436.24 g/mol. On the other hand, for the PFR with a total volume of 9470.19 L, operational cost and productivity values of 86171.80 USD/year and 0.0024 mol/L*h are obtained, respectively and conversion values of 0.61 and 70869.58 of mass average molecular weight. Subsequently, the control structure design and implementation are performed. A comparison is done between linear controllers and two advanced controllers, namely the proportional-integral-derivative (PID) control, linear-quadratic-regulator (LQR) control, and linear-quadratic-Gaussian (LQG) control. Controller performance is assessed through well-established performance indexes such as settling time, rise time, time to first peak, and overshoot during setpoint tracking and disturbance rejection tests. Nevertheless, the comparison is not only used for the controllers but instead the systems in general, evaluating important performance indexes (e.g. cost evaluation, productivity, production time, among others). For both case studies, the best controller performance is obtained with LQG controller, the more advanced controller implemented. With settling times 2 times faster than the other two controllers in the CSTR case. For the PFR case values of 6 times faster the settling time for PID controller. Particularly, it is advantageous to use a Kalman filter (within the LQG controller) to calculate the response of unmeasured variables in the system using physically measurable variables (limitation that PID control has). In this case, the moments of molecular weight distribution (physically unmeasurable) were calculated through the mass average molecular weight (measurable). It is worth mentioning that no information about the implementation LQG controllers in this process was found in the literature, so the findings presented here are novel. Then, the investigated approach prove a powerful tool to overcome the monitoring limitations. Also, despite the best control structure are the advanced controllers, the use of basic controllers as the PID, shows a good performance in both reactors compared with the system in open loop (no control implementation). The findings found in this thesis showed an improvement in environmental impact and economic potential for bulk polymerization by free radicals of polystyrene in a continuous process. This was accomplished by first by employing a systematic methodology for design and performance evaluation that copes with the particular challenges of the polymerization process. Secondly, by using diverse control strategies beyond conventional simple loops in conjunction with the optimal design. Therefore, the model-based approach proposed in this research provided relevant system understanding reflected in improved process design and control. Finally, this research has shown the benefit of considering optimal design and advanced control in the development of future polymerization processes, driving enhanced system performance towards more sustainable processes. (Texto tomado de la fuente) | eng |
dc.description.abstract | La industria polimérica ha estado exhibiendo un crecimiento económico notable en los últimos años debido a la creciente demanda de productos. Al igual que otros procesos con notable desarrollo, la industria polimérica conlleva problemas ambientales y económicos con la generación de una cantidad sustancial de residuos. Un porcentaje importante de los residuos que se generan en los procesos de polimerización es el producto fuera de especificación por falta de control del proceso. Además, son desafiantes los procesos de polimerización, donde se manejan interacciones complejas de masa y energía, obteniendo así modelos matemáticos intrincados, cuya solución puede no ser sencilla. Éstos dependen del tipo de polímero y de los métodos de síntesis utilizados en el proceso, presentando en algunos casos una simplificación en comparación con otros sistemas de polimerización. Entre los polímeros más interesantes, se encuentra el poliestireno, muy utilizado en la industria por su versatilidad productiva y mercados relevantes, entre otros. La ruta de producción más empleada es mediante polimerización en masa por radicales libres debido a que las propiedades, los mecanismos cinéticos y el funcionamiento del reactor de polimerización son altamente estudiados. Además, no se requiere separación después de la reacción, lo que simplifica el diagrama de flujo. Para este tipo de sistema, un alto conocimiento del proceso conduce a un mejor diseño y control, que son esenciales para garantizar la producción de un producto final de alta calidad. Debido a su relevancia, el poliestireno se investiga mucho para hacer frente a las limitaciones de producción, como el control deficiente de la temperatura y la viscosidad. Teniendo en cuenta estos problemas, esta investigación pretende mejorar el impacto ambiental y el potencial económico de un sistema complejo como es la polimerización en masa por radicales libres, mediante el diseño óptimo y la implementación de estructuras de control avanzadas (centradas en poliestireno pero potencialmente aplicables a cualquier polímero producido por este proceso). En este documento, se investigan dos sistemas para la polimerización en masa mediante radicales libres de poliestireno utilizando diferentes configuraciones de reactor. El primer caso de estudio se basa en un reactor de tanque agitado continuo (CSTR) de la literatura. El segundo caso de estudio investiga posibles mejoras en el proceso cuando la reacción tiene lugar en un reactor de flujo pistón (PFR), implementando algunos elementos al caso de estudio CSTR. Para determinar los mejores escenarios de producción, se realiza un diseño óptimo mediante un enfoque global a través de un algoritmo genético (GA), obteniendo un punto óptimo para realizar la reacción. Emplear una optimización con dos funciones objetivo, proporcionando una selección robusta para el punto óptimo (punto de operación). Evaluando dos criterios técnicos, a saber, la eficiencia y los aspectos económicos, evaluados por la productividad y el costo operativo. Dando un diseño robusto para obtener el punto operativo en el sistema, cumpliendo con las características físicas deseadas para el producto final (peso molecular promedio másico) y el reactor (conversión). Tomando como caso de estudio un reactor a escala piloto relativamente grande (volumen de reactor de 3000 L), los resultados muestran un costo operativo de 521932,83 USD/año y una productividad de 6,21e-5 mol/L*h para el caso CSTR, además, valores de conversión de 0,38 y valores de peso molecular promedio en masa de 72436,24 g/mol. Por otro lado, para el PFR con un volumen total de 9470.19 L, se obtienen valores de costo operativo y productividad de 86171.80 USD/año y 0.0024 mol/L*h, respectivamente y valores de conversión de 0.61 y 70869.58 de peso molecular promedio en masa. Posteriormente se realiza el diseño e implementación de la estructura de control. Se realiza una comparación entre controladores lineales y dos controladores avanzados, a saber, el control proporcional-integral-derivativo (PID), el control de regulador lineal-cuadrático (LQR) y el control lineal-cuadrático-gaussiano (LQG). El rendimiento del controlador se evalúa mediante índices de rendimiento bien establecidos, como el tiempo de asentamiento, el tiempo de elevación, el tiempo de pico y el sobreimpulso durante las pruebas de seguimiento del punto de ajuste y rechazo de perturbaciones. Sin embargo, la comparación no sólo se utiliza para los controladores sino para los sistemas en general, evaluando importantes índices de desempeño (por ejemplo, evaluación de costos, productividad, tiempo de producción, entre otros). Para ambos casos de estudios, el mejor rendimiento del controlador se obtiene con el controlador LQG, el controlador más avanzado implementado. Con tiempos de asentamiento 2 veces más rápidos que los otros dos controladores en el caso CSTR. Para el caso del PFR, los valores son 6 veces más rápidos que el tiempo de asentamiento del controlador PID. Particularmente, es ventajoso usar un filtro de Kalman (dentro del controlador LQG) para calcular la respuesta de variables no medidas en el sistema usando variables físicamente medibles (limitación que tiene el control PID). En este caso, los momentos de distribución del peso molecular (físicamente no medibles) se calcularon a través del peso molecular promedio en masa (medible). Cabe mencionar que no se encontró en la literatura información sobre la implementación de controladores LQG en este proceso, por lo que los hallazgos aquí presentados son novedosos. Entonces, el enfoque investigado demuestra ser una herramienta poderosa para superar las limitaciones del monitoreo. Además, a pesar de que la mejor estructura de control son los controladores avanzados, el uso de controladores básicos como el PID, muestra un buen desempeño en ambos reactores en comparación con el sistema en lazo abierto (sin implementación de control). Los hallazgos encontrados en esta tesis mostraron una mejora en el impacto ambiental y el potencial económico de la polimerización en masa mediante radicales libres de poliestireno en un proceso continuo. Esto se logró primero empleando una metodología sistemática para el diseño y la evaluación del desempeño que hace frente a los desafíos particulares del proceso de polimerización. En segundo lugar, mediante el uso de diversas estrategias de control más allá del lazo simple convencionale junto con el diseño óptimo. Por lo tanto, el enfoque basado en modelos propuesto en esta investigación proporcionó una comprensión relevante del sistema que se refleja en un mejor diseño y control de procesos. Finalmente, esta investigación ha demostrado el beneficio de considerar un diseño óptimo y un control avanzado en el desarrollo de futuros procesos de polimerización, impulsando un mejor rendimiento del sistema hacia procesos más sostenibles. | spa |
dc.description.curriculararea | Química Y Procesos.Sede Manizales | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ingeniería - Ingeniería Química | spa |
dc.description.researcharea | Control | spa |
dc.description.researcharea | Polimeros | spa |
dc.format.extent | xx, 139 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/84853 | |
dc.language.iso | eng | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Manizales | spa |
dc.publisher.faculty | Facultad de Ingeniería y Arquitectura | spa |
dc.publisher.place | Manizales, Colombia | spa |
dc.publisher.program | Manizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Ingeniería Química | spa |
dc.relation.references | Alcocer García H (2018) Optimización multi-objetivo enfocada en la integración del diseño y control en secuencias intensificadas para la purificación de ácido levulínico | spa |
dc.relation.references | Almeida AS, Wada K, Secchi AR (2008) Simulation of styrene polymerization reactors: Kinetic and thermodynamic modeling. Brazilian J Chem Eng 25:337–349. https://doi.org/10.1590/S0104-66322008000200012 | spa |
dc.relation.references | Alvarez J, González P (2007) Constructive control of continuous polymer reactors. J Process Control 17:463–476. https://doi.org/10.1016/j.jprocont.2006.09.007 | spa |
dc.relation.references | Alvarez LA, Odloak D (2012) Optimization and control of a continuous polymerization reactor. Brazilian J Chem Eng 29:807–820. https://doi.org/10.1590/S0104-66322012000400012 | spa |
dc.relation.references | American Chemistry Council (2020) Ten Facts to Know about Plastics from Electronics. https://plastics.americanchemistry.com/Ten-Facts-About-Plastics-from-Electronics/ | spa |
dc.relation.references | Asteasuain M, Bandoni A, Sarmoria C, Brandolin A (2006) Simultaneous process and control system design for grade transition in styrene polymerization. Chem Eng Sci 61:3362–3378. https://doi.org/10.1016/j.ces.2005.12.012 | spa |
dc.relation.references | Balani K, Verma V, Agarwal A, Narayan R (2015) Physical, Thermal, and Mechanical Properties of Polymers. Biosurfaces 329–344. https://doi.org/10.1002/9781118950623.app1 | spa |
dc.relation.references | Bousbia-Salah R, Florez D, Lesage F, et al (2019) Grafting of Styrene on Ground Tire Rubber Particles in a Batch Polymerization Reactor: Dynamic Real-Time Optimization. Ind Eng Chem Res 58:13622–13627. https://doi.org/10.1021/acs.iecr.9b00738 | spa |
dc.relation.references | Braun D, Cherdron H, Rehahn M, et al (2013) Polymer synthesis: Theory and practice: Fundamentals, methods, experiments, fifth edition | spa |
dc.relation.references | Casatextil (2018) Dacron Unicolor. https://casatextil.co/dacron-unicolor/. Accessed 22 May 2020 | spa |
dc.relation.references | Cedex N (1982) Automatic control of a reactor for bulk polymerization of styrene. 17:297–304 | spa |
dc.relation.references | Chapra SC, Canale RP (2007) Métodos numéricos para ingenieros, Quinta edi. McGraw-Hill InteramerIcana | spa |
dc.relation.references | Chatzidoukas C, Pistikopoulos S, Kiparissides C (2009) A hierarchical optimization approach to optimal production scheduling in an industrial continuous olefin polymediation reactor. Macromol React Eng 3:36–46. https://doi.org/10.1002/mren.200800030 | spa |
dc.relation.references | Chen CC (1994) A continuous bulk polymerization process for crystal polystyrene. Polym Plast Technol Eng 33:55–81. https://doi.org/10.1080/03602559408010731 | spa |
dc.relation.references | Collete Y, Siarry P (2003) Multiobjective Optimization: Principles and Case Studies. Springer, New York | spa |
dc.relation.references | España, Gobierno de Marino M de MA y MR y (2007) Mejores Técnicas Disponibles de referencia europea Producción de Polímeros | spa |
dc.relation.references | Falabella (2020) Casco de bicicleta recreacional moderno para niños. https://www.falabella.com.co/falabella-co/product/4964714/Casco-de-bicicleta-recreacional-moderno-para-ninos/4964715. Accessed 22 May 2020 | spa |
dc.relation.references | Felorzabihi N, Ghadi N, Dhib R (2003) Differential geometry control of a polymer reactor. In: 2003 International Conference Physics and Control, PhysCon 2003 - Proceedings. pp 345–348 | spa |
dc.relation.references | Flores-Tlacuahuac A, Biegler LT (2008) Integrated control and process design during optimal polymer grade transition operations. Comput Chem Eng 32:2823–2837. https://doi.org/10.1016/j.compchemeng.2007.12.005 | spa |
dc.relation.references | Flores-Tlacuahuac A, Grossmann IE (2010) Simultaneous Cyclic Scheduling and Control of Tubular Reactors: Single Production Lines. Ind Eng Chem Res 49:11453–11463. https://doi.org/10.1021/ie1008629 | spa |
dc.relation.references | Fogler HS (2006) Elements of Chenzicn 1 Reaction Engineering | spa |
dc.relation.references | Garside M (2019) Global plastic production statistics. https://www.statista.com/statistics/282732/global-production-of-plastics-since-1950/#statisticContainer | spa |
dc.relation.references | Gazi E, Seider WD, Ungar LH (1996a) Verification of controllers in the presence of uncertainty: Application to styrene polymerization. Ind Eng Chem Res 35:2277–2287. https://doi.org/10.1021/ie9504361 | spa |
dc.relation.references | Gazi E, Ungar LH, Seider WD, Kuipers BJ (1996b) Automatic analysis of Monte-Carlo simulations of dynamic chemical plants. Comput Chem Eng 20: | spa |
dc.relation.references | Gharaghani M, Abedini H, Parvazinia M (2012) Dynamic simulation and control of auto-refrigerated CSTR and tubular reactor for bulk styrene polymerization. Chem Eng Res Des 90:1540–1552. https://doi.org/10.1016/j.cherd.2012.01.019 | spa |
dc.relation.references | Ghori SW, Siakeng R, Rasheed M, et al (2018) The role of advanced polymer materials in aerospace. Sustain Compos Aerosp Appl 6282038:19–34. https://doi.org/10.1016/B978-0-08-102131-6.00002-5 | spa |
dc.relation.references | González Madariaga FJ (2008) EPS (expanded poliestyrene) recycled bends mixed with plaster or stucco, some applications in building industry. Inf la Construcción 60:35–43. https://doi.org/10.3989/ic.2008.v60.i509.589 | spa |
dc.relation.references | Guo Q, Liu H, Chen J (2015) Optimal grade transition of the styrene polymerization process with endpoint and path constraints. In: Proceedings of the World Congress on Intelligent Control and Automation (WCICA). pp 4997–5001 | spa |
dc.relation.references | Hamielec AE, Hodgins JW, Tebbens K (1967) Polymer Reactors and Molecular Weight Distribution: Part II. Free Radical Polymerization in a Batch Reactor. AIChe 13:1087–1091. https://doi.org/doi/abs/10.1002/aic.690130610 | spa |
dc.relation.references | Hernández-Escoto H, Hernández-Castro S, Gabriel Segovia-Hernández J, García-Martínez A (2009) Model-Based Linear Control of Polymerization Reactors. Comput Aided Chem Eng 26:279–284. https://doi.org/10.1016/S1570-7946(09)70047-1 | spa |
dc.relation.references | Hernández-Escoto H, López T, Alvarez J (2010) Estimation of alkyd reactors with discrete-delayed measurements. Chem Eng J 160:698–707. https://doi.org/10.1016/j.cej.2010.03.055 | spa |
dc.relation.references | Hidalgo PM, Brosilow CB (1990) Nonlinear model predictive control of styrene polymerization at unstable operating points. Comput Chem Eng 14:481–494. https://doi.org/10.1016/0098-1354(90)87022-H | spa |
dc.relation.references | Ionut B (2009) Modeling and optimization of tubular polymerization reactors | spa |
dc.relation.references | Johnson AF, McGreavy C, Laurence RL, et al (1994) Polymer reactor engineering, first. Chapman & Hali | spa |
dc.relation.references | Koltzenburg S, Maskos M, Nuyken O (2017) Polymer Chemistry, Springer | spa |
dc.relation.references | Li M, Christofides PD (2007) An input/output approach to the optimal transition control of a class of distributed chemical reactors. In: Proceedings of the American Control Conference. pp 2042–2047 | spa |
dc.relation.references | Luyben WL (2007) Chemical reactor design and control. John Wiley & Sons, Inc. | spa |
dc.relation.references | Mathworks (2021) lqrd. https://www.mathworks.com/help/control/ref/lqrd.html | spa |
dc.relation.references | Mathworks (2019) State Space, Part 4: What Is LQR Control? In: Videos and wevinars. https://www.mathworks.com/videos/state-space-part-4-what-is-lqr-control-1551955957637.html | spa |
dc.relation.references | Mathworks (2017) Understanding Kalman Filters. https://www.youtube.com/watch?v=mwn8xhgNpFY&ab_channel=MATLAB. Accessed 23 Feb 2022 | spa |
dc.relation.references | Meira GR, Johnson AF (1981) Molecular weight distribution control in continuous “living” polymerizations through periodic operation of the monomer feed. Polym Eng & Sci 21:415–423. https://doi.org/10.1002/pen.760210708 | spa |
dc.relation.references | Meszena ZG, Johnson AF (1999) Modelling and simulation of polymerisation processes. Comput Chem Eng 23:. https://doi.org/10.1016/S0098-1354(99)80092-1 | spa |
dc.relation.references | Mundoplast (2017) Produccion mundial de plastico. https://mundoplast.com/produccion-mundial-plasticos-2017/. Accessed 15 May 2020 | spa |
dc.relation.references | Na SS, Rhee HK (2000) Polynomial ARMA model identification for a continuous styrene polymerization reactor using on-line measurements of polymer properties. J Appl Polym Sci 76:1889–1901. https://doi.org/10.1002/(SICI)1097-4628(20000624)76:13<1889::AID-APP6>3.0.CO;2-Y | spa |
dc.relation.references | Nguyen TS, Hoang NH, Azlan Hussain M (2019) Feedback passivation plus tracking-error-based multivariable control for a class of free-radical polymerisation reactors. Int J Control 92:1970–1984. https://doi.org/10.1080/00207179.2017.1423393 | spa |
dc.relation.references | Padideh GM, Mohammad S, Hossein A (2013) Simulation, optimization & control of styrene bulk polymerization in a tubular reactor. Iran J Chem Chem Eng 32:69–79 | spa |
dc.relation.references | Patil B, Maia E, Ricardez Sandoval L (2015) Integration of scheduling, design, and control of multiproduct chemical processes under uncertainty. AIChE J 61:2456–2470. https://doi.org/10.1002/aic.14833. | spa |
dc.relation.references | Plasteurope (2012) Plastics markets. https://www.plasteurope.com/news/PLASTICS_MARKETS_t221996/. Accessed 22 May 2020 | spa |
dc.relation.references | PlasticEurope (2020) Plastics – the Facts 2020. Plast Mater 21 st centuryentury 16 | spa |
dc.relation.references | PlasticsEurope (2009) The Compelling Facts About Plastics 2009. Plast Mater 21 st centuryentury zu finden unter www.plasticseurope.de/informations | spa |
dc.relation.references | Postobón (2020) Las botellas de PET son 100% reciclables. https://www.postobon.com/sostenibilidad/sabias-que-las-botellas-pet-son-100-reciclables. Accessed 18 May 2020 | spa |
dc.relation.references | Riduco S.A. (2010) Autopartes. http://www.riduco.com/lfl/index.php?option=com_content&task=view&id=64&Itemid=125. Accessed 18 May 2020 | spa |
dc.relation.references | Rojas González AF, Ríos Aranzazu LM (2018) Un nuevo modelo de cuantificación de la capacidad de pirólisis utilizando datos termogravimétricos aplicado a reprocesamiento de polímeros A new model to pyrolysis capacity quantification using thermogravimetric data for polymers reprocessed. Ing y Desarro 36:138–154 | spa |
dc.relation.references | Russo LP, Bequette BW (1998) Operability of chemical reactors: Multiplicity behavior of a jacketed styrene polymerization reactor. Chem Eng Sci 53:27–45. https://doi.org/10.1016/S0009-2509(97)00281-9 | spa |
dc.relation.references | Schmidt AD, Ray WH (1981) The dynamic behavior of continuous polymerization reactors-I. Isothermal solution polymerization in a CSTR. Chem Eng Sci 36:1401–1410. https://doi.org/10.1016/0009-2509(81)80174-1 | spa |
dc.relation.references | Schnurr REJ, Alboiu V, Chaudhary M, et al (2018) Reducing marine pollution from single-use plastics (SUPs): A review. Mar Pollut Bull 137:157–171. https://doi.org/10.1016/j.marpolbul.2018.10.001 | spa |
dc.relation.references | Seborg DE, Edgar TF (2003) Process Dynamics and Control, second. Jhon Wiley and Sons, Inc. | spa |
dc.relation.references | Skogestad S, Postlethwaite I (2001) Multivariable feedback control Analysis and design, second edi | spa |
dc.relation.references | Stark NM, Matuana LM (2007) Characterization of weathered wood-plastic composite surfaces using FTIR spectroscopy, contact angle, and XPS. Polym Degrad Stab 92:1883–1890. https://doi.org/10.1016/j.polymdegradstab.2007.06.017 | spa |
dc.relation.references | Tejedor AS (2014) La industria de los agentes tesoactivos. https://www.eii.uva.es/organica/qoi/tema-10.php. Accessed 22 May 2020 | spa |
dc.relation.references | The MathWorks Inc. (2013) Introduction to Model-Based PID Tuning in Simulink. https://www.mathworks.com/help/slcontrol/ug/introduction-to-automatic-pid-tuning.html#bsgra2e. Accessed 23 Dec 2022 | spa |
dc.relation.references | Vasco De Toledo EC, Martini RF, Maciel MRW, Maciel Filho R (2005) Process intensification for high operational performance target: Autorefrigerated CSTR polymerization reactor. Comput Chem Eng 29:1447–1455. https://doi.org/10.1016/j.compchemeng.2005.02.017 | spa |
dc.relation.references | Viel F, Busvelle E, Gauthier JP (1995) Stability of polymerization reactors using I/O linearization and a high-gain observer. Automatica 31:971–984. https://doi.org/10.1016/0005-1098(95)00009-L | spa |
dc.relation.references | Wallis JPA, Ritter RA, Andre H (1975) Continuous production of polystyrene in a tubular reactor: Part II. AIChE J 21:691–698. https://doi.org/10.1002/aic.690210408 | spa |
dc.relation.references | Wang J, Tan C, Wu H (2019a) Online Shape Modification of Molecular Weight Distribution Based on the Principle of Active Disturbance Rejection Controller. IEEE Access 7:53163–53171. https://doi.org/10.1109/ACCESS.2019.2912215 | spa |
dc.relation.references | Wang Y, Ostace GS, Majewski RA, Biegler LT (2019b) Optimal grade transitions in a gas-phase polymerization fluidized bed reactor. In: IFAC-PapersOnLine. pp 448–453 | spa |
dc.relation.references | Xu CZ, Wang JJ, Gu XP, Feng LF (2017) CFD modeling of styrene polymerization in a CSTR. Chem Eng Res Des 125:46–56. https://doi.org/10.1016/j.cherd.2017.06.028 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.ddc | 660 - Ingeniería química | spa |
dc.subject.proposal | Optimal Polystyrene production | eng |
dc.subject.proposal | PID | eng |
dc.subject.proposal | LQR | eng |
dc.subject.proposal | LQG | eng |
dc.subject.proposal | CSTR | eng |
dc.subject.proposal | PFR | eng |
dc.subject.proposal | Simulation | eng |
dc.subject.proposal | Optimization | eng |
dc.subject.proposal | GA optimization | eng |
dc.subject.proposal | Producción óptima de Poliestireno | spa |
dc.subject.proposal | Simulación | spa |
dc.subject.proposal | Optimización | spa |
dc.subject.proposal | Optimización GA | spa |
dc.title | Optimizing process design and control development for free-radical polymerization in continuous reactors | eng |
dc.title.translated | Optimización del diseño de procesos y desarrollo de controles para la polimerización por radicales libres en reactores continuos | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Administradores | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Medios de comunicación | spa |
dcterms.audience.professionaldevelopment | Proveedores de ayuda financiera para estudiantes | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1094953074.2023.pdf
- Tamaño:
- 5.52 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Ingeniería Química
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: