Potencial biotecnológico de Synechococcales y Oscillatoriales (cyanobacteria) colombianas

dc.contributor.advisorMontenegro Ruiz, Luis Carlos
dc.contributor.authorDarwich Cedeño, Mohamed Toufic
dc.contributor.cvlacDarwich Cedeño, Mohamed Toufic [0000024464]spa
dc.contributor.orcidDarwich Cedeño, Mohamed Toufic [000900060989433X]spa
dc.contributor.researchgroupFisiología del Estrés y Biodiversidad en Plantas y Microorganismosspa
dc.coverage.countryColombia
dc.date.accessioned2024-07-24T20:54:48Z
dc.date.available2024-07-24T20:54:48Z
dc.date.issued2023
dc.descriptionilustraciones, diagramas, fotografíasspa
dc.description.abstractLas cianobacterias son de los organismos más antiguos del planeta, por tanto, han soportado múltiples presiones ambientales y biológicas que han impulsado a la aparición de moléculas que han garantizado su supervivencia. Partiendo de lo anterior, se buscó realizar una caracterización biotecnológica de las cianobacterias de la Colección de Algas y Cianobacterias LAUN, de la Universidad Nacional de Colombia. Se identificaron las cepas mediante análisis moleculares encontrando 7 posibles géneros nuevos. Se analizó la producción de metabolitos primarios, teniendo que la cepa LAUN 81 (Synechoccocales Cyanobacteria) presenta la mayor concentración de proteína (19.04% de proteína soluble), la cepa LAUN 34 (Pleurocapsa sp.) presenta la mayor concentración de carbohidratos (11.73% de carbohidratos solubles) y la cepa LAUN 74 (Synechoccocales Cyanobacteria) presenta la mayor concentración de lípidos (40.5% de lípidos del peso total de biomasa). Por otra parte, la cepa LAUN 71 (Leptolyngbya sp.) presentó los mejores porcentajes de remoción de contaminantes en agua residual sintética, 77.5% de nitratos y 98% de fosfatos, alcanzó un 85.40% de disminución de la DQO y 94.5% de la DBO5. Finalmente, se realizó el fraccionamiento por HPLC de extractos metanólicos de los géneros representativos de las cepas LAUN y se probaron las fracciones contra células cancerígenas de cáncer colorectal (HCT116) y osteosarcoma (MG063), teniendo que la fracción “D” de LAUN33 (Baaleninema sp.) y la fracción “A” de LAUN 74 la mayor toxicidad con rendimientos de 33.18% y 34.32% de supervivencia celular respectivamente, contra la línea HCT116 y las fracciones E y F de la cepa LAUN33, la fracción H de LAUN 55 (Synechoccocales Cyanobacteria) y la fracción F de LAUN74 presentaron la mayor toxicidad con rendimientos de 39.28%, 38.94%, 38.28% y 38.42% de supervivencia celular respectivamente, contra la línea MG063 (Texto tomado de la fuente).spa
dc.description.abstractCyanobacteria are among the oldest organisms on the planet; therefore, they have endured multiple environmental and biological pressures that have led to the appearance of molecules that guarantee their survival. Based on this, we sought to carry out a biotechnological characterization of the cyanobacteria from the LAUN Algae and Cyanobacteria Collection of the National University of Colombia. The strains were identified through molecular analysis, which revealed 7 possible new genera. The production of primary metabolites was analyzed, and it was found that the strain LAUN 81 (Synechoccocales Cyanobacteria) presents the highest concentration of protein (19.04% of soluble protein), the strain LAUN 34 (Pleurocapsa sp.) presents the highest concentration of carbohydrates (11.73% of soluble carbohydrates), and the strain LAUN 74 (Synechoccocales Cyanobacteria) presents the highest concentration of lipids (40.5% lipids of the total weight of biomass). On the other hand, the strain LAUN 71 (Leptolyngbya sp.) demonstrated the best percentages of pollutant removal in synthetic wastewater, with 77.5% nitrate and 98% phosphate removal, reaching an 85.40% reduction in COD (Chemical Oxygen Demand) and 94.5% reduction of the BOD5 (Biochemical Oxygen Demand). Finally, HPLC fractionation of methanolic extracts of the representative genera of the LAUN strains was carried out. The fractions were then tested against colorectal cancer cells (HCT116) and osteosarcoma cells (MG063). Fraction "D" of LAUN33 (Baaleninema sp.) and fraction "A" of LAUN 74 showed the highest toxicity with cell survival yields of 33.18% and 34.32%, respectively, against the HCT116 line. On the other hand, fractions E and F of strain LAUN33, fraction H of LAUN 55 (Synechoccocales Cyanobacteria), and fraction F of LAUN 74 presented the highest toxicity with cell survival yields of 39.28%, 38.94%, 38.28%, and 38.42%, respectively, against the MG063 line.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ciencias - Biologíaspa
dc.description.researchareaBiotecnologíaspa
dc.format.extentxvii, 125 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86613
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Biologíaspa
dc.relation.referencesAbed, R. M. M., Dobretsov, S., & Sudesh, K. (2009). Applications of cyanobacteria in biotechnology. Journal of Applied Microbiology, 106(1), 1–12. https://doi.org/10.1111/j.1365-2672.2008.03918.xspa
dc.relation.referencesAdesalu, T., & Kuti, F. (2020). Phytochemicals , total lipids and molecular characterization of West African strain of Oscillatoria sp . ( Cyanobacterium ) isolated from Ceratophyllum demersum L . ( Hornwort ). Journal of Pharmacognosy and Phytochemistry, 9(3), 18–25.spa
dc.relation.referencesAhmad, I. Z. (2022). The usage of Cyanobacteria in wastewater treatment: prospects and limitations. Letters in Applied Microbiology, 75(4), 718–730. https://doi.org/10.1111/lam.13587spa
dc.relation.referencesAllied Market Research. (Mayo de 2018). Global seaweed market opportunities and forecast 2018-2024. https://www.alliedmarketresearch.com/seaweed-marketspa
dc.relation.referencesAllied Market Research. (Mayo de 2018). Seaweed Market by Product and Application - Global Opportunity Analysis and Industry Forecast, 2018-2024. https://www.researchandmarkets.com/reports/4580612/seaweed-market-by-product-and-applicationspa
dc.relation.referencesArencibia, D. F., Fernández Rosario, A., & Gámez Menéndez, R. (2014). Métodos generales de conservación de microorganismos. January 2008.spa
dc.relation.referencesAyala, F. (2017). Búsqueda de compuestos con posible actividad a partir de cianobacterias marinas del Caribe colombiano. Tesis de Maestría.spa
dc.relation.referencesBayona Maldonado, L. M. (2014). Estudio químico y evaluación de la actividad citotóxica de metabolitos secundarios provenientes de cianobacterias bentónicas arrecifales del Caribe colombiano. http://www.bdigital.unal.edu.co/20433/spa
dc.relation.referencesBecerra, L. (2017). Evaluación del perfil metabólico de un consorcio de cianobacterias bentónicas arrecifales del Caribe colombiano bajo condiciones de cultivo. (Tesis de Maestría). https://repositorio.unal.edu.co/handle/unal/62324spa
dc.relation.referencesBioeconomía (Enero 17 de 2018). Pronostican un mercado mundial de algas de USD 3,318 millones para 2022., https://www.bioeconomia.info/2018/01/17/pronostican_mercado_mundial_de_algas_de_usd_3318_millones_para_2022/spa
dc.relation.referencesBlunt, J., Copp, B., Keyzers, R., Munro, M., & Prinsep, M. (2009). Marine natural products. Natural Product Reports, 26(2), 170–244. https://doi.org/10.1016/j.bjp.2015.09.004spa
dc.relation.referencesBösch, N., Mariana, B., Greczmiel, U., Morinaka, B., Gugger, M., Oxenius, A., Vagstad, A. L., & Piel, J. (2020). Landornamides, antiviral ornithine‐containing ribosomal peptides discovered by proteusin mining. Angewandte Chemie. https://doi.org/10.1002/ange.201916321spa
dc.relation.referencesBravakos, P., Kotoulas, G., Skaraki, K., Pantazidou, A., & Economou-Amilli, A. (2016). A polyphasic taxonomic approach in isolated strains of Cyanobacteria from thermal springs of Greece. Molecular Phylogenetics and Evolution, 98, 147–160. https://doi.org/10.1016/j.ympev.2016.02.009spa
dc.relation.referencesBrito, Â., Gaifem, J., Ramos, V., Glukhov, E., Dorrestein, P. C., Gerwick, W. H., Vasconcelos, V. M., Mendes, M. V., & Tamagnini, P. (2015). Bioprospecting Portuguese Atlantic coast cyanobacteria for bioactive secondary metabolites reveals untapped chemodiversity. Algal Research, 9, 218–226. https://doi.org/10.1016/j.algal.2015.03.016spa
dc.relation.referencesCai, T., Park, S. Y., & Li, Y. (2013). Nutrient recovery from wastewater streams by microalgae: Status and prospects. Renewable and Sustainable Energy Reviews, 19, 360–369. https://doi.org/10.1016/j.rser.2012.11.030spa
dc.relation.referencesCano, J. (2018). Conservación in vitro y cultivo de Cyanoprocariotas bentónicas arrecifales de Providencia y Santa Catalina Islas, Colombia. Tesis de Maestría. In Universidad Nacional de Colombia.spa
dc.relation.referencesCarrasco-Reinado, R., Escobar, A., Carrera, C., Guarnizo, P., Vallejo, R. A., & Fernández-Acero, F. J. (2019). Valorization of microalgae biomass as a potential source of high-value sugars and polyalcohols. Lwt - Food Science and Technology, 114(January 2019), 108385. https://doi.org/10.1016/j.lwt.2019.108385spa
dc.relation.referencesCavalier-Smith, T. (1998). A revised six-kingdom system of life. Biological Reviews of the Cambridge Philosophical Society, 73(3), 203–266. https://doi.org/10.1017/s0006323198005167spa
dc.relation.referencesDe Vero, L., Boniotti, M. B., Budroni, M., Buzzini, P., Cassanelli, S., Comunian, R., Gullo, M., Logrieco, A. F., Mannazzu, I., Musumeci, R., Perugini, I., Perrone, G., Pulvirenti, A., Romano, P., Turchetti, B., & Varese, G. C. (2019). Preservation, characterization and exploitation of microbial biodiversity: The perspective of the italian network of culture collections. Microorganisms, 7(12). https://doi.org/10.3390/microorganisms7120685spa
dc.relation.referencesdel Cerro-Sánchez, C., García-López, J. L., & Galán-Dicilia, B. (2017). Desarrollo de herramientas moleculares para la producción de policétidos y péptidos no ribosomales.spa
dc.relation.referencesDemay, J., Bernard, C., Reinhardt, A., & Marie, B. (2019). Natural products from cyanobacteria: Focus on beneficial activities. In Marine Drugs (Vol. 17, Issue 6). MDPI AG. https://doi.org/10.3390/md17060320spa
dc.relation.referencesEl-Sheekh, M., El-Dalatony, M. M., Thakur, N., Zheng, Y., & Salama, E. S. (2022). Role of microalgae and cyanobacteria in wastewater treatment: genetic engineering and omics approaches. International Journal of Environmental Science and Technology, 19(3), 2173–2194. https://doi.org/10.1007/s13762-021-03270-wspa
dc.relation.referencesFigueras, E., Borbély, A., Ismail, M., Frese, M., & Sewald, N. (2018). Novel unit B cryptophycin analogues as payloads for targeted therapy. Beilstein Journal of Organic Chemistry, 14, 1281–1286. https://doi.org/10.3762/bjoc.14.109spa
dc.relation.referencesFinking, R., & Marahiel, M. A. (2004). Biosynthesis of nonribosomal peptides. Annual Review of Microbiology, 58, 453–488. https://doi.org/10.1146/annurev.micro.58.030603.123615spa
dc.relation.referencesForero Cujiño, M. A. (2019). Determinación de Cyanoprokaryotas planctónicas y su potencial en la producción de cianotoxinas en un embalse de la sabana de Bogotá - Colombia.spa
dc.relation.referencesFujii, I., Watanabe, A., Sankawa, U., & Ebizuka, Y. (2001). Identification of Claisen cyclase domain in fungal polyketide synthase WA, a naphthopyrone synthase of Aspergillus nidulans. Chemistry and Biology, 8(2), 189–197. https://doi.org/10.1016/S1074-5521(00)90068-1spa
dc.relation.referencesGkelis, S., Panou, M., Konstantinou, D., Apostolidis, P., Kasampali, A., Papadimitriou, S., Kati, D., Di Lorenzo, G. M., Ioakeim, S., Zervou, S. K., Christophoridis, C., Triantis, T. M., Kaloudis, T., Hiskia, A., & Arsenakis, M. (2019). Diversity, cyanotoxin production, and bioactivities of cyanobacteria isolated from freshwaters of greece. Toxins, 11(8). https://doi.org/10.3390/toxins11080436spa
dc.relation.referencesGonzález-Balderas, R. M., Velásquez-Orta, S. B., Valdez-Vazquez, I., & Orta Ledesma, M. T. (2020). Intensified recovery of lipids, proteins, and carbohydrates from wastewater-grown microalgae Desmodesmus sp. by using ultrasound or ozone. Ultrasonics Sonochemistry, 62, 104852. https://doi.org/10.1016/j.ultsonch.2019.104852spa
dc.relation.referencesGoyena, R., & Fallis, A. . (2019). The Molecular Biology of Cyanobacteria. In Journal of Chemical Information and Modeling (Vol. 53, Issue 9). https://doi.org/10.1017/CBO9781107415324.004spa
dc.relation.referencesGrossmann, L., Hinrichs, J., & Weiss, J. (2020). Cultivation and downstream processing of microalgae and cyanobacteria to generate protein-based technofunctional food ingredients. Critical Reviews in Food Science and Nutrition, 60(17), 2961–2989. https://doi.org/10.1080/10408398.2019.1672137spa
dc.relation.referencesHachicha, R., Elleuch, F., Hlima, H. Ben, Dubessay, P., de Baynast, H., Delattre, C., Pierre, G., Hachicha, R., Abdelkafi, S., Michaud, P., & Fendri, I. (2022). Biomolecules from Microalgae and Cyanobacteria: Applications and Market Survey. Applied Sciences (Switzerland), 12(4). https://doi.org/10.3390/app12041924spa
dc.relation.referencesHamida, R. S., Abdelmeguid, N. E., Ali, M. A., Bin-Meferij, M. M., & Khalil, M. I. (2020). <p>Synthesis of Silver Nanoparticles Using a Novel Cyanobacteria <em>Desertifilum</em> sp. extract: Their Antibacterial and Cytotoxicity Effects</p>. International Journal of Nanomedicine, Volume 15, 49–63. https://doi.org/10.2147/ijn.s238575spa
dc.relation.referencesHitchcock, A., Hunter, C. N., & Canniffe, D. P. (2020). Progress and challenges in engineering cyanobacteria as chassis for light-driven biotechnology. Microbial Biotechnology, 13(2), 363–367. https://doi.org/10.1111/1751-7915.13526spa
dc.relation.referencesHohmann-Marriott, M. F., & Blankenship, R. E. (2011). Evolution of photosynthesis. Annual Review of Plant Biology, 62, 515–548. https://doi.org/10.1146/annurev-arplant-042110-103811spa
dc.relation.referencesİlter, I., Akyıl, S., Demirel, Z., Koç, M., Conk-Dalay, M., & Kaymak-Ertekin, F. (2018). Optimization of phycocyanin extraction from Spirulina platensis using different techniques. Journal of Food Composition and Analysis, 70(April), 78–88. https://doi.org/10.1016/j.jfca.2018.04.007spa
dc.relation.referencesJaramillo-martínez, S., & González, M. E. (2018). Obtención de un biopolímero a base de exopolisacáridos extraídos de cultivos de Chlorella vulgaris. 1–3. https://doi.org/10.1016/j.rser.2014.04.007.2spa
dc.relation.referencesJones, M. R., Pinto, E., Torres, M. A., Dörr, F., Mazur-Marzec, H., Szubert, K., Tartaglione, L., Dell’Aversano, C., Miles, C. O., Beach, D. G., McCarron, P., Sivonen, K., Fewer, D. P., Jokela, J., & Janssen, E. M. L. (2020). Comprehensive database of secondary metabolites from cyanobacteria. BioRxiv, C, 1–16. https://doi.org/10.1101/2020.04.16.038703spa
dc.relation.referencesKamravamanesh, D., Kiesenhofer, D., Fluch, S., Lackner, M., & Herwig, C. (2019). Scale-up challenges and requirement of technology-transfer for cyanobacterial poly (3-hydroxybutyrate) production in industrial scale. International Journal of Biobased Plastics, 1(1), 60–71. https://doi.org/10.1080/24759651.2019.1688604spa
dc.relation.referencesKanaga, S., Silambarasan, T., Malini, E., Mangayarkarasi, S., & Dhandapani, R. (2022). Optimization of biomass production from Chlorella vulgaris by response surface methodology and study of the fatty acid profile for biodiesel production: A green approach. Biocatalysis and Agricultural Biotechnology, 45(October), 102505. https://doi.org/10.1016/j.bcab.2022.102505spa
dc.relation.referencesKomárek, J. (2019). Quo vadis, taxonomy of cyanobacteria (2019). Fottea, 20(1), 104–110. https://doi.org/10.5507/fot.2019.020spa
dc.relation.referencesKonstantinou, D., Mavrogonatou, E., Zervou, S. K., Giannogonas, P., & Gkelis, S. (2020). Bioprospecting Sponge-Associated Marine Cyanobacteria to Produce Bioactive Compounds. Toxins, 12(2). https://doi.org/10.3390/toxins12020073spa
dc.relation.referencesKultschar, B., Dudley, E., Wilson, S., & Llewellyn, C. A. (2019). Intracellular and extracellular metabolites from the cyanobacterium chlorogloeopsis fritschii, pcc 6912, during 48 hours of uv-b exposure. Metabolites, 9(74). https://doi.org/10.3390/metabo9040074spa
dc.relation.referencesKumar, A., & Bera, S. (2020). Revisiting nitrogen utilization in algae: A review on the process of regulation and assimilation. Bioresource Technology Reports, 12(October), 100584. https://doi.org/10.1016/j.biteb.2020.100584spa
dc.relation.referencesKumar, J., Singh, D., Tyagi, M. B., & Kumar, A. (2018). Cyanobacteria: Applications in Biotechnology. In Cyanobacteria: From Basic Science to Applications (Vol. 7421). Elsevier Inc. https://doi.org/10.1016/B978-0-12-814667-5.00016-7spa
dc.relation.referencesKurmayer, R., Entfellner, E., Weisse, T., Offterdinger, M., Rentmeister, A., & Deng, L. (2020). Chemically labeled toxins or bioactive peptides show a heterogeneous intracellular distribution and low spatial overlap with autofluorescence in bloom-forming cyanobacteria. Scientific Reports, 10(1), 1–15. https://doi.org/10.1038/s41598-020-59381-wspa
dc.relation.referencesLarsdotter, K. (2006). Microalgae for phosphorus removal from wastewater in a Nordic climate (p. 36).spa
dc.relation.referencesLavrinovics, A., Murby, F., Ziverte, E., Mezule, L., & Juhna, T. (2021). Increasing Phosphorus Uptake Efficiency by Phosphorus-Starved Microalgae for Municipal. Microorganisms, 9.spa
dc.relation.referencesLi, Z., Zhang, L., & Zhao, Z. (2021). Malyngamide F Possesses Anti-Inflammatory and Antinociceptive Activity in Rat Models of Inflammation. Pain Research and Management, 2021. https://doi.org/10.1155/2021/4919391spa
dc.relation.referencesLotfi, H., Sheervalilou, R., & Zarghami, N. (2018). An update of the recombinant protein expression systems of Cyanovirin-N and challenges of preclinical development. BioImpacts, 8(2), 139–151. https://doi.org/10.15171/bi.2018.16spa
dc.relation.referencesManogar, P., Vijayakumar, S., Rajalakshmi, S., Pugazhenthi, M., Praseetha, P. K., & Jayanthi, S. (2019). In silico studies on CNR1 receptor and effective cyanobacterial drugs: Homology modelling, molecular docking and molecular dynamic simulations. Gene Reports, 17, 100505. https://doi.org/10.1016/j.genrep.2019.100505spa
dc.relation.referencesMartins, R. F., Ramos, M. F., Herfindal, L., Sousa, J. A., Skaerven, K., & Vasconcelos, V. M. (2008). Antimicrobial and Cytotoxic Assessment of Marine Cyanobacteria - Synechocystis and Synechococcus. In Mar. Drugs (Vol. 6, Issue 1). www.mdpi.org/marinedrugsspa
dc.relation.referencesMillán, G. S. M. (2014). Evaluacion economica de un sistema de tratamiento de aguas residuales en la ciudad de Guadalajara de Buga. Facultad de Ciencias Sociales y Económicas Universisdad Del Valle, 1, 1–63. https://doi.org/10.1007/s13398-014-0173-7.2spa
dc.relation.referencesMinciencias, 2016, Colombia BIO, Bogota, Colombiaspa
dc.relation.referencesMinisterio de Medio Ambiente. (2019, 21 mayo). Minambiente. https://www.minambiente.gov.co/index.php/noticias/4317-colombia-el-segundo-pais-mas-biodiverso-del-mundo-celebra-el-dia-mundial-de-la-biodiversidadspa
dc.relation.referencesMiranda, F. (2018). Purificación de agua : eliminación de nitratos , nitritos y compuestos orgánicos utilizando catalizadores en polvo y estructurados. In Universidad Nacional Del Litoral (Vol. 1, Issue 4). www.univeersidaddellit.comspa
dc.relation.referencesMondal, A., Bose, S., Banerjee, S., Patra, J. K., Malik, J., Mandal, S. K., Kilpatrick, K. L., Das, G., Kerry, R. G., Fimognari, C., & Bishayee, A. (2020). Marine cyanobacteria and microalgae metabolites—A rich source of potential anticancer drugs. Marine Drugs, 18(9). https://doi.org/10.3390/md18090476spa
dc.relation.referencesMontalvão, S., Demirel, Z., Devi, P., Lombardi, V., Hongisto, V., Perälä, M., Hattara, J., Imamoglu, E., Tilvi, S. S., Turan, G., Dalay, M. C., & Tammela, P. (2016). Large-scale bioprospecting of cyanobacteria, micro- and macroalgae from the Aegean Sea. New Biotechnology, 33(3), 399–406. https://doi.org/10.1016/j.nbt.2016.02.002spa
dc.relation.referencesMusale, A. S., Kumar, G. R. K., Sapre, A., & Dasgupta, S. (2020). Marine Algae as a Natural Source for Antiviral Compounds. AIJR Preprints, 38(1), 1–6.spa
dc.relation.referencesNagarajan, M., Maruthanayagam, V., & Sundararaman, M. (2012). A review of pharmacological and toxicological potentials of marine cyanobacterial metabolites. Journal of Applied Toxicology, 32(3), 153–185. https://doi.org/10.1002/jat.1717spa
dc.relation.referencesNowruzi, B., Sarvari, G., & Blanco, S. (2020). The cosmetic application of cyanobacterial secondary metabolites. Algal Research, 49(November 2019), 101959. https://doi.org/10.1016/j.algal.2020.101959spa
dc.relation.referencesOlishevska, S., Nickzad, A., & Déziel, E. (2019). Bacillus and Paenibacillus secreted polyketides and peptides involved in controlling human and plant pathogens. Applied Microbiology and Biotechnology, 103(3), 1189–1215. https://doi.org/10.1007/s00253-018-9541-0spa
dc.relation.referencesPagels, F., Guedes, A. C., Amaro, H. M., Kijjoa, A., & Vasconcelos, V. (2019). Phycobiliproteins from cyanobacteria: Chemistry and biotechnological applications. Biotechnology Advances, 37(3), 422–443. https://doi.org/10.1016/j.biotechadv.2019.02.010spa
dc.relation.referencesPapadopoulos, K. P., Economou, C. N., Tekerlekopoulou, A. G., & Vayenas, D. V. (2020). Two-step treatment of brewery wastewater using electrocoagulation and cyanobacteria-based cultivation. Journal of Environmental Management, 265(January), 110543. https://doi.org/10.1016/j.jenvman.2020.110543spa
dc.relation.referencesParida, S., Sriram, M., Bhanaja, C., Sahoo, B., & Bhanja, C. (2022). In Vitro Screening of Antioxidant, Antimicrobial and Anticancer Activities of Cyanobacteria Found Across Odisha Coast, India SATYABRATA DASH Maharaja Sriram Chandra Bhanja Deo University. 1–19. https://doi.org/10.21203/rs.3.rs-1272821/v1spa
dc.relation.referencesPathak, J., Pandey, A., Maurya, P. K., Rajneesh, R., Sinha, R. P., & Singh, S. P. (2020). Cyanobacterial Secondary Metabolite Scytonemin: A Potential Photoprotective and Pharmaceutical Compound. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 90(3), 467–481. https://doi.org/10.1007/s40011-019-01134-5spa
dc.relation.referencesPeña, J. (2019). Potencial biotecnológico de Cianoprocariotas provenientes de Islas del Rosario, Colombia.spa
dc.relation.referencesPrato-Valderrama, J. A. (2013). Afloramientos de cianobacterias marinas bentónicas en San Andrés, Providencia y las Islas del Rosario (Caribe colombiano): Caracterización y evaluación de su posible papel ecológico.spa
dc.relation.referencesPuglisi, M. P., Sneed, J. M., Ritson-Williams, R., & Young, R. (2019). Marine chemical ecology in benthic environments. Natural Product Reports, 36(3), 410–429. https://doi.org/10.1039/c8np00061aspa
dc.relation.referencesRengifo, A. L., Peña, E., & Benitez, N. (2012). Efecto de la asociación alga-bacteria Bostrychia calliptera (Rhodomelaceae) en el porcentaje de remoción de cromo en laboratorio. Biología Tropical, 60(September), 1055–1064.spa
dc.relation.referencesRobles-Bañuelos, B., Durán-Riveroll, L. M., Rangel-López, E., Pérez-López, H. I., & González-Maya, L. (2022). Marine Cyanobacteria as Sources of Lead Anticancer Compounds: A Review of Families of Metabolites with Cytotoxic, Antiproliferative, and Antineoplastic Effects. Molecules, 27(15). https://doi.org/10.3390/molecules27154814spa
dc.relation.referencesRodríguez León, C. (2020). Search for marine natural products with cytotoxic activity. Universidad de las Palmas de Gran Canaria.spa
dc.relation.referencesSalbitani, G., & Carfagna, S. (2021). Ammonium Utilization in Microalgae : A Sustainable Method for Wastewater Treatment. Sustainability, 13(2), 17. https://doi.org/10.3390/su13020956spa
dc.relation.referencesShishido, T. K., Popin, R. V., Jokela, J., Wahlsten, M., Fiore, M. F., Fewer, D. P., Herfindal, L., & Sivonen, K. (2019). Dereplication of natural products with antimicrobial and anticancer activity from Brazilian cyanobacteria. Toxins, 12(1), 1–17. https://doi.org/10.3390/toxins12010012spa
dc.relation.referencesSu, Y. (2020). Revisiting carbon, nitrogen, and phosphorus metabolisms in microalgae for wastewater treatment. Science of the Total Environment, 144590. https://doi.org/10.1016/j.scitotenv.2020.144590spa
dc.relation.referencesSuenaga, K., & Iwasaki, A. (2020). Bioactive Substances from Marine Organisms. In Topics in Heterocyclic Chemistry (Vol. 58, p. 19). https://doi.org/10.2115/fiber.46.7_P283spa
dc.relation.referencesTan, L. T. (2007). Bioactive natural products from marine cyanobacteria for drug discovery. Phytochemistry, 68(7), 954–979. https://doi.org/10.1016/j.phytochem.2007.01.012spa
dc.relation.referencesTang, Y., Zhang, Y., Rosenberg, J. N., Sharif, N., Betenbaugh, M. J., & Wang, F. (2016). Efficient lipid extraction and quantification of fatty acids from algal biomass using accelerated solvent extraction (ASE). RSC Advances, 6(35), 29127–29134. https://doi.org/10.1039/C5RA23519Gspa
dc.relation.referencesThajuddin, N., & Subramanian, G. (2005). Cyanobacterial biodiversity and potential applications in biotechnology. Current Science, 89(1), 47–57.spa
dc.relation.referencesTiam, S. K., Gugger, M., Demay, J., Le Manach, S., Duval, C., Bernard, C., & Marie, B. (2019). Insights into the diversity of secondary metabolites of Planktothrix using a biphasic approach combining global genomics and metabolomics. Toxins, 11(9). https://doi.org/10.3390/toxins11090498spa
dc.relation.referencesVirgen, M. (2016). ¿Conservar fitoplancton vivo? Cepario de microalgas del CIBNOR. Recursos Naturales y Sociedad, 02(02), 40–55. https://doi.org/10.18846/renaysoc.2016.02.02.02.0003spa
dc.relation.referencesWalsh, C. T. (2008). The chemical versatility of natural-product assembly lines. Accounts of Chemical Research, 41(1), 4–10. https://doi.org/10.1021/ar7000414spa
dc.relation.referencesWu, X. J., Yang, H., Chen, Y. T., & Li, P. P. (2018). Biosynthesis of fluorescent β subunits of c-phycocyanin from spirulina subsalsa in escherichia coli, and their antioxidant properties. Molecules, 23(6), 1–11. https://doi.org/10.3390/molecules23061369spa
dc.relation.referencesXue, Y., Zhao, P., Quan, C., Zhao, Z., Gao, W., Li, J., Zu, X., Fu, D., Feng, S., Bai, X., Zuo, Y., & Li, P. (2018). Cyanobacteria-derived peptide antibiotics discovered since 2000. Peptides, 107(March), 17–24. https://doi.org/10.1016/j.peptides.2018.08.002spa
dc.relation.referencesAnagnostidis, K. & Komárek, J.. (1988). Modern approach to the classification system of cyanophytes. 3‐Oscillatoriales. Arch. Hydrobiol. Suppl.. 80. 1-4.spa
dc.relation.referencesAraújo, R., Bárbara, I., Tibaldo, M., Berecibar, E., Tapia, P. D., Pereira, R., Santos, R., & Pinto, I. S. (2009). Checklist of benthic marine algae and cyanobacteria of northern Portugal. Botanica Marina, 52(1), 24–46. https://doi.org/10.1515/BOT.2009.026spa
dc.relation.referencesBravakos, P., Kotoulas, G., Skaraki, K., Pantazidou, A., & Economou-Amilli, A. (2016). A polyphasic taxonomic approach in isolated strains of Cyanobacteria from thermal springs of Greece. Molecular Phylogenetics and Evolution, 98, 147–160. https://doi.org/10.1016/j.ympev.2016.02.009spa
dc.relation.referencesBrito, Â., Ramos, V., Mota, R., Lima, S., Santos, A., Vieira, J., Vieira, C. P., Kaštovský, J., Vasconcelos, V. M., & Tamagnini, P. (2017). Description of new genera and species of marine cyanobacteria from the Portuguese Atlantic coast. Molecular Phylogenetics and Evolution, 111, 18–34. https://doi.org/10.1016/j.ympev.2017.03.006spa
dc.relation.referencesBrito, Â., Ramos, V., Seabra, R., Santos, A., Santos, C. L., Lopo, M., Ferreira, S., Martins, A., Mota, R., Frazão, B., Martins, R., Vasconcelos, V., & Tamagnini, P. (2012). Culture-dependent characterization of cyanobacterial diversity in the intertidal zones of the Portuguese coast: A polyphasic study. Systematic and Applied Microbiology, 35(2), 110–119. https://doi.org/10.1016/j.syapm.2011.07.003spa
dc.relation.referencesCano, J. (2018). Conservación in vitro y cultivo de Cyanoprocariotas bentónicas arrecifales de Providencia y Santa Catalina Islas, Colombia. Tesis de Maestría. In Universidad Nacional de Colombia.spa
dc.relation.referencesCarrasco-Reinado, R., Escobar, A., Carrera, C., Guarnizo, P., Vallejo, R. A., & Fernández-Acero, F. J. (2019). Valorization of microalgae biomass as a potential source of high-value sugars and polyalcohols. Lwt - Food Science and Technology, 114(January 2019), 108385. https://doi.org/10.1016/j.lwt.2019.108385spa
dc.relation.referencesCastilla Corrales, M. B. (2019). Caracterización florística de cianobacterias y macroalgas marinas de los bancos Roncador y Serrana del Archipiélago de San Andrés, Providencia y Santa Catalina, Mar Caribe colombiano.spa
dc.relation.referencesCriscuolo, A., & Gribaldo, S. (2011). Large-Scale phylogenomic analyses indicate a deep origin of primary plastids within cyanobacteria. Molecular Biology and Evolution, 28(11), 3019–3032. https://doi.org/10.1093/molbev/msr108spa
dc.relation.referencesDarwich, M., Peña, E., Montenegro, L., & Benitez, N. (2017). Evaluación del consorcio natural alga(Parachlorella kessleri)(CHLOROPHYCEAE)- bacteria en depuración de aguas residuales sintéticas. Universidad del Valle.spa
dc.relation.referencesDe Figueiredo, D. R., Reboleira, A. S. S. P., Antunes, S. C., Abrantes, N., Azeiteiro, U., Gonçalves, F., & Pereira, M. J. (2006). The effect of environmental parameters and cyanobacterial blooms on phytoplankton dynamics of a Portuguese temperate lake. Hydrobiologia, 568(1), 145–157. https://doi.org/10.1007/s10750-006-0196-yspa
dc.relation.referencesDuval, C., Hamlaoui, S., Piquet, B., Toutirais, G., Yéprémian, C., Reinhardt, A., Duperron, S., & Marie, B. (2020). Characterization of cyanobacteria isolated from thermal muds of Balaruc- Les-Bains ( France ) and description of a new genus and species Pseudo- chroococcus couteii. BioRxiv.spa
dc.relation.referencesForero Cujiño, M. A. (2019). Determinación de Cyanoprokaryotas planctónicas y su potencial en la producción de cianotoxinas en un embalse de la sabana de Bogotá - Colombia.spa
dc.relation.referencesGalhano, V., de Figueiredo, D. R., Alves, A., Correia, A., Pereira, M. J., Gomes-Laranjo, J., & Peixoto, F. (2011). Morphological, biochemical and molecular characterization of Anabaena, Aphanizomenon and Nostoc strains (Cyanobacteria, Nostocales) isolated from Portuguese freshwater habitats. Hydrobiologia, 663(1), 187–203. https://doi.org/10.1007/s10750-010-0572-5spa
dc.relation.referencesHonda, D., Yokota, A., & Sugiyama, J. (1999). Detection of seven major evolutionary lineages in cyanobacteria based on the 16S rRNA gene sequence analysis with new sequences of five marine Synechococcus strains. Journal of Molecular Evolution, 48(6), 723–739. https://doi.org/10.1007/PL00006517spa
dc.relation.referencesKimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16(2), 111–120. https://doi.org/10.1007/BF01731581spa
dc.relation.referencesKomárek, J., Kaštovský, J., Mareš, J., & Johansen, J. R. (2014). Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. Preslia, 86(4), 295–335.spa
dc.relation.referencesKumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33(7). https://doi.org/10.1093/molbev/msw054spa
dc.relation.referencesLopes, V. R., Ramos, V., Martins, A., Sousa, M., Welker, M., Antunes, A., & Vasconcelos, V. M. (2012). Phylogenetic, chemical and morphological diversity of cyanobacteria from Portuguese temperate estuaries. Marine Environmental Research, 73, 7–16. https://doi.org/10.1016/j.marenvres.2011.10.005spa
dc.relation.referencesMachado Lima, N. M. (2020). Diversidade e distribuição de cianobactérias de crostas biológicas do bioma caatinga com base em taxonomia polifásica e análise metagenômica. 1–178. https://repositorio.unesp.br/handle/11449/194221%0Ahttp://hdl.handle.net/11449/194221spa
dc.relation.referencesNeilan, B. A., Jacobs, D., Del Dot, T., Blackall, L. L., Hawkins, P. R., Cox, P. T., & Goodman, A. E. (1997). rRNA sequences and evolutionary relationships among toxic and nontoxic cyanobacteria of the genus Microcystis. International Journal of Systematic Bacteriology, 47(3), 693–697. https://doi.org/10.1099/00207713-47-3-693spa
dc.relation.referencesNübel, U., Garcia-Pichel, F., & Muyzer, G. (1997). PCR primers to amplify 16S rRNA genes from cyanobacteria. Applied and Environmental Microbiology, 63(8), 3327–3332. https://doi.org/10.1128/aem.63.8.3327-3332.1997spa
dc.relation.referencesPeña, J. (2019). Potencial biotecnológico de Cianoprocariotas provenientes de Islas del Rosario, Colombia. 135.spa
dc.relation.referencesPotts, M., & Whitton, B. A. (2012). Ecology of Cyanobacteria II: Their Diversity in Space and Time. In Ecology of Cyanobacteria II.spa
dc.relation.referencesPrato-Valderrama, J. A. (2013). Afloramientos de cianobacterias marinas bentónicas en San Andrés, Providencia y las Islas del Rosario (Caribe colombiano): Caracterización y evaluación de su posible papel ecológico.spa
dc.relation.referencesPuyana, M., Prato, J. A., Nieto, C. F., Ramos, F. A., Castellanos, L., Pinzón, P., & Zárate, J. C. (2019). Experimental approaches for the evaluation of allelopathic interactions between hermatypic corals and marine benthic cyanobacteria in the colombian caribbean. Acta Biologica Colombiana, 24(2), 243–254. https://doi.org/10.15446/abc.v24n2.72706spa
dc.relation.referencesSamylina, O. S., Sinetova, M. A., Kupriyanova, E. V., Starikov, A. Y., Sukhacheva, M. V., Dziuba, M. V., & Tourova, T. P. (2021). Ecology and biogeography of the “marine Geitlerinema” cluster and a description of Sodalinema orleanskyi sp. nov., Sodalinema gerasimenkoae sp. nov., Sodalinema stali sp. nov. And Baaleninema simplex gen. et sp. nov. (Oscillatoriales, Cyanobacteria). FEMS Microbiology Ecology, 97(8), 1–25. https://doi.org/10.1093/femsec/fiab104spa
dc.relation.referencesShalygin, S., Kavulic, K., & Pietrasiak, N. (2019). Neotypification of Pleurocapsa fuliginosa and epitypification of P . minor ( Pleurocapsales ): resolving a polyphyletic cyanobacterial genus. Carroll Collected.spa
dc.relation.referencesValério, E., Chambel, L., Paulino, S., Faria, N., Pereira, P., & Tenreiro, R. (2009). Molecular identification, typing and traceability of cyanobacteria from freshwater reservoirs. Microbiology, 155(2), 642–656. https://doi.org/10.1099/mic.0.022848-0spa
dc.relation.referencesAndersen, R. A. (2005). Algal Culturing Techniques. In Elsevier (Vol. 1).spa
dc.relation.referencesBabu Balaraman, H., Sivasubramanian, A., & Kumar Rathnasamy, S. (2021). Sustainable valorization of meat processing wastewater with synergetic eutectic mixture based purification of R-Phycoerythrin from porphyrium cruentium. Bioresource Technology, 336(May), 125357. https://doi.org/10.1016/j.biortech.2021.125357spa
dc.relation.referencesBenchikh, Y., Filali, A., & Rebai, S. (2020). Modeling and optimizing the phycocyanins extraction from Arthrospira platensis (Spirulina) algae and preliminary supplementation assays in soft beverage as natural colorants and antioxidants. Journal of Food Processing and Preservation, 0–2. https://doi.org/10.1111/jfpp.15170spa
dc.relation.referencesBennett, A., & Bogorad, L. (1973). Complementary chromatic adaptation in a filamentous blue-green alga. Journal of Cell Biology, 58(2), 419–435. https://doi.org/10.1083/jcb.58.2.419spa
dc.relation.referencesBradford, M. M. (1976). A Rapid and Sensitive Method for the Quantitation Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Crop Journal, 72, 248–254. https://doi.org/10.1016/j.cj.2017.04.003spa
dc.relation.referencesBryant, D. A., Guglielmi, G., de Marsac, N. T., Castets, A. M., & Cohen-Bazire, G. (1979). The structure of cyanobacterial phycobilisomes: a model. Archives of Microbiology, 123(2), 113–127. https://doi.org/10.1007/BF00446810spa
dc.relation.referencesChaiklahan, R., Chirasuwan, N., Srinorasing, T., Attasat, S., Nopharatana, A., & Bunnag, B. (2022). Enhanced biomass and phycocyanin production of Arthrospira (Spirulina) platensis by a cultivation management strategy: Light intensity and cell concentration. Bioresource Technology, 343(September 2021), 126077. https://doi.org/10.1016/j.biortech.2021.126077spa
dc.relation.referencesCottas, A. G., Teixeira, T. A., Cunha, W. R., Ribeiro, E. J., & de Souza Ferreira, J. (2022). Effect of glucose and sodium nitrate on the cultivation of Nostoc sp. PCC 7423 and production of phycobiliproteins. Brazilian Journal of Chemical Engineering, 39(1), 1–9. https://doi.org/10.1007/s43153-021-00186-3spa
dc.relation.referencesDarwich, M., Peña, E., Montenegro, L., & Benitez, N. (2017). Evaluación del consorcio natural alga(Parachlorella kessleri)(CHLOROPHYCEAE)- bacteria en depuración de aguas residuales sintéticas. Universidad del Valle.spa
dc.relation.referencesDeyab, M., Mofeed, J., El-Bilawy, E., & Ward, F. (2019). Antiviral activity of five filamentous cyanobacteria against coxsackievirus B3 and rotavirus. Archives of Microbiology. https://doi.org/10.1007/s00203-019-01734-9spa
dc.relation.referencesDu, L., Arauzo, P. J., Meza Zavala, M. F., Cao, Z., Olszewski, M. P., & Kruse, A. (2020). Towards the properties of different biomass-derived proteins via various extraction methods. Molecules, 25(3). https://doi.org/10.3390/molecules25030488spa
dc.relation.referencesDubois, M., Gilles, K., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for the determination of sugars and related substances. Analytical Chemistry, 28(3), 7. https://doi.org/10.1038/168167a0spa
dc.relation.referencesGoldring, J. P. D. (2019). Measuring protein concentration with absorbance, lowry, bradford coomassie blue, or the smith bicinchoninic acid assay before electrophoresis. In Methods in Molecular Biology (Vol. 1855, pp. 31–39). https://doi.org/10.1007/978-1-4939-8793-1_3spa
dc.relation.referencesGonzález-Balderas, R. M., Velásquez-Orta, S. B., Valdez-Vazquez, I., & Orta Ledesma, M. T. (2020). Intensified recovery of lipids, proteins, and carbohydrates from wastewater-grown microalgae Desmodesmus sp. by using ultrasound or ozone. Ultrasonics Sonochemistry, 62, 104852. https://doi.org/10.1016/j.ultsonch.2019.104852spa
dc.relation.referencesGrossmann, L., Hinrichs, J., & Weiss, J. (2020). Cultivation and downstream processing of microalgae and cyanobacteria to generate protein-based technofunctional food ingredients. Critical Reviews in Food Science and Nutrition, 60(17), 2961–2989. https://doi.org/10.1080/10408398.2019.1672137spa
dc.relation.referencesHachicha, R., Elleuch, F., Hlima, H. Ben, Dubessay, P., de Baynast, H., Delattre, C., Pierre, G., Hachicha, R., Abdelkafi, S., Michaud, P., & Fendri, I. (2022). Biomolecules from Microalgae and Cyanobacteria: Applications and Market Survey. Applied Sciences (Switzerland), 12(4). https://doi.org/10.3390/app12041924spa
dc.relation.referencesHossain, F., Ratnayake, R. R., Mahbub, S., Kumara, K. L. W., & Magana-arachchi, D. N. (2020). Saudi Journal of Biological Sciences Identification and culturing of cyanobacteria isolated from freshwater bodies of Sri Lanka for biodiesel production. Saudi Journal of Biological Sciences, 27(6), 1514–1520. https://doi.org/10.1016/j.sjbs.2020.03.024spa
dc.relation.referencesİlter, I., Akyıl, S., Demirel, Z., Koç, M., Conk-Dalay, M., & Kaymak-Ertekin, F. (2018). Optimization of phycocyanin extraction from Spirulina platensis using different techniques. Journal of Food Composition and Analysis, 70(April), 78–88. https://doi.org/10.1016/j.jfca.2018.04.007spa
dc.relation.referencesJi, L., Qiu, S., Wang, Z., Zhao, C., Tang, B., Gao, Z., & Fan, J. (2023). Phycobiliproteins from algae: Current updates in sustainable production and applications in food and health. Food Research International, 167(March), 112737. https://doi.org/10.1016/j.foodres.2023.112737spa
dc.relation.referencesKanaga, S., Silambarasan, T., Malini, E., Mangayarkarasi, S., & Dhandapani, R. (2022). Optimization of biomass production from Chlorella vulgaris by response surface methodology and study of the fatty acid profile for biodiesel production: A green approach. Biocatalysis and Agricultural Biotechnology, 45(October), 102505. https://doi.org/10.1016/j.bcab.2022.102505spa
dc.relation.referencesKannaujiya, V. K., Kumar, D., Pathak, J., & Sinha, R. P. (2018). Phycobiliproteins and Their Commercial Significance. In Cyanobacteria: From Basic Science to Applications. Elsevier Inc. https://doi.org/10.1016/B978-0-12-814667-5.00010-6spa
dc.relation.referencesLin, P. C., Zhang, F., & Pakrasi, H. B. (2020). Enhanced production of sucrose in the fast-growing cyanobacterium Synechococcus elongatus UTEX 2973. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-019-57319-5spa
dc.relation.referencesLiu, J. Y., Jiang, T., Zhang, J. P., & Liang, D. C. (1999). Crystal structure of allophycocyanin from red algae Porphyra yezoensis at 2.2-Å resolution. Journal of Biological Chemistry, 274(24), 16945–16952. https://doi.org/10.1074/jbc.274.24.16945spa
dc.relation.referencesMalgarejo, L., Romero, M., Hernandez, S., Barrera, J., Solarte, E., Pérez, V., Rojas, A., Cruz, M., Moreno, L., Crespo, S., & Pérez, W. (2010). Laboratorio de fisiología y bioquímica vegetal. Departamento de biología. Universidad Nacional de Colombia 1.spa
dc.relation.referencesMaría, D., Fradinho, J. C., Uggetti, E., García, J., Oehmen, A., & Reis, M. A. M. (2018). Polymer accumulation in mixed cyanobacterial cultures selected under the feast and famine strategy. Algal Research, 33(January), 99–108. https://doi.org/10.1016/j.algal.2018.04.027spa
dc.relation.referencesNiccolai, A., Chini Zittelli, G., Rodolfi, L., Biondi, N., & Tredici, M. R. (2019). Microalgae of interest as food source: Biochemical composition and digestibility. Algal Research, 42(April). https://doi.org/10.1016/j.algal.2019.101617spa
dc.relation.referencesPrates, D. da F., Radmann, E. M., Duarte, J. H., Morais, M. G. de, & Costa, J. A. V. (2018). Spirulina cultivated under different light emitting diodes: Enhanced cell growth and phycocyanin production. Bioresource Technology, 256(November 2017), 38–43. https://doi.org/10.1016/j.biortech.2018.01.122spa
dc.relation.referencesRodriguez, E. A., Tran, G. N., Gross, L. A., Crisp, J. L., Shu, X., Lin, J. Y., & Tsien, R. Y. (2016). A far-red fluorescent protein evolved from a cyanobacterial phycobiliprotein. Nature Methods, 13(9), 763–769. https://doi.org/10.1038/nmeth.3935spa
dc.relation.referencesRueda, E., García-galán, M. J., Díez-montero, R., Vila, J., Grifoll, M., & García, J. (2020). Bioresource Technology Polyhydroxybutyrate and glycogen production in photobioreactors inoculated with wastewater borne cyanobacteria monocultures. Bioresource Technology, 295(September 2019), 122233. https://doi.org/10.1016/j.biortech.2019.122233spa
dc.relation.referencesSadvakasova, A. K., Kossalbayev, B. D., Zayadan, B. K., & Kirbayeva, D. K. (2021). Potential of cyanobacteria in the conversion of wastewater to biofuels. World Journal of Microbiology and Biotechnology, 37(8), 1–22. https://doi.org/10.1007/s11274-021-03107-1spa
dc.relation.referencesSánchez-Bayo, A., Morales, V., Rodríguez, R., Vicente, G., & Bautista, L. F. (2020). Cultivation of Microalgae and Cyanobacteria: Effect of Operating Conditions on Growth and Biomass Composition. Molecules, 25(12), 1–17. https://doi.org/10.3390/molecules25122834spa
dc.relation.referencesSerrano-Bermúdez, L. M., Montenegro-ruíz, L. C., & Godoy-silva, R. D. (2020). Bioresource Technology Reports Effect of CO 2 , aeration , irradiance , and photoperiod on biomass and lipid accumulation in a microalga autotrophically cultured and selected from four Colombian-native strains. Bioresource Technology Reports, 12(August), 100578. https://doi.org/10.1016/j.biteb.2020.100578spa
dc.relation.referencesShahid, A., Malik, S., Liu, C., Ghulam, S., & Aamer, M. (2021). Journal of Water Process Engineering Characterization of a newly isolated cyanobacterium Plectonema terebrans for biotransformation of the wastewater-derived nutrients to biofuel and high-value bioproducts. Journal of Water Process Engineering, 39(September 2020), 101702. https://doi.org/10.1016/j.jwpe.2020.101702spa
dc.relation.referencesTan, J. Sen, Lee, S. Y., Chew, K. W., Lam, M. K., Lim, J. W., Ho, S. H., & Show, P. L. (2020). A review on microalgae cultivation and harvesting, and their biomass extraction processing using ionic liquids. Bioengineered, 11(1), 116–129. https://doi.org/10.1080/21655979.2020.1711626spa
dc.relation.referencesTsolcha, O. N., Patrinou, V., Economou, C. N., Dourou, M., Aggelis, G., & Tekerlekopoulou, A. G. (2021). Utilization of Biomass Derived from Cyanobacteria-Based Agro-Industrial Wastewater Treatment and Raisin Residue Extract for Bioethanol Production.spa
dc.relation.referencesVillalta-romero, F., Murillo-vega, F., & Martínez-gu-, B. (2019). Microalgal biotechnology in Costa Rica : Business opportunities to the national productive sector Biotecnología microalgal en Costa Rica : Oportunidades de negocio para el sector productivo nacional. 32, 85–93.spa
dc.relation.referencesZhu, B., Wei, D., & Pohnert, G. (2022). The thermoacidophilic red alga Galdieria sulphuraria is a highly efficient cell factory for ammonium recovery from ultrahigh-NH4+ industrial effluent with co-production of high-protein biomass by photo-fermentation. Chemical Engineering Journal, 438(February), 135598. https://doi.org/10.1016/j.cej.2022.135598spa
dc.relation.referencesAhmad, I. Z. (2022). The usage of Cyanobacteria in wastewater treatment: prospects and limitations. Letters in Applied Microbiology, 75(4), 718–730. https://doi.org/10.1111/lam.13587spa
dc.relation.referencesChen, C. Y., Kuo, E. W., Nagarajan, D., Ho, S. H., Dong, C. Di, Lee, D. J., & Chang, J. S. (2020). Cultivating Chlorella sorokiniana AK-1 with swine wastewater for simultaneous wastewater treatment and algal biomass production. Bioresource Technology, 302(January), 122814. https://doi.org/10.1016/j.biortech.2020.122814spa
dc.relation.referencesChen, Z., Shao, S., He, Y., Luo, Q., Zheng, M., Zheng, M., Chen, B., & Wang, M. (2020). Nutrients removal from piggery wastewater coupled to lipid production by a newly isolated self-flocculating microalga Desmodesmus sp. PW1. Bioresource Technology, 302(January), 122806. https://doi.org/10.1016/j.biortech.2020.122806spa
dc.relation.referencesde-Bashan, L. E., Antoun, H., & Bashan, Y. (2008). Involvement of INDOLE-3-ACETIC ACID produced by the growth-promoting bacterium Azospirillum spp. in promoting growth of Chlorella vulgaris. Journal of Phycology, 44(4), 938–947. https://doi.org/10.1111/j.1529-8817.2008.00533.xspa
dc.relation.referencesde Bashan, L. E., & Bashan, Y. (2003). Bacterias promotoras de crecimiento de microalgas: una nueva aproximación en el tratamiento de aguas residuales. Revista Colombiana de Biotecnologia, 5, 85–90.spa
dc.relation.referencesEl-Sheekh, M., El-Dalatony, M. M., Thakur, N., Zheng, Y., & Salama, E. S. (2022). Role of microalgae and cyanobacteria in wastewater treatment: genetic engineering and omics approaches. International Journal of Environmental Science and Technology, 19(3), 2173–2194. https://doi.org/10.1007/s13762-021-03270-wspa
dc.relation.referencesGiraldo, M. (2012). Aislamiento y caracterización de microalgas formadoras de tapetes microbianos asociados a un cultivo hidropónico de plantas halófitas Isolation and Characterization of The Microbial Mats Associated to a Hydroponic Culture of Halophytic Plants. Universidad de Las Palmas de Gran Canaria. http://acceda.ulpgc.es/bitstream/10553/6792/4/0654092_00000_0000.pdfspa
dc.relation.referencesGithinji, L. J. M., Musey, M. K., & Ankumah, R. O. (2011). Evaluation of the fate of ciprofloxacin and amoxicillin in domestic wastewater. Water, Air, and Soil Pollution, 219(1–4), 191–201. https://doi.org/10.1007/s11270-010-0697-1spa
dc.relation.referencesGuerra-Rodríguez, S., Rodríguez, E., Singh, D. N., & Rodríguez-Chueca, J. (2018). Assessment of sulfate radical-based advanced oxidation processes for water and wastewater treatment: A review. Water (Switzerland), 10(12). https://doi.org/10.3390/w10121828spa
dc.relation.referencesHalfhide, T., Dalrymple, O. K., Wilkie, A. C., Trimmer, J., Gillie, B., Udom, I., Zhang, Q., & Ergas, S. J. (2015). Growth of an Indigenous Algal Consortium on Anaerobically Digested Municipal Sludge Centrate: Photobioreactor Performance and Modeling. Bioenergy Research, 8(1), 249–258. https://doi.org/10.1007/s12155-014-9513-xspa
dc.relation.referencesImase, M., Watanabe, K., Aoyagi, H., & Tanaka, H. (2008). Construction of an artificial symbiotic community using a Chlorella-symbiont association as a model. FEMS Microbiology Ecology, 63(3), 273–282. https://doi.org/10.1111/j.1574-6941.2007.00434.xspa
dc.relation.referencesJebali, A., Acién, F. G., Gómez, C., Fernández-Sevilla, J. M., Mhiri, N., Karray, F., Dhouib, A., Molina-Grima, E., & Sayadi, S. (2015). Selection of native Tunisian microalgae for simultaneous wastewater treatment and biofuel production. Bioresource Technology, 198, 424–430. https://doi.org/10.1016/j.biortech.2015.09.037spa
dc.relation.referencesJi, F., Zhou, Y., Pang, A., Ning, L., Rodgers, K., Liu, Y., & Dong, R. (2015). Fed-batch cultivation of Desmodesmus sp. in anaerobic digestion wastewater for improved nutrient removal and biodiesel production. Bioresource Technology, 184, 116–122. https://doi.org/10.1016/j.biortech.2014.09.144spa
dc.relation.referencesKumar, A., & Bera, S. (2020). Revisiting nitrogen utilization in algae: A review on the process of regulation and assimilation. Bioresource Technology Reports, 12(October), 100584. https://doi.org/10.1016/j.biteb.2020.100584spa
dc.relation.referencesLarsdotter, K. (2006). Microalgae for phosphorus removal from wastewater in a Nordic climate (p. 36).spa
dc.relation.referencesLavrinovics, A., Murby, F., Ziverte, E., Mezule, L., & Juhna, T. (2021). Increasing Phosphorus Uptake Efficiency by Phosphorus-Starved Microalgae for Municipal. Microorganisms, 9.spa
dc.relation.referencesLin, Y., Koutsospyros, A., Braida, W., Christodoulatos, C., Terracciano, A., & Su, T. L. (2022). MicroAlgal Biofilm Reactor (MABR) – Evaluation of Biomass Support Materials and Nitrate Removal Performance. Environmental Processes, 9(2). https://doi.org/10.1007/s40710-022-00574-yspa
dc.relation.referencesMiranda, F. (2018). Purificación de agua : eliminación de nitratos , nitritos y compuestos orgánicos utilizando catalizadores en polvo y estructurados. In Universidad Nacional Del Litoral (Vol. 1, Issue 4). www.univeersidaddellit.comspa
dc.relation.referencesMohsenpour, S. F., Hennige, S., Willoughby, N., Adeloye, A., & Gutierrez, T. (2021). Integrating micro-algae into wastewater treatment: A review. Science of the Total Environment, 752(September 2020), 142168. https://doi.org/10.1016/j.scitotenv.2020.142168spa
dc.relation.referencesMousavi, S. A., Sarshad Ghahfarokhi, M., & Soltani Koupaei, S. (2020). Negative impacts of nomadic livestock grazing on common rangelands’ function in soil and water conservation. Ecological Indicators, 110(November 2019), 105946. https://doi.org/10.1016/j.ecolind.2019.105946spa
dc.relation.referencesMtaki, K., Kyewalyanga, M. S., & Mtolera, M. S. P. (2021). Supplementing wastewater with NPK fertilizer as a cheap source of nutrients in cultivating live food (Chlorella vulgaris). Annals of Microbiology, 71(1). https://doi.org/10.1186/s13213-020-01618-0spa
dc.relation.referencesNur, M. M. A., & Buma, A. G. J. (2019). Opportunities and Challenges of Microalgal Cultivation on Wastewater, with Special Focus on Palm Oil Mill Effluent and the Production of High Value Compounds. Waste and Biomass Valorization, 10(8), 2079–2097. https://doi.org/10.1007/s12649-018-0256-3spa
dc.relation.referencesPark, S., Kim, J., Park, Y., Son, S., Cho, S., Kim, C., & Lee, T. (2017). Comparison of batch cultivation strategies for cost-effective biomass production of Micractinium inermum NLP-F014 using a blended wastewater medium. Bioresource Technology, 234, 432–438. https://doi.org/10.1016/j.biortech.2017.03.074spa
dc.relation.referencesPonte, W. M. L., Talaverano, N. Z., Huaynate, A. O., Cafferata, E. A., & Gallegos, M. C. (2022). Efficiency of microalgae cultures for nutrient removal from domestic wastewater. Advances in Environmental Technology, 8(1), 73–81. https://doi.org/10.22104/aet.2022.5069.1374spa
dc.relation.referencesRengifo, A. L., Peña, E., & Benitez, N. (2012). Efecto de la asociación alga-bacteria Bostrychia calliptera (Rhodomelaceae) en el porcentaje de remoción de cromo en laboratorio. Biología Tropical, 60(September), 1055–1064.spa
dc.relation.referencesRoss, M. E., Davis, K., McColl, R., Stanley, M. S., Day, J. G., & Semião, A. J. C. (2018). Nitrogen uptake by the macro-algae Cladophora coelothrix and Cladophora parriaudii: Influence on growth, nitrogen preference and biochemical composition. Algal Research, 30(December 2017), 1–10. https://doi.org/10.1016/j.algal.2017.12.005spa
dc.relation.referencesSepehri, A., Sarrafzadeh, M. H., & Avateffazeli, M. (2020). Interaction between Chlorella vulgaris and nitrifying-enriched activated sludge in the treatment of wastewater with low C/N ratio. Journal of Cleaner Production, 247. https://doi.org/10.1016/j.jclepro.2019.119164spa
dc.relation.referencesSu, Y. (2020). Revisiting carbon, nitrogen, and phosphorus metabolisms in microalgae for wastewater treatment. Science of the Total Environment, 144590. https://doi.org/10.1016/j.scitotenv.2020.144590spa
dc.relation.referencesSu, Y., Mennerich, A., & Urban, B. (2011). Municipal wastewater treatment and biomass accumulation with a wastewater-born and settleable algal-bacterial culture. Water Research, 45(11), 3351–3358. https://doi.org/10.1016/j.watres.2011.03.046spa
dc.relation.referencesTaiz, L., Zeiger, E., Møller, I. M., & Murphy, A. (2014). Physiology Plants. In Plants Physiology (Quinta). Sinauer Associates Inc. http://www.sinauer.com/media/wysiwyg/tocs/PlantPhysiology5.pdfspa
dc.relation.referencesTakáčová, A., Smolinská, M., Semerád, M., & Matúš, P. (2015). DEGRADATION OF BTEX BY MICROALGAE Parachlorella kessleri. Petroleum & Coal, 57(2), 101–107.spa
dc.relation.referencesTorres-Valenzuela, L. S., Sanín-Villarrea, A., Arango-Ramírez, A., & Serna-Jiménez, J. A. (2019). Caracterización fisicoquímica y microbiológica de aguas mieles del beneficio del café. Revista ION, 32(2), 59–66. https://doi.org/10.18273/revion.v32n2-2019006spa
dc.relation.referencesWang, Y., Wang, S., Sun, L., Sun, Z., & Li, D. (2020). Screening of a Chlorella-bacteria consortium and research on piggery wastewater purification. Algal Research, 47(October 2019), 101840. https://doi.org/10.1016/j.algal.2020.101840spa
dc.relation.referencesWatanabe, K., Takihana, N., Aoyagi, H., Hanada, S., Watanabe, Y., Ohmura, N., Saiki, H., & Tanaka, H. (2005). Symbiotic association in Chlorella culture. FEMS Microbiology Ecology, 51(2), 187–196. https://doi.org/10.1016/j.femsec.2004.08.004spa
dc.relation.referencesZhang, H., Chen, X., Song, L., Liu, S., & Li, P. (2022). The mechanism by which Enteromorpha Linza polysaccharide promotes Bacillus subtilis growth and nitrate removal. International Journal of Biological Macromolecules, 209(PA), 840–849. https://doi.org/10.1016/j.ijbiomac.2022.04.082spa
dc.relation.referencesAndersen, R. A. (2005). Algal Culturing Techniques. In Elsevier (Vol. 1).spa
dc.relation.referencesAyala, F. (2017). Búsqueda de compuestos con posible actividad a partir de cianobacterias marinas del Caribe colombiano. Tesis de Maestría.spa
dc.relation.referencesBayona Maldonado, L. M. (2014). Estudio químico y evaluación de la actividad citotóxica de metabolitos secundarios provenientes de cianobacterias bentónicas arrecifales del Caribe colombiano. http://www.bdigital.unal.edu.co/20433/spa
dc.relation.referencesBecerra, L. (2017). Evaluación del perfil metabólico de un consorcio de cianobacterias bentónicas arrecifales del Caribe colombiano bajo condiciones de cultivo. (Tesis de Maestría). https://repositorio.unal.edu.co/handle/unal/62324spa
dc.relation.referencesCano, J. (2018). Conservación in vitro y cultivo de Cyanoprocariotas bentónicas arrecifales de Providencia y Santa Catalina Islas, Colombia. Tesis de Maestría. In Universidad Nacional de Colombia.spa
dc.relation.referencesCharitos, G., Trafalis, D. T., Dalezis, P., Potamitis, C., Sarli, V., Zoumpoulakis, P., & Camoutsis, C. (2019). Synthesis and anticancer activity of novel 3,6-disubstituted 1,2,4-triazolo-[3,4-b]-1,3,4-thiadiazole derivatives. Arabian Journal of Chemistry, 12(8), 4784–4794. https://doi.org/10.1016/j.arabjc.2016.09.015spa
dc.relation.referencesCosta, M., Garcia, M., Costa-Rodrigues, J., Costa, M. S., Ribeiro, M. J., Fernandez, M. H., Barros, P., Barreiro, A., Vasconcelos, V., & Martins, R. (2014). Exploring Bioactive Properties of Marine Cyanobacteria Isolated from the Portuguese Coast: High Potential as a Source of Anticancer Compounds. Marine Drugs, 12(December 2013), 98–114. https://doi.org/10.3390/md12010098spa
dc.relation.referencesFerreira, L., Morais, J., Preto, M., Silva, R., Urbatzka, R., Vasconcelos, V., & Reis, M. (2021). Uncovering the bioactive potential of a cyanobacterial natural products library aided by untargeted metabolomics. Marine Drugs, 19(11). https://doi.org/10.3390/md19110633spa
dc.relation.referencesFerreira, L., Morais, J., Vasconcelos, V., & Reis, M. (2022). Discovery of a Novel Potent Cytotoxic Compound from Leptothoe sp. 778069, 46. https://doi.org/10.3390/blsf2022014046spa
dc.relation.referencesGirão, M., Ribeiro, I., Ribeiro, T., Azevedo, I. C., Pereira, F., Urbatzka, R., Leão, P. N., & Carvalho, M. F. (2019). Actinobacteria isolated from laminaria ochroleuca: A source of new bioactive compounds. Frontiers in Microbiology, 10(APR), 1–13. https://doi.org/10.3389/fmicb.2019.00683spa
dc.relation.referencesGrkovic, T., Akee, R. K., Thornburg, C. C., Trinh, S. K., Britt, J. R., Harris, M. J., Evans, J. R., Kang, U., Ensel, S., Henrich, C. J., Gustafson, K. R., Schneider, J. P., & O’Keefe, B. R. (2020). National Cancer Institute (NCI) Program for Natural Products Discovery: Rapid Isolation and Identification of Biologically Active Natural Products from the NCI Prefractionated Library. ACS Chemical Biology, 15(4), 1104–1114. https://doi.org/10.1021/acschembio.0c00139spa
dc.relation.referencesGuesmi, F., Saidi, I., Abbassi, R., Saidani, M., Hfaiedh, N., & Landoulsi, A. (2022). Therapeutic potential of second degree’s skin burns by topical dressing of Teucrium ramosissimum that promotes re-epithelialization. Dermatologic Therapy, 35(5), 1–9. https://doi.org/10.1111/dth.15428spa
dc.relation.referencesHassouani, M., Sabour, B., Belattmania, Z., Atouani, S. El, Reani, A., Ribeiro, T., Ramos, V., Preto, M., Costa, P. M., Urbatzka, R., Leão, P., & Vasconcelos, V. (2017). In vitro anticancer , antioxidant and antimicrobial potential of Lyngbya aestuarii ( Cyanobacteria ) from the Atlantic coast of Morocco. 2508, 4923–4933.spa
dc.relation.referencesKlinngam, W., Rungkamoltip, P., Thongin, S., Joothamongkhon, J., Khumkhrong, P., Khongkow, M., Namdee, K., Tepaamorndech, S., Chaikul, P., Kanlayavattanakul, M., Lourith, N., Piboonprai, K., Ruktanonchai, U., Asawapirom, U., & Iempridee, T. (2022). Polymethoxyflavones from Kaempferia parviflora ameliorate skin aging in primary human dermal fibroblasts and ex vivo human skin. Biomedicine and Pharmacotherapy, 145(September 2021), 112461. https://doi.org/10.1016/j.biopha.2021.112461spa
dc.relation.referencesLorenzi, A. S., Bonatelli, M. L., Varani, A. M., Quecine, M. C., & Bittencourt-Oliveira, M. do C. (2022). Draft genome sequence of the cyanobacterium Sphaerospermopsis aphanizomenoides BCCUSP55 from the Brazilian semiarid region reveals potential for anti-cancer applications. Archives of Microbiology, 204(1), 1–7. https://doi.org/10.1007/s00203-021-02602-1spa
dc.relation.referencesParida, S., Satybrata, D., Bhanaja, C., Sahoo, B., & Bhanja, C. (2022). In Vitro Screening of Antioxidant, Antimicrobial and Anticancer Activities of Cyanobacteria Found Across Odisha Coast, India SATYABRATA DASH Maharaja Sriram Chandra Bhanja Deo University. Research Square, 1–19. https://doi.org/10.21203/rs.3.rs-1272821/v1spa
dc.relation.referencesPrato-Valderrama, J. A. (2013). Afloramientos de cianobacterias marinas bentónicas en San Andrés, Providencia y las Islas del Rosario (Caribe colombiano): Caracterización y evaluación de su posible papel ecológico.spa
dc.relation.referencesQuintana Bulla, J. I. (2011). Evaluación de la toxicidad y del potencial bioactivo de afloramientos de cianobacterias bentónicas arrecifales del Caribe Colombiano / Evaluation of toxicity and bioactive potential of benthic marine cyanobacteria from Colombian Caribbean Sea. http://www.bdigital.unal.edu.co/8094/spa
dc.relation.referencesRobles-Bañuelos, B., Durán-Riveroll, L. M., Rangel-López, E., Pérez-López, H. I., & González-Maya, L. (2022). Marine Cyanobacteria as Sources of Lead Anticancer Compounds: A Review of Families of Metabolites with Cytotoxic, Antiproliferative, and Antineoplastic Effects. Molecules, 27(15). https://doi.org/10.3390/molecules27154814spa
dc.relation.referencesSousa, M. L. da S. (2020). Cyanobacterial bioactive metabolites for anticancer drug discovery: Characterization of new compounds and molecular mechanisms in physiologically relevant 3D cell culture. https://repositorio-aberto.up.pt/handle/10216/126888spa
dc.relation.referencesSousa, M. L., Preto, M., Vasconcelos, V., Linder, S., & Urbatzka, R. (2019). Antiproliferative effects of the natural oxadiazine nocuolin A are associated with impairment of mitochondrial oxidative phosphorylation. Frontiers in Oncology, 9(APR), 1–13. https://doi.org/10.3389/fonc.2019.00224spa
dc.relation.referencesSousa, M. L., Ribeiro, T., Vasconcelos, V., Linder, S., & Urbatzka, R. (2020). Portoamides A and B are mitochondrial toxins and induce cytotoxicity on the proliferative cell layer of in vitro microtumours. Toxicon, 175, 49–56. https://doi.org/10.1016/j.toxicon.2019.12.159spa
dc.relation.referencesGkotsis, P., Peleka, E., & Zouboulis, A. (2020). The use of natural minerals in a pilot-scale MBR for membrane fouling mitigation. Separations, 7(2), 1–13. https://doi.org/10.3390/separations7020024spa
dc.relation.referencesSuraraksa, B., Nopharatana, A., Chaiprasert, P., Bhumiratana, S., & Tanticharoen, M. (2017). Effect of Substrate Feeding Concentration on Initial Biofilm Development in Anaerobic Hybrid Reactor. ASEAN Journal on Science and Technology for Development, 20(3&4), 361–372. https://doi.org/10.29037/ajstd.357spa
dc.relation.referencesCegłowska, M., Kwiecień, P., Szubert, K., Brzuzan, P., Florczyk, M., Edwards, C., Kosakowska, A., & Mazur-Marzec, H. (2022). Biological Activity and Stability of Aeruginosamides from Cyanobacteria. Marine Drugs, 20(2). https://doi.org/10.3390/md20020093spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.agrovocDemanda bioquímica de oxígenospa
dc.subject.agrovocBiochemical oxygen demandeng
dc.subject.ddc570 - Biología::579 - Historia natural microorganismos, hongos, algasspa
dc.subject.ddc620 - Ingeniería y operaciones afines::628 - Ingeniería sanitariaspa
dc.subject.ddc570 - Biología::572 - Bioquímicaspa
dc.subject.decsCianobacteriasspa
dc.subject.decsCyanobacteriaeng
dc.subject.decsAnticarcinogenic Agentseng
dc.subject.decsAnticarcinógenosspa
dc.subject.lembMicrobiología de aguas residualesspa
dc.subject.lembSewage - microbiologyeng
dc.subject.otherMetabolitos microbianosspa
dc.subject.otherMicrobial metaboliteseng
dc.subject.proposalBiotecnologíaspa
dc.subject.proposalCianobacteriasspa
dc.subject.proposalMetabolitos primariosspa
dc.subject.proposalDepuración de aguasspa
dc.subject.proposalAnticancerígenosspa
dc.subject.proposalHCT116zho
dc.subject.proposalMG063spa
dc.subject.proposalPromotores de crecimientospa
dc.subject.proposalBiotechnologyeng
dc.subject.proposalCyanobacteriaeng
dc.subject.proposalWastewater treatmenteng
dc.subject.proposalAnticancereng
dc.subject.proposalGrowth promoterseng
dc.subject.wikidataSynechococcaleseng
dc.subject.wikidataOscillatorialeseng
dc.titlePotencial biotecnológico de Synechococcales y Oscillatoriales (cyanobacteria) colombianasspa
dc.title.translatedBiotechnological potential of colombian Synechococcales and Oscillatoriales (cyanobacteria)eng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1144054446.2023.pdf
Tamaño:
1.47 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ciencias-Biología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: