Potencial biotecnológico de Synechococcales y Oscillatoriales (cyanobacteria) colombianas
dc.contributor.advisor | Montenegro Ruiz, Luis Carlos | |
dc.contributor.author | Darwich Cedeño, Mohamed Toufic | |
dc.contributor.cvlac | Darwich Cedeño, Mohamed Toufic [0000024464] | spa |
dc.contributor.orcid | Darwich Cedeño, Mohamed Toufic [000900060989433X] | spa |
dc.contributor.researchgroup | Fisiología del Estrés y Biodiversidad en Plantas y Microorganismos | spa |
dc.coverage.country | Colombia | |
dc.date.accessioned | 2024-07-24T20:54:48Z | |
dc.date.available | 2024-07-24T20:54:48Z | |
dc.date.issued | 2023 | |
dc.description | ilustraciones, diagramas, fotografías | spa |
dc.description.abstract | Las cianobacterias son de los organismos más antiguos del planeta, por tanto, han soportado múltiples presiones ambientales y biológicas que han impulsado a la aparición de moléculas que han garantizado su supervivencia. Partiendo de lo anterior, se buscó realizar una caracterización biotecnológica de las cianobacterias de la Colección de Algas y Cianobacterias LAUN, de la Universidad Nacional de Colombia. Se identificaron las cepas mediante análisis moleculares encontrando 7 posibles géneros nuevos. Se analizó la producción de metabolitos primarios, teniendo que la cepa LAUN 81 (Synechoccocales Cyanobacteria) presenta la mayor concentración de proteína (19.04% de proteína soluble), la cepa LAUN 34 (Pleurocapsa sp.) presenta la mayor concentración de carbohidratos (11.73% de carbohidratos solubles) y la cepa LAUN 74 (Synechoccocales Cyanobacteria) presenta la mayor concentración de lípidos (40.5% de lípidos del peso total de biomasa). Por otra parte, la cepa LAUN 71 (Leptolyngbya sp.) presentó los mejores porcentajes de remoción de contaminantes en agua residual sintética, 77.5% de nitratos y 98% de fosfatos, alcanzó un 85.40% de disminución de la DQO y 94.5% de la DBO5. Finalmente, se realizó el fraccionamiento por HPLC de extractos metanólicos de los géneros representativos de las cepas LAUN y se probaron las fracciones contra células cancerígenas de cáncer colorectal (HCT116) y osteosarcoma (MG063), teniendo que la fracción “D” de LAUN33 (Baaleninema sp.) y la fracción “A” de LAUN 74 la mayor toxicidad con rendimientos de 33.18% y 34.32% de supervivencia celular respectivamente, contra la línea HCT116 y las fracciones E y F de la cepa LAUN33, la fracción H de LAUN 55 (Synechoccocales Cyanobacteria) y la fracción F de LAUN74 presentaron la mayor toxicidad con rendimientos de 39.28%, 38.94%, 38.28% y 38.42% de supervivencia celular respectivamente, contra la línea MG063 (Texto tomado de la fuente). | spa |
dc.description.abstract | Cyanobacteria are among the oldest organisms on the planet; therefore, they have endured multiple environmental and biological pressures that have led to the appearance of molecules that guarantee their survival. Based on this, we sought to carry out a biotechnological characterization of the cyanobacteria from the LAUN Algae and Cyanobacteria Collection of the National University of Colombia. The strains were identified through molecular analysis, which revealed 7 possible new genera. The production of primary metabolites was analyzed, and it was found that the strain LAUN 81 (Synechoccocales Cyanobacteria) presents the highest concentration of protein (19.04% of soluble protein), the strain LAUN 34 (Pleurocapsa sp.) presents the highest concentration of carbohydrates (11.73% of soluble carbohydrates), and the strain LAUN 74 (Synechoccocales Cyanobacteria) presents the highest concentration of lipids (40.5% lipids of the total weight of biomass). On the other hand, the strain LAUN 71 (Leptolyngbya sp.) demonstrated the best percentages of pollutant removal in synthetic wastewater, with 77.5% nitrate and 98% phosphate removal, reaching an 85.40% reduction in COD (Chemical Oxygen Demand) and 94.5% reduction of the BOD5 (Biochemical Oxygen Demand). Finally, HPLC fractionation of methanolic extracts of the representative genera of the LAUN strains was carried out. The fractions were then tested against colorectal cancer cells (HCT116) and osteosarcoma cells (MG063). Fraction "D" of LAUN33 (Baaleninema sp.) and fraction "A" of LAUN 74 showed the highest toxicity with cell survival yields of 33.18% and 34.32%, respectively, against the HCT116 line. On the other hand, fractions E and F of strain LAUN33, fraction H of LAUN 55 (Synechoccocales Cyanobacteria), and fraction F of LAUN 74 presented the highest toxicity with cell survival yields of 39.28%, 38.94%, 38.28%, and 38.42%, respectively, against the MG063 line. | eng |
dc.description.degreelevel | Doctorado | spa |
dc.description.degreename | Doctor en Ciencias - Biología | spa |
dc.description.researcharea | Biotecnología | spa |
dc.format.extent | xvii, 125 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/86613 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias - Doctorado en Ciencias - Biología | spa |
dc.relation.references | Abed, R. M. M., Dobretsov, S., & Sudesh, K. (2009). Applications of cyanobacteria in biotechnology. Journal of Applied Microbiology, 106(1), 1–12. https://doi.org/10.1111/j.1365-2672.2008.03918.x | spa |
dc.relation.references | Adesalu, T., & Kuti, F. (2020). Phytochemicals , total lipids and molecular characterization of West African strain of Oscillatoria sp . ( Cyanobacterium ) isolated from Ceratophyllum demersum L . ( Hornwort ). Journal of Pharmacognosy and Phytochemistry, 9(3), 18–25. | spa |
dc.relation.references | Ahmad, I. Z. (2022). The usage of Cyanobacteria in wastewater treatment: prospects and limitations. Letters in Applied Microbiology, 75(4), 718–730. https://doi.org/10.1111/lam.13587 | spa |
dc.relation.references | Allied Market Research. (Mayo de 2018). Global seaweed market opportunities and forecast 2018-2024. https://www.alliedmarketresearch.com/seaweed-market | spa |
dc.relation.references | Allied Market Research. (Mayo de 2018). Seaweed Market by Product and Application - Global Opportunity Analysis and Industry Forecast, 2018-2024. https://www.researchandmarkets.com/reports/4580612/seaweed-market-by-product-and-application | spa |
dc.relation.references | Arencibia, D. F., Fernández Rosario, A., & Gámez Menéndez, R. (2014). Métodos generales de conservación de microorganismos. January 2008. | spa |
dc.relation.references | Ayala, F. (2017). Búsqueda de compuestos con posible actividad a partir de cianobacterias marinas del Caribe colombiano. Tesis de Maestría. | spa |
dc.relation.references | Bayona Maldonado, L. M. (2014). Estudio químico y evaluación de la actividad citotóxica de metabolitos secundarios provenientes de cianobacterias bentónicas arrecifales del Caribe colombiano. http://www.bdigital.unal.edu.co/20433/ | spa |
dc.relation.references | Becerra, L. (2017). Evaluación del perfil metabólico de un consorcio de cianobacterias bentónicas arrecifales del Caribe colombiano bajo condiciones de cultivo. (Tesis de Maestría). https://repositorio.unal.edu.co/handle/unal/62324 | spa |
dc.relation.references | Bioeconomía (Enero 17 de 2018). Pronostican un mercado mundial de algas de USD 3,318 millones para 2022., https://www.bioeconomia.info/2018/01/17/pronostican_mercado_mundial_de_algas_de_usd_3318_millones_para_2022/ | spa |
dc.relation.references | Blunt, J., Copp, B., Keyzers, R., Munro, M., & Prinsep, M. (2009). Marine natural products. Natural Product Reports, 26(2), 170–244. https://doi.org/10.1016/j.bjp.2015.09.004 | spa |
dc.relation.references | Bösch, N., Mariana, B., Greczmiel, U., Morinaka, B., Gugger, M., Oxenius, A., Vagstad, A. L., & Piel, J. (2020). Landornamides, antiviral ornithine‐containing ribosomal peptides discovered by proteusin mining. Angewandte Chemie. https://doi.org/10.1002/ange.201916321 | spa |
dc.relation.references | Bravakos, P., Kotoulas, G., Skaraki, K., Pantazidou, A., & Economou-Amilli, A. (2016). A polyphasic taxonomic approach in isolated strains of Cyanobacteria from thermal springs of Greece. Molecular Phylogenetics and Evolution, 98, 147–160. https://doi.org/10.1016/j.ympev.2016.02.009 | spa |
dc.relation.references | Brito, Â., Gaifem, J., Ramos, V., Glukhov, E., Dorrestein, P. C., Gerwick, W. H., Vasconcelos, V. M., Mendes, M. V., & Tamagnini, P. (2015). Bioprospecting Portuguese Atlantic coast cyanobacteria for bioactive secondary metabolites reveals untapped chemodiversity. Algal Research, 9, 218–226. https://doi.org/10.1016/j.algal.2015.03.016 | spa |
dc.relation.references | Cai, T., Park, S. Y., & Li, Y. (2013). Nutrient recovery from wastewater streams by microalgae: Status and prospects. Renewable and Sustainable Energy Reviews, 19, 360–369. https://doi.org/10.1016/j.rser.2012.11.030 | spa |
dc.relation.references | Cano, J. (2018). Conservación in vitro y cultivo de Cyanoprocariotas bentónicas arrecifales de Providencia y Santa Catalina Islas, Colombia. Tesis de Maestría. In Universidad Nacional de Colombia. | spa |
dc.relation.references | Carrasco-Reinado, R., Escobar, A., Carrera, C., Guarnizo, P., Vallejo, R. A., & Fernández-Acero, F. J. (2019). Valorization of microalgae biomass as a potential source of high-value sugars and polyalcohols. Lwt - Food Science and Technology, 114(January 2019), 108385. https://doi.org/10.1016/j.lwt.2019.108385 | spa |
dc.relation.references | Cavalier-Smith, T. (1998). A revised six-kingdom system of life. Biological Reviews of the Cambridge Philosophical Society, 73(3), 203–266. https://doi.org/10.1017/s0006323198005167 | spa |
dc.relation.references | De Vero, L., Boniotti, M. B., Budroni, M., Buzzini, P., Cassanelli, S., Comunian, R., Gullo, M., Logrieco, A. F., Mannazzu, I., Musumeci, R., Perugini, I., Perrone, G., Pulvirenti, A., Romano, P., Turchetti, B., & Varese, G. C. (2019). Preservation, characterization and exploitation of microbial biodiversity: The perspective of the italian network of culture collections. Microorganisms, 7(12). https://doi.org/10.3390/microorganisms7120685 | spa |
dc.relation.references | del Cerro-Sánchez, C., García-López, J. L., & Galán-Dicilia, B. (2017). Desarrollo de herramientas moleculares para la producción de policétidos y péptidos no ribosomales. | spa |
dc.relation.references | Demay, J., Bernard, C., Reinhardt, A., & Marie, B. (2019). Natural products from cyanobacteria: Focus on beneficial activities. In Marine Drugs (Vol. 17, Issue 6). MDPI AG. https://doi.org/10.3390/md17060320 | spa |
dc.relation.references | El-Sheekh, M., El-Dalatony, M. M., Thakur, N., Zheng, Y., & Salama, E. S. (2022). Role of microalgae and cyanobacteria in wastewater treatment: genetic engineering and omics approaches. International Journal of Environmental Science and Technology, 19(3), 2173–2194. https://doi.org/10.1007/s13762-021-03270-w | spa |
dc.relation.references | Figueras, E., Borbély, A., Ismail, M., Frese, M., & Sewald, N. (2018). Novel unit B cryptophycin analogues as payloads for targeted therapy. Beilstein Journal of Organic Chemistry, 14, 1281–1286. https://doi.org/10.3762/bjoc.14.109 | spa |
dc.relation.references | Finking, R., & Marahiel, M. A. (2004). Biosynthesis of nonribosomal peptides. Annual Review of Microbiology, 58, 453–488. https://doi.org/10.1146/annurev.micro.58.030603.123615 | spa |
dc.relation.references | Forero Cujiño, M. A. (2019). Determinación de Cyanoprokaryotas planctónicas y su potencial en la producción de cianotoxinas en un embalse de la sabana de Bogotá - Colombia. | spa |
dc.relation.references | Fujii, I., Watanabe, A., Sankawa, U., & Ebizuka, Y. (2001). Identification of Claisen cyclase domain in fungal polyketide synthase WA, a naphthopyrone synthase of Aspergillus nidulans. Chemistry and Biology, 8(2), 189–197. https://doi.org/10.1016/S1074-5521(00)90068-1 | spa |
dc.relation.references | Gkelis, S., Panou, M., Konstantinou, D., Apostolidis, P., Kasampali, A., Papadimitriou, S., Kati, D., Di Lorenzo, G. M., Ioakeim, S., Zervou, S. K., Christophoridis, C., Triantis, T. M., Kaloudis, T., Hiskia, A., & Arsenakis, M. (2019). Diversity, cyanotoxin production, and bioactivities of cyanobacteria isolated from freshwaters of greece. Toxins, 11(8). https://doi.org/10.3390/toxins11080436 | spa |
dc.relation.references | González-Balderas, R. M., Velásquez-Orta, S. B., Valdez-Vazquez, I., & Orta Ledesma, M. T. (2020). Intensified recovery of lipids, proteins, and carbohydrates from wastewater-grown microalgae Desmodesmus sp. by using ultrasound or ozone. Ultrasonics Sonochemistry, 62, 104852. https://doi.org/10.1016/j.ultsonch.2019.104852 | spa |
dc.relation.references | Goyena, R., & Fallis, A. . (2019). The Molecular Biology of Cyanobacteria. In Journal of Chemical Information and Modeling (Vol. 53, Issue 9). https://doi.org/10.1017/CBO9781107415324.004 | spa |
dc.relation.references | Grossmann, L., Hinrichs, J., & Weiss, J. (2020). Cultivation and downstream processing of microalgae and cyanobacteria to generate protein-based technofunctional food ingredients. Critical Reviews in Food Science and Nutrition, 60(17), 2961–2989. https://doi.org/10.1080/10408398.2019.1672137 | spa |
dc.relation.references | Hachicha, R., Elleuch, F., Hlima, H. Ben, Dubessay, P., de Baynast, H., Delattre, C., Pierre, G., Hachicha, R., Abdelkafi, S., Michaud, P., & Fendri, I. (2022). Biomolecules from Microalgae and Cyanobacteria: Applications and Market Survey. Applied Sciences (Switzerland), 12(4). https://doi.org/10.3390/app12041924 | spa |
dc.relation.references | Hamida, R. S., Abdelmeguid, N. E., Ali, M. A., Bin-Meferij, M. M., & Khalil, M. I. (2020). <p>Synthesis of Silver Nanoparticles Using a Novel Cyanobacteria <em>Desertifilum</em> sp. extract: Their Antibacterial and Cytotoxicity Effects</p>. International Journal of Nanomedicine, Volume 15, 49–63. https://doi.org/10.2147/ijn.s238575 | spa |
dc.relation.references | Hitchcock, A., Hunter, C. N., & Canniffe, D. P. (2020). Progress and challenges in engineering cyanobacteria as chassis for light-driven biotechnology. Microbial Biotechnology, 13(2), 363–367. https://doi.org/10.1111/1751-7915.13526 | spa |
dc.relation.references | Hohmann-Marriott, M. F., & Blankenship, R. E. (2011). Evolution of photosynthesis. Annual Review of Plant Biology, 62, 515–548. https://doi.org/10.1146/annurev-arplant-042110-103811 | spa |
dc.relation.references | İlter, I., Akyıl, S., Demirel, Z., Koç, M., Conk-Dalay, M., & Kaymak-Ertekin, F. (2018). Optimization of phycocyanin extraction from Spirulina platensis using different techniques. Journal of Food Composition and Analysis, 70(April), 78–88. https://doi.org/10.1016/j.jfca.2018.04.007 | spa |
dc.relation.references | Jaramillo-martínez, S., & González, M. E. (2018). Obtención de un biopolímero a base de exopolisacáridos extraídos de cultivos de Chlorella vulgaris. 1–3. https://doi.org/10.1016/j.rser.2014.04.007.2 | spa |
dc.relation.references | Jones, M. R., Pinto, E., Torres, M. A., Dörr, F., Mazur-Marzec, H., Szubert, K., Tartaglione, L., Dell’Aversano, C., Miles, C. O., Beach, D. G., McCarron, P., Sivonen, K., Fewer, D. P., Jokela, J., & Janssen, E. M. L. (2020). Comprehensive database of secondary metabolites from cyanobacteria. BioRxiv, C, 1–16. https://doi.org/10.1101/2020.04.16.038703 | spa |
dc.relation.references | Kamravamanesh, D., Kiesenhofer, D., Fluch, S., Lackner, M., & Herwig, C. (2019). Scale-up challenges and requirement of technology-transfer for cyanobacterial poly (3-hydroxybutyrate) production in industrial scale. International Journal of Biobased Plastics, 1(1), 60–71. https://doi.org/10.1080/24759651.2019.1688604 | spa |
dc.relation.references | Kanaga, S., Silambarasan, T., Malini, E., Mangayarkarasi, S., & Dhandapani, R. (2022). Optimization of biomass production from Chlorella vulgaris by response surface methodology and study of the fatty acid profile for biodiesel production: A green approach. Biocatalysis and Agricultural Biotechnology, 45(October), 102505. https://doi.org/10.1016/j.bcab.2022.102505 | spa |
dc.relation.references | Komárek, J. (2019). Quo vadis, taxonomy of cyanobacteria (2019). Fottea, 20(1), 104–110. https://doi.org/10.5507/fot.2019.020 | spa |
dc.relation.references | Konstantinou, D., Mavrogonatou, E., Zervou, S. K., Giannogonas, P., & Gkelis, S. (2020). Bioprospecting Sponge-Associated Marine Cyanobacteria to Produce Bioactive Compounds. Toxins, 12(2). https://doi.org/10.3390/toxins12020073 | spa |
dc.relation.references | Kultschar, B., Dudley, E., Wilson, S., & Llewellyn, C. A. (2019). Intracellular and extracellular metabolites from the cyanobacterium chlorogloeopsis fritschii, pcc 6912, during 48 hours of uv-b exposure. Metabolites, 9(74). https://doi.org/10.3390/metabo9040074 | spa |
dc.relation.references | Kumar, A., & Bera, S. (2020). Revisiting nitrogen utilization in algae: A review on the process of regulation and assimilation. Bioresource Technology Reports, 12(October), 100584. https://doi.org/10.1016/j.biteb.2020.100584 | spa |
dc.relation.references | Kumar, J., Singh, D., Tyagi, M. B., & Kumar, A. (2018). Cyanobacteria: Applications in Biotechnology. In Cyanobacteria: From Basic Science to Applications (Vol. 7421). Elsevier Inc. https://doi.org/10.1016/B978-0-12-814667-5.00016-7 | spa |
dc.relation.references | Kurmayer, R., Entfellner, E., Weisse, T., Offterdinger, M., Rentmeister, A., & Deng, L. (2020). Chemically labeled toxins or bioactive peptides show a heterogeneous intracellular distribution and low spatial overlap with autofluorescence in bloom-forming cyanobacteria. Scientific Reports, 10(1), 1–15. https://doi.org/10.1038/s41598-020-59381-w | spa |
dc.relation.references | Larsdotter, K. (2006). Microalgae for phosphorus removal from wastewater in a Nordic climate (p. 36). | spa |
dc.relation.references | Lavrinovics, A., Murby, F., Ziverte, E., Mezule, L., & Juhna, T. (2021). Increasing Phosphorus Uptake Efficiency by Phosphorus-Starved Microalgae for Municipal. Microorganisms, 9. | spa |
dc.relation.references | Li, Z., Zhang, L., & Zhao, Z. (2021). Malyngamide F Possesses Anti-Inflammatory and Antinociceptive Activity in Rat Models of Inflammation. Pain Research and Management, 2021. https://doi.org/10.1155/2021/4919391 | spa |
dc.relation.references | Lotfi, H., Sheervalilou, R., & Zarghami, N. (2018). An update of the recombinant protein expression systems of Cyanovirin-N and challenges of preclinical development. BioImpacts, 8(2), 139–151. https://doi.org/10.15171/bi.2018.16 | spa |
dc.relation.references | Manogar, P., Vijayakumar, S., Rajalakshmi, S., Pugazhenthi, M., Praseetha, P. K., & Jayanthi, S. (2019). In silico studies on CNR1 receptor and effective cyanobacterial drugs: Homology modelling, molecular docking and molecular dynamic simulations. Gene Reports, 17, 100505. https://doi.org/10.1016/j.genrep.2019.100505 | spa |
dc.relation.references | Martins, R. F., Ramos, M. F., Herfindal, L., Sousa, J. A., Skaerven, K., & Vasconcelos, V. M. (2008). Antimicrobial and Cytotoxic Assessment of Marine Cyanobacteria - Synechocystis and Synechococcus. In Mar. Drugs (Vol. 6, Issue 1). www.mdpi.org/marinedrugs | spa |
dc.relation.references | Millán, G. S. M. (2014). Evaluacion economica de un sistema de tratamiento de aguas residuales en la ciudad de Guadalajara de Buga. Facultad de Ciencias Sociales y Económicas Universisdad Del Valle, 1, 1–63. https://doi.org/10.1007/s13398-014-0173-7.2 | spa |
dc.relation.references | Minciencias, 2016, Colombia BIO, Bogota, Colombia | spa |
dc.relation.references | Ministerio de Medio Ambiente. (2019, 21 mayo). Minambiente. https://www.minambiente.gov.co/index.php/noticias/4317-colombia-el-segundo-pais-mas-biodiverso-del-mundo-celebra-el-dia-mundial-de-la-biodiversidad | spa |
dc.relation.references | Miranda, F. (2018). Purificación de agua : eliminación de nitratos , nitritos y compuestos orgánicos utilizando catalizadores en polvo y estructurados. In Universidad Nacional Del Litoral (Vol. 1, Issue 4). www.univeersidaddellit.com | spa |
dc.relation.references | Mondal, A., Bose, S., Banerjee, S., Patra, J. K., Malik, J., Mandal, S. K., Kilpatrick, K. L., Das, G., Kerry, R. G., Fimognari, C., & Bishayee, A. (2020). Marine cyanobacteria and microalgae metabolites—A rich source of potential anticancer drugs. Marine Drugs, 18(9). https://doi.org/10.3390/md18090476 | spa |
dc.relation.references | Montalvão, S., Demirel, Z., Devi, P., Lombardi, V., Hongisto, V., Perälä, M., Hattara, J., Imamoglu, E., Tilvi, S. S., Turan, G., Dalay, M. C., & Tammela, P. (2016). Large-scale bioprospecting of cyanobacteria, micro- and macroalgae from the Aegean Sea. New Biotechnology, 33(3), 399–406. https://doi.org/10.1016/j.nbt.2016.02.002 | spa |
dc.relation.references | Musale, A. S., Kumar, G. R. K., Sapre, A., & Dasgupta, S. (2020). Marine Algae as a Natural Source for Antiviral Compounds. AIJR Preprints, 38(1), 1–6. | spa |
dc.relation.references | Nagarajan, M., Maruthanayagam, V., & Sundararaman, M. (2012). A review of pharmacological and toxicological potentials of marine cyanobacterial metabolites. Journal of Applied Toxicology, 32(3), 153–185. https://doi.org/10.1002/jat.1717 | spa |
dc.relation.references | Nowruzi, B., Sarvari, G., & Blanco, S. (2020). The cosmetic application of cyanobacterial secondary metabolites. Algal Research, 49(November 2019), 101959. https://doi.org/10.1016/j.algal.2020.101959 | spa |
dc.relation.references | Olishevska, S., Nickzad, A., & Déziel, E. (2019). Bacillus and Paenibacillus secreted polyketides and peptides involved in controlling human and plant pathogens. Applied Microbiology and Biotechnology, 103(3), 1189–1215. https://doi.org/10.1007/s00253-018-9541-0 | spa |
dc.relation.references | Pagels, F., Guedes, A. C., Amaro, H. M., Kijjoa, A., & Vasconcelos, V. (2019). Phycobiliproteins from cyanobacteria: Chemistry and biotechnological applications. Biotechnology Advances, 37(3), 422–443. https://doi.org/10.1016/j.biotechadv.2019.02.010 | spa |
dc.relation.references | Papadopoulos, K. P., Economou, C. N., Tekerlekopoulou, A. G., & Vayenas, D. V. (2020). Two-step treatment of brewery wastewater using electrocoagulation and cyanobacteria-based cultivation. Journal of Environmental Management, 265(January), 110543. https://doi.org/10.1016/j.jenvman.2020.110543 | spa |
dc.relation.references | Parida, S., Sriram, M., Bhanaja, C., Sahoo, B., & Bhanja, C. (2022). In Vitro Screening of Antioxidant, Antimicrobial and Anticancer Activities of Cyanobacteria Found Across Odisha Coast, India SATYABRATA DASH Maharaja Sriram Chandra Bhanja Deo University. 1–19. https://doi.org/10.21203/rs.3.rs-1272821/v1 | spa |
dc.relation.references | Pathak, J., Pandey, A., Maurya, P. K., Rajneesh, R., Sinha, R. P., & Singh, S. P. (2020). Cyanobacterial Secondary Metabolite Scytonemin: A Potential Photoprotective and Pharmaceutical Compound. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 90(3), 467–481. https://doi.org/10.1007/s40011-019-01134-5 | spa |
dc.relation.references | Peña, J. (2019). Potencial biotecnológico de Cianoprocariotas provenientes de Islas del Rosario, Colombia. | spa |
dc.relation.references | Prato-Valderrama, J. A. (2013). Afloramientos de cianobacterias marinas bentónicas en San Andrés, Providencia y las Islas del Rosario (Caribe colombiano): Caracterización y evaluación de su posible papel ecológico. | spa |
dc.relation.references | Puglisi, M. P., Sneed, J. M., Ritson-Williams, R., & Young, R. (2019). Marine chemical ecology in benthic environments. Natural Product Reports, 36(3), 410–429. https://doi.org/10.1039/c8np00061a | spa |
dc.relation.references | Rengifo, A. L., Peña, E., & Benitez, N. (2012). Efecto de la asociación alga-bacteria Bostrychia calliptera (Rhodomelaceae) en el porcentaje de remoción de cromo en laboratorio. Biología Tropical, 60(September), 1055–1064. | spa |
dc.relation.references | Robles-Bañuelos, B., Durán-Riveroll, L. M., Rangel-López, E., Pérez-López, H. I., & González-Maya, L. (2022). Marine Cyanobacteria as Sources of Lead Anticancer Compounds: A Review of Families of Metabolites with Cytotoxic, Antiproliferative, and Antineoplastic Effects. Molecules, 27(15). https://doi.org/10.3390/molecules27154814 | spa |
dc.relation.references | Rodríguez León, C. (2020). Search for marine natural products with cytotoxic activity. Universidad de las Palmas de Gran Canaria. | spa |
dc.relation.references | Salbitani, G., & Carfagna, S. (2021). Ammonium Utilization in Microalgae : A Sustainable Method for Wastewater Treatment. Sustainability, 13(2), 17. https://doi.org/10.3390/su13020956 | spa |
dc.relation.references | Shishido, T. K., Popin, R. V., Jokela, J., Wahlsten, M., Fiore, M. F., Fewer, D. P., Herfindal, L., & Sivonen, K. (2019). Dereplication of natural products with antimicrobial and anticancer activity from Brazilian cyanobacteria. Toxins, 12(1), 1–17. https://doi.org/10.3390/toxins12010012 | spa |
dc.relation.references | Su, Y. (2020). Revisiting carbon, nitrogen, and phosphorus metabolisms in microalgae for wastewater treatment. Science of the Total Environment, 144590. https://doi.org/10.1016/j.scitotenv.2020.144590 | spa |
dc.relation.references | Suenaga, K., & Iwasaki, A. (2020). Bioactive Substances from Marine Organisms. In Topics in Heterocyclic Chemistry (Vol. 58, p. 19). https://doi.org/10.2115/fiber.46.7_P283 | spa |
dc.relation.references | Tan, L. T. (2007). Bioactive natural products from marine cyanobacteria for drug discovery. Phytochemistry, 68(7), 954–979. https://doi.org/10.1016/j.phytochem.2007.01.012 | spa |
dc.relation.references | Tang, Y., Zhang, Y., Rosenberg, J. N., Sharif, N., Betenbaugh, M. J., & Wang, F. (2016). Efficient lipid extraction and quantification of fatty acids from algal biomass using accelerated solvent extraction (ASE). RSC Advances, 6(35), 29127–29134. https://doi.org/10.1039/C5RA23519G | spa |
dc.relation.references | Thajuddin, N., & Subramanian, G. (2005). Cyanobacterial biodiversity and potential applications in biotechnology. Current Science, 89(1), 47–57. | spa |
dc.relation.references | Tiam, S. K., Gugger, M., Demay, J., Le Manach, S., Duval, C., Bernard, C., & Marie, B. (2019). Insights into the diversity of secondary metabolites of Planktothrix using a biphasic approach combining global genomics and metabolomics. Toxins, 11(9). https://doi.org/10.3390/toxins11090498 | spa |
dc.relation.references | Virgen, M. (2016). ¿Conservar fitoplancton vivo? Cepario de microalgas del CIBNOR. Recursos Naturales y Sociedad, 02(02), 40–55. https://doi.org/10.18846/renaysoc.2016.02.02.02.0003 | spa |
dc.relation.references | Walsh, C. T. (2008). The chemical versatility of natural-product assembly lines. Accounts of Chemical Research, 41(1), 4–10. https://doi.org/10.1021/ar7000414 | spa |
dc.relation.references | Wu, X. J., Yang, H., Chen, Y. T., & Li, P. P. (2018). Biosynthesis of fluorescent β subunits of c-phycocyanin from spirulina subsalsa in escherichia coli, and their antioxidant properties. Molecules, 23(6), 1–11. https://doi.org/10.3390/molecules23061369 | spa |
dc.relation.references | Xue, Y., Zhao, P., Quan, C., Zhao, Z., Gao, W., Li, J., Zu, X., Fu, D., Feng, S., Bai, X., Zuo, Y., & Li, P. (2018). Cyanobacteria-derived peptide antibiotics discovered since 2000. Peptides, 107(March), 17–24. https://doi.org/10.1016/j.peptides.2018.08.002 | spa |
dc.relation.references | Anagnostidis, K. & Komárek, J.. (1988). Modern approach to the classification system of cyanophytes. 3‐Oscillatoriales. Arch. Hydrobiol. Suppl.. 80. 1-4. | spa |
dc.relation.references | Araújo, R., Bárbara, I., Tibaldo, M., Berecibar, E., Tapia, P. D., Pereira, R., Santos, R., & Pinto, I. S. (2009). Checklist of benthic marine algae and cyanobacteria of northern Portugal. Botanica Marina, 52(1), 24–46. https://doi.org/10.1515/BOT.2009.026 | spa |
dc.relation.references | Bravakos, P., Kotoulas, G., Skaraki, K., Pantazidou, A., & Economou-Amilli, A. (2016). A polyphasic taxonomic approach in isolated strains of Cyanobacteria from thermal springs of Greece. Molecular Phylogenetics and Evolution, 98, 147–160. https://doi.org/10.1016/j.ympev.2016.02.009 | spa |
dc.relation.references | Brito, Â., Ramos, V., Mota, R., Lima, S., Santos, A., Vieira, J., Vieira, C. P., Kaštovský, J., Vasconcelos, V. M., & Tamagnini, P. (2017). Description of new genera and species of marine cyanobacteria from the Portuguese Atlantic coast. Molecular Phylogenetics and Evolution, 111, 18–34. https://doi.org/10.1016/j.ympev.2017.03.006 | spa |
dc.relation.references | Brito, Â., Ramos, V., Seabra, R., Santos, A., Santos, C. L., Lopo, M., Ferreira, S., Martins, A., Mota, R., Frazão, B., Martins, R., Vasconcelos, V., & Tamagnini, P. (2012). Culture-dependent characterization of cyanobacterial diversity in the intertidal zones of the Portuguese coast: A polyphasic study. Systematic and Applied Microbiology, 35(2), 110–119. https://doi.org/10.1016/j.syapm.2011.07.003 | spa |
dc.relation.references | Cano, J. (2018). Conservación in vitro y cultivo de Cyanoprocariotas bentónicas arrecifales de Providencia y Santa Catalina Islas, Colombia. Tesis de Maestría. In Universidad Nacional de Colombia. | spa |
dc.relation.references | Carrasco-Reinado, R., Escobar, A., Carrera, C., Guarnizo, P., Vallejo, R. A., & Fernández-Acero, F. J. (2019). Valorization of microalgae biomass as a potential source of high-value sugars and polyalcohols. Lwt - Food Science and Technology, 114(January 2019), 108385. https://doi.org/10.1016/j.lwt.2019.108385 | spa |
dc.relation.references | Castilla Corrales, M. B. (2019). Caracterización florística de cianobacterias y macroalgas marinas de los bancos Roncador y Serrana del Archipiélago de San Andrés, Providencia y Santa Catalina, Mar Caribe colombiano. | spa |
dc.relation.references | Criscuolo, A., & Gribaldo, S. (2011). Large-Scale phylogenomic analyses indicate a deep origin of primary plastids within cyanobacteria. Molecular Biology and Evolution, 28(11), 3019–3032. https://doi.org/10.1093/molbev/msr108 | spa |
dc.relation.references | Darwich, M., Peña, E., Montenegro, L., & Benitez, N. (2017). Evaluación del consorcio natural alga(Parachlorella kessleri)(CHLOROPHYCEAE)- bacteria en depuración de aguas residuales sintéticas. Universidad del Valle. | spa |
dc.relation.references | De Figueiredo, D. R., Reboleira, A. S. S. P., Antunes, S. C., Abrantes, N., Azeiteiro, U., Gonçalves, F., & Pereira, M. J. (2006). The effect of environmental parameters and cyanobacterial blooms on phytoplankton dynamics of a Portuguese temperate lake. Hydrobiologia, 568(1), 145–157. https://doi.org/10.1007/s10750-006-0196-y | spa |
dc.relation.references | Duval, C., Hamlaoui, S., Piquet, B., Toutirais, G., Yéprémian, C., Reinhardt, A., Duperron, S., & Marie, B. (2020). Characterization of cyanobacteria isolated from thermal muds of Balaruc- Les-Bains ( France ) and description of a new genus and species Pseudo- chroococcus couteii. BioRxiv. | spa |
dc.relation.references | Forero Cujiño, M. A. (2019). Determinación de Cyanoprokaryotas planctónicas y su potencial en la producción de cianotoxinas en un embalse de la sabana de Bogotá - Colombia. | spa |
dc.relation.references | Galhano, V., de Figueiredo, D. R., Alves, A., Correia, A., Pereira, M. J., Gomes-Laranjo, J., & Peixoto, F. (2011). Morphological, biochemical and molecular characterization of Anabaena, Aphanizomenon and Nostoc strains (Cyanobacteria, Nostocales) isolated from Portuguese freshwater habitats. Hydrobiologia, 663(1), 187–203. https://doi.org/10.1007/s10750-010-0572-5 | spa |
dc.relation.references | Honda, D., Yokota, A., & Sugiyama, J. (1999). Detection of seven major evolutionary lineages in cyanobacteria based on the 16S rRNA gene sequence analysis with new sequences of five marine Synechococcus strains. Journal of Molecular Evolution, 48(6), 723–739. https://doi.org/10.1007/PL00006517 | spa |
dc.relation.references | Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16(2), 111–120. https://doi.org/10.1007/BF01731581 | spa |
dc.relation.references | Komárek, J., Kaštovský, J., Mareš, J., & Johansen, J. R. (2014). Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. Preslia, 86(4), 295–335. | spa |
dc.relation.references | Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33(7). https://doi.org/10.1093/molbev/msw054 | spa |
dc.relation.references | Lopes, V. R., Ramos, V., Martins, A., Sousa, M., Welker, M., Antunes, A., & Vasconcelos, V. M. (2012). Phylogenetic, chemical and morphological diversity of cyanobacteria from Portuguese temperate estuaries. Marine Environmental Research, 73, 7–16. https://doi.org/10.1016/j.marenvres.2011.10.005 | spa |
dc.relation.references | Machado Lima, N. M. (2020). Diversidade e distribuição de cianobactérias de crostas biológicas do bioma caatinga com base em taxonomia polifásica e análise metagenômica. 1–178. https://repositorio.unesp.br/handle/11449/194221%0Ahttp://hdl.handle.net/11449/194221 | spa |
dc.relation.references | Neilan, B. A., Jacobs, D., Del Dot, T., Blackall, L. L., Hawkins, P. R., Cox, P. T., & Goodman, A. E. (1997). rRNA sequences and evolutionary relationships among toxic and nontoxic cyanobacteria of the genus Microcystis. International Journal of Systematic Bacteriology, 47(3), 693–697. https://doi.org/10.1099/00207713-47-3-693 | spa |
dc.relation.references | Nübel, U., Garcia-Pichel, F., & Muyzer, G. (1997). PCR primers to amplify 16S rRNA genes from cyanobacteria. Applied and Environmental Microbiology, 63(8), 3327–3332. https://doi.org/10.1128/aem.63.8.3327-3332.1997 | spa |
dc.relation.references | Peña, J. (2019). Potencial biotecnológico de Cianoprocariotas provenientes de Islas del Rosario, Colombia. 135. | spa |
dc.relation.references | Potts, M., & Whitton, B. A. (2012). Ecology of Cyanobacteria II: Their Diversity in Space and Time. In Ecology of Cyanobacteria II. | spa |
dc.relation.references | Prato-Valderrama, J. A. (2013). Afloramientos de cianobacterias marinas bentónicas en San Andrés, Providencia y las Islas del Rosario (Caribe colombiano): Caracterización y evaluación de su posible papel ecológico. | spa |
dc.relation.references | Puyana, M., Prato, J. A., Nieto, C. F., Ramos, F. A., Castellanos, L., Pinzón, P., & Zárate, J. C. (2019). Experimental approaches for the evaluation of allelopathic interactions between hermatypic corals and marine benthic cyanobacteria in the colombian caribbean. Acta Biologica Colombiana, 24(2), 243–254. https://doi.org/10.15446/abc.v24n2.72706 | spa |
dc.relation.references | Samylina, O. S., Sinetova, M. A., Kupriyanova, E. V., Starikov, A. Y., Sukhacheva, M. V., Dziuba, M. V., & Tourova, T. P. (2021). Ecology and biogeography of the “marine Geitlerinema” cluster and a description of Sodalinema orleanskyi sp. nov., Sodalinema gerasimenkoae sp. nov., Sodalinema stali sp. nov. And Baaleninema simplex gen. et sp. nov. (Oscillatoriales, Cyanobacteria). FEMS Microbiology Ecology, 97(8), 1–25. https://doi.org/10.1093/femsec/fiab104 | spa |
dc.relation.references | Shalygin, S., Kavulic, K., & Pietrasiak, N. (2019). Neotypification of Pleurocapsa fuliginosa and epitypification of P . minor ( Pleurocapsales ): resolving a polyphyletic cyanobacterial genus. Carroll Collected. | spa |
dc.relation.references | Valério, E., Chambel, L., Paulino, S., Faria, N., Pereira, P., & Tenreiro, R. (2009). Molecular identification, typing and traceability of cyanobacteria from freshwater reservoirs. Microbiology, 155(2), 642–656. https://doi.org/10.1099/mic.0.022848-0 | spa |
dc.relation.references | Andersen, R. A. (2005). Algal Culturing Techniques. In Elsevier (Vol. 1). | spa |
dc.relation.references | Babu Balaraman, H., Sivasubramanian, A., & Kumar Rathnasamy, S. (2021). Sustainable valorization of meat processing wastewater with synergetic eutectic mixture based purification of R-Phycoerythrin from porphyrium cruentium. Bioresource Technology, 336(May), 125357. https://doi.org/10.1016/j.biortech.2021.125357 | spa |
dc.relation.references | Benchikh, Y., Filali, A., & Rebai, S. (2020). Modeling and optimizing the phycocyanins extraction from Arthrospira platensis (Spirulina) algae and preliminary supplementation assays in soft beverage as natural colorants and antioxidants. Journal of Food Processing and Preservation, 0–2. https://doi.org/10.1111/jfpp.15170 | spa |
dc.relation.references | Bennett, A., & Bogorad, L. (1973). Complementary chromatic adaptation in a filamentous blue-green alga. Journal of Cell Biology, 58(2), 419–435. https://doi.org/10.1083/jcb.58.2.419 | spa |
dc.relation.references | Bradford, M. M. (1976). A Rapid and Sensitive Method for the Quantitation Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Crop Journal, 72, 248–254. https://doi.org/10.1016/j.cj.2017.04.003 | spa |
dc.relation.references | Bryant, D. A., Guglielmi, G., de Marsac, N. T., Castets, A. M., & Cohen-Bazire, G. (1979). The structure of cyanobacterial phycobilisomes: a model. Archives of Microbiology, 123(2), 113–127. https://doi.org/10.1007/BF00446810 | spa |
dc.relation.references | Chaiklahan, R., Chirasuwan, N., Srinorasing, T., Attasat, S., Nopharatana, A., & Bunnag, B. (2022). Enhanced biomass and phycocyanin production of Arthrospira (Spirulina) platensis by a cultivation management strategy: Light intensity and cell concentration. Bioresource Technology, 343(September 2021), 126077. https://doi.org/10.1016/j.biortech.2021.126077 | spa |
dc.relation.references | Cottas, A. G., Teixeira, T. A., Cunha, W. R., Ribeiro, E. J., & de Souza Ferreira, J. (2022). Effect of glucose and sodium nitrate on the cultivation of Nostoc sp. PCC 7423 and production of phycobiliproteins. Brazilian Journal of Chemical Engineering, 39(1), 1–9. https://doi.org/10.1007/s43153-021-00186-3 | spa |
dc.relation.references | Darwich, M., Peña, E., Montenegro, L., & Benitez, N. (2017). Evaluación del consorcio natural alga(Parachlorella kessleri)(CHLOROPHYCEAE)- bacteria en depuración de aguas residuales sintéticas. Universidad del Valle. | spa |
dc.relation.references | Deyab, M., Mofeed, J., El-Bilawy, E., & Ward, F. (2019). Antiviral activity of five filamentous cyanobacteria against coxsackievirus B3 and rotavirus. Archives of Microbiology. https://doi.org/10.1007/s00203-019-01734-9 | spa |
dc.relation.references | Du, L., Arauzo, P. J., Meza Zavala, M. F., Cao, Z., Olszewski, M. P., & Kruse, A. (2020). Towards the properties of different biomass-derived proteins via various extraction methods. Molecules, 25(3). https://doi.org/10.3390/molecules25030488 | spa |
dc.relation.references | Dubois, M., Gilles, K., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for the determination of sugars and related substances. Analytical Chemistry, 28(3), 7. https://doi.org/10.1038/168167a0 | spa |
dc.relation.references | Goldring, J. P. D. (2019). Measuring protein concentration with absorbance, lowry, bradford coomassie blue, or the smith bicinchoninic acid assay before electrophoresis. In Methods in Molecular Biology (Vol. 1855, pp. 31–39). https://doi.org/10.1007/978-1-4939-8793-1_3 | spa |
dc.relation.references | González-Balderas, R. M., Velásquez-Orta, S. B., Valdez-Vazquez, I., & Orta Ledesma, M. T. (2020). Intensified recovery of lipids, proteins, and carbohydrates from wastewater-grown microalgae Desmodesmus sp. by using ultrasound or ozone. Ultrasonics Sonochemistry, 62, 104852. https://doi.org/10.1016/j.ultsonch.2019.104852 | spa |
dc.relation.references | Grossmann, L., Hinrichs, J., & Weiss, J. (2020). Cultivation and downstream processing of microalgae and cyanobacteria to generate protein-based technofunctional food ingredients. Critical Reviews in Food Science and Nutrition, 60(17), 2961–2989. https://doi.org/10.1080/10408398.2019.1672137 | spa |
dc.relation.references | Hachicha, R., Elleuch, F., Hlima, H. Ben, Dubessay, P., de Baynast, H., Delattre, C., Pierre, G., Hachicha, R., Abdelkafi, S., Michaud, P., & Fendri, I. (2022). Biomolecules from Microalgae and Cyanobacteria: Applications and Market Survey. Applied Sciences (Switzerland), 12(4). https://doi.org/10.3390/app12041924 | spa |
dc.relation.references | Hossain, F., Ratnayake, R. R., Mahbub, S., Kumara, K. L. W., & Magana-arachchi, D. N. (2020). Saudi Journal of Biological Sciences Identification and culturing of cyanobacteria isolated from freshwater bodies of Sri Lanka for biodiesel production. Saudi Journal of Biological Sciences, 27(6), 1514–1520. https://doi.org/10.1016/j.sjbs.2020.03.024 | spa |
dc.relation.references | İlter, I., Akyıl, S., Demirel, Z., Koç, M., Conk-Dalay, M., & Kaymak-Ertekin, F. (2018). Optimization of phycocyanin extraction from Spirulina platensis using different techniques. Journal of Food Composition and Analysis, 70(April), 78–88. https://doi.org/10.1016/j.jfca.2018.04.007 | spa |
dc.relation.references | Ji, L., Qiu, S., Wang, Z., Zhao, C., Tang, B., Gao, Z., & Fan, J. (2023). Phycobiliproteins from algae: Current updates in sustainable production and applications in food and health. Food Research International, 167(March), 112737. https://doi.org/10.1016/j.foodres.2023.112737 | spa |
dc.relation.references | Kanaga, S., Silambarasan, T., Malini, E., Mangayarkarasi, S., & Dhandapani, R. (2022). Optimization of biomass production from Chlorella vulgaris by response surface methodology and study of the fatty acid profile for biodiesel production: A green approach. Biocatalysis and Agricultural Biotechnology, 45(October), 102505. https://doi.org/10.1016/j.bcab.2022.102505 | spa |
dc.relation.references | Kannaujiya, V. K., Kumar, D., Pathak, J., & Sinha, R. P. (2018). Phycobiliproteins and Their Commercial Significance. In Cyanobacteria: From Basic Science to Applications. Elsevier Inc. https://doi.org/10.1016/B978-0-12-814667-5.00010-6 | spa |
dc.relation.references | Lin, P. C., Zhang, F., & Pakrasi, H. B. (2020). Enhanced production of sucrose in the fast-growing cyanobacterium Synechococcus elongatus UTEX 2973. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-019-57319-5 | spa |
dc.relation.references | Liu, J. Y., Jiang, T., Zhang, J. P., & Liang, D. C. (1999). Crystal structure of allophycocyanin from red algae Porphyra yezoensis at 2.2-Å resolution. Journal of Biological Chemistry, 274(24), 16945–16952. https://doi.org/10.1074/jbc.274.24.16945 | spa |
dc.relation.references | Malgarejo, L., Romero, M., Hernandez, S., Barrera, J., Solarte, E., Pérez, V., Rojas, A., Cruz, M., Moreno, L., Crespo, S., & Pérez, W. (2010). Laboratorio de fisiología y bioquímica vegetal. Departamento de biología. Universidad Nacional de Colombia 1. | spa |
dc.relation.references | María, D., Fradinho, J. C., Uggetti, E., García, J., Oehmen, A., & Reis, M. A. M. (2018). Polymer accumulation in mixed cyanobacterial cultures selected under the feast and famine strategy. Algal Research, 33(January), 99–108. https://doi.org/10.1016/j.algal.2018.04.027 | spa |
dc.relation.references | Niccolai, A., Chini Zittelli, G., Rodolfi, L., Biondi, N., & Tredici, M. R. (2019). Microalgae of interest as food source: Biochemical composition and digestibility. Algal Research, 42(April). https://doi.org/10.1016/j.algal.2019.101617 | spa |
dc.relation.references | Prates, D. da F., Radmann, E. M., Duarte, J. H., Morais, M. G. de, & Costa, J. A. V. (2018). Spirulina cultivated under different light emitting diodes: Enhanced cell growth and phycocyanin production. Bioresource Technology, 256(November 2017), 38–43. https://doi.org/10.1016/j.biortech.2018.01.122 | spa |
dc.relation.references | Rodriguez, E. A., Tran, G. N., Gross, L. A., Crisp, J. L., Shu, X., Lin, J. Y., & Tsien, R. Y. (2016). A far-red fluorescent protein evolved from a cyanobacterial phycobiliprotein. Nature Methods, 13(9), 763–769. https://doi.org/10.1038/nmeth.3935 | spa |
dc.relation.references | Rueda, E., García-galán, M. J., Díez-montero, R., Vila, J., Grifoll, M., & García, J. (2020). Bioresource Technology Polyhydroxybutyrate and glycogen production in photobioreactors inoculated with wastewater borne cyanobacteria monocultures. Bioresource Technology, 295(September 2019), 122233. https://doi.org/10.1016/j.biortech.2019.122233 | spa |
dc.relation.references | Sadvakasova, A. K., Kossalbayev, B. D., Zayadan, B. K., & Kirbayeva, D. K. (2021). Potential of cyanobacteria in the conversion of wastewater to biofuels. World Journal of Microbiology and Biotechnology, 37(8), 1–22. https://doi.org/10.1007/s11274-021-03107-1 | spa |
dc.relation.references | Sánchez-Bayo, A., Morales, V., Rodríguez, R., Vicente, G., & Bautista, L. F. (2020). Cultivation of Microalgae and Cyanobacteria: Effect of Operating Conditions on Growth and Biomass Composition. Molecules, 25(12), 1–17. https://doi.org/10.3390/molecules25122834 | spa |
dc.relation.references | Serrano-Bermúdez, L. M., Montenegro-ruíz, L. C., & Godoy-silva, R. D. (2020). Bioresource Technology Reports Effect of CO 2 , aeration , irradiance , and photoperiod on biomass and lipid accumulation in a microalga autotrophically cultured and selected from four Colombian-native strains. Bioresource Technology Reports, 12(August), 100578. https://doi.org/10.1016/j.biteb.2020.100578 | spa |
dc.relation.references | Shahid, A., Malik, S., Liu, C., Ghulam, S., & Aamer, M. (2021). Journal of Water Process Engineering Characterization of a newly isolated cyanobacterium Plectonema terebrans for biotransformation of the wastewater-derived nutrients to biofuel and high-value bioproducts. Journal of Water Process Engineering, 39(September 2020), 101702. https://doi.org/10.1016/j.jwpe.2020.101702 | spa |
dc.relation.references | Tan, J. Sen, Lee, S. Y., Chew, K. W., Lam, M. K., Lim, J. W., Ho, S. H., & Show, P. L. (2020). A review on microalgae cultivation and harvesting, and their biomass extraction processing using ionic liquids. Bioengineered, 11(1), 116–129. https://doi.org/10.1080/21655979.2020.1711626 | spa |
dc.relation.references | Tsolcha, O. N., Patrinou, V., Economou, C. N., Dourou, M., Aggelis, G., & Tekerlekopoulou, A. G. (2021). Utilization of Biomass Derived from Cyanobacteria-Based Agro-Industrial Wastewater Treatment and Raisin Residue Extract for Bioethanol Production. | spa |
dc.relation.references | Villalta-romero, F., Murillo-vega, F., & Martínez-gu-, B. (2019). Microalgal biotechnology in Costa Rica : Business opportunities to the national productive sector Biotecnología microalgal en Costa Rica : Oportunidades de negocio para el sector productivo nacional. 32, 85–93. | spa |
dc.relation.references | Zhu, B., Wei, D., & Pohnert, G. (2022). The thermoacidophilic red alga Galdieria sulphuraria is a highly efficient cell factory for ammonium recovery from ultrahigh-NH4+ industrial effluent with co-production of high-protein biomass by photo-fermentation. Chemical Engineering Journal, 438(February), 135598. https://doi.org/10.1016/j.cej.2022.135598 | spa |
dc.relation.references | Ahmad, I. Z. (2022). The usage of Cyanobacteria in wastewater treatment: prospects and limitations. Letters in Applied Microbiology, 75(4), 718–730. https://doi.org/10.1111/lam.13587 | spa |
dc.relation.references | Chen, C. Y., Kuo, E. W., Nagarajan, D., Ho, S. H., Dong, C. Di, Lee, D. J., & Chang, J. S. (2020). Cultivating Chlorella sorokiniana AK-1 with swine wastewater for simultaneous wastewater treatment and algal biomass production. Bioresource Technology, 302(January), 122814. https://doi.org/10.1016/j.biortech.2020.122814 | spa |
dc.relation.references | Chen, Z., Shao, S., He, Y., Luo, Q., Zheng, M., Zheng, M., Chen, B., & Wang, M. (2020). Nutrients removal from piggery wastewater coupled to lipid production by a newly isolated self-flocculating microalga Desmodesmus sp. PW1. Bioresource Technology, 302(January), 122806. https://doi.org/10.1016/j.biortech.2020.122806 | spa |
dc.relation.references | de-Bashan, L. E., Antoun, H., & Bashan, Y. (2008). Involvement of INDOLE-3-ACETIC ACID produced by the growth-promoting bacterium Azospirillum spp. in promoting growth of Chlorella vulgaris. Journal of Phycology, 44(4), 938–947. https://doi.org/10.1111/j.1529-8817.2008.00533.x | spa |
dc.relation.references | de Bashan, L. E., & Bashan, Y. (2003). Bacterias promotoras de crecimiento de microalgas: una nueva aproximación en el tratamiento de aguas residuales. Revista Colombiana de Biotecnologia, 5, 85–90. | spa |
dc.relation.references | El-Sheekh, M., El-Dalatony, M. M., Thakur, N., Zheng, Y., & Salama, E. S. (2022). Role of microalgae and cyanobacteria in wastewater treatment: genetic engineering and omics approaches. International Journal of Environmental Science and Technology, 19(3), 2173–2194. https://doi.org/10.1007/s13762-021-03270-w | spa |
dc.relation.references | Giraldo, M. (2012). Aislamiento y caracterización de microalgas formadoras de tapetes microbianos asociados a un cultivo hidropónico de plantas halófitas Isolation and Characterization of The Microbial Mats Associated to a Hydroponic Culture of Halophytic Plants. Universidad de Las Palmas de Gran Canaria. http://acceda.ulpgc.es/bitstream/10553/6792/4/0654092_00000_0000.pdf | spa |
dc.relation.references | Githinji, L. J. M., Musey, M. K., & Ankumah, R. O. (2011). Evaluation of the fate of ciprofloxacin and amoxicillin in domestic wastewater. Water, Air, and Soil Pollution, 219(1–4), 191–201. https://doi.org/10.1007/s11270-010-0697-1 | spa |
dc.relation.references | Guerra-Rodríguez, S., Rodríguez, E., Singh, D. N., & Rodríguez-Chueca, J. (2018). Assessment of sulfate radical-based advanced oxidation processes for water and wastewater treatment: A review. Water (Switzerland), 10(12). https://doi.org/10.3390/w10121828 | spa |
dc.relation.references | Halfhide, T., Dalrymple, O. K., Wilkie, A. C., Trimmer, J., Gillie, B., Udom, I., Zhang, Q., & Ergas, S. J. (2015). Growth of an Indigenous Algal Consortium on Anaerobically Digested Municipal Sludge Centrate: Photobioreactor Performance and Modeling. Bioenergy Research, 8(1), 249–258. https://doi.org/10.1007/s12155-014-9513-x | spa |
dc.relation.references | Imase, M., Watanabe, K., Aoyagi, H., & Tanaka, H. (2008). Construction of an artificial symbiotic community using a Chlorella-symbiont association as a model. FEMS Microbiology Ecology, 63(3), 273–282. https://doi.org/10.1111/j.1574-6941.2007.00434.x | spa |
dc.relation.references | Jebali, A., Acién, F. G., Gómez, C., Fernández-Sevilla, J. M., Mhiri, N., Karray, F., Dhouib, A., Molina-Grima, E., & Sayadi, S. (2015). Selection of native Tunisian microalgae for simultaneous wastewater treatment and biofuel production. Bioresource Technology, 198, 424–430. https://doi.org/10.1016/j.biortech.2015.09.037 | spa |
dc.relation.references | Ji, F., Zhou, Y., Pang, A., Ning, L., Rodgers, K., Liu, Y., & Dong, R. (2015). Fed-batch cultivation of Desmodesmus sp. in anaerobic digestion wastewater for improved nutrient removal and biodiesel production. Bioresource Technology, 184, 116–122. https://doi.org/10.1016/j.biortech.2014.09.144 | spa |
dc.relation.references | Kumar, A., & Bera, S. (2020). Revisiting nitrogen utilization in algae: A review on the process of regulation and assimilation. Bioresource Technology Reports, 12(October), 100584. https://doi.org/10.1016/j.biteb.2020.100584 | spa |
dc.relation.references | Larsdotter, K. (2006). Microalgae for phosphorus removal from wastewater in a Nordic climate (p. 36). | spa |
dc.relation.references | Lavrinovics, A., Murby, F., Ziverte, E., Mezule, L., & Juhna, T. (2021). Increasing Phosphorus Uptake Efficiency by Phosphorus-Starved Microalgae for Municipal. Microorganisms, 9. | spa |
dc.relation.references | Lin, Y., Koutsospyros, A., Braida, W., Christodoulatos, C., Terracciano, A., & Su, T. L. (2022). MicroAlgal Biofilm Reactor (MABR) – Evaluation of Biomass Support Materials and Nitrate Removal Performance. Environmental Processes, 9(2). https://doi.org/10.1007/s40710-022-00574-y | spa |
dc.relation.references | Miranda, F. (2018). Purificación de agua : eliminación de nitratos , nitritos y compuestos orgánicos utilizando catalizadores en polvo y estructurados. In Universidad Nacional Del Litoral (Vol. 1, Issue 4). www.univeersidaddellit.com | spa |
dc.relation.references | Mohsenpour, S. F., Hennige, S., Willoughby, N., Adeloye, A., & Gutierrez, T. (2021). Integrating micro-algae into wastewater treatment: A review. Science of the Total Environment, 752(September 2020), 142168. https://doi.org/10.1016/j.scitotenv.2020.142168 | spa |
dc.relation.references | Mousavi, S. A., Sarshad Ghahfarokhi, M., & Soltani Koupaei, S. (2020). Negative impacts of nomadic livestock grazing on common rangelands’ function in soil and water conservation. Ecological Indicators, 110(November 2019), 105946. https://doi.org/10.1016/j.ecolind.2019.105946 | spa |
dc.relation.references | Mtaki, K., Kyewalyanga, M. S., & Mtolera, M. S. P. (2021). Supplementing wastewater with NPK fertilizer as a cheap source of nutrients in cultivating live food (Chlorella vulgaris). Annals of Microbiology, 71(1). https://doi.org/10.1186/s13213-020-01618-0 | spa |
dc.relation.references | Nur, M. M. A., & Buma, A. G. J. (2019). Opportunities and Challenges of Microalgal Cultivation on Wastewater, with Special Focus on Palm Oil Mill Effluent and the Production of High Value Compounds. Waste and Biomass Valorization, 10(8), 2079–2097. https://doi.org/10.1007/s12649-018-0256-3 | spa |
dc.relation.references | Park, S., Kim, J., Park, Y., Son, S., Cho, S., Kim, C., & Lee, T. (2017). Comparison of batch cultivation strategies for cost-effective biomass production of Micractinium inermum NLP-F014 using a blended wastewater medium. Bioresource Technology, 234, 432–438. https://doi.org/10.1016/j.biortech.2017.03.074 | spa |
dc.relation.references | Ponte, W. M. L., Talaverano, N. Z., Huaynate, A. O., Cafferata, E. A., & Gallegos, M. C. (2022). Efficiency of microalgae cultures for nutrient removal from domestic wastewater. Advances in Environmental Technology, 8(1), 73–81. https://doi.org/10.22104/aet.2022.5069.1374 | spa |
dc.relation.references | Rengifo, A. L., Peña, E., & Benitez, N. (2012). Efecto de la asociación alga-bacteria Bostrychia calliptera (Rhodomelaceae) en el porcentaje de remoción de cromo en laboratorio. Biología Tropical, 60(September), 1055–1064. | spa |
dc.relation.references | Ross, M. E., Davis, K., McColl, R., Stanley, M. S., Day, J. G., & Semião, A. J. C. (2018). Nitrogen uptake by the macro-algae Cladophora coelothrix and Cladophora parriaudii: Influence on growth, nitrogen preference and biochemical composition. Algal Research, 30(December 2017), 1–10. https://doi.org/10.1016/j.algal.2017.12.005 | spa |
dc.relation.references | Sepehri, A., Sarrafzadeh, M. H., & Avateffazeli, M. (2020). Interaction between Chlorella vulgaris and nitrifying-enriched activated sludge in the treatment of wastewater with low C/N ratio. Journal of Cleaner Production, 247. https://doi.org/10.1016/j.jclepro.2019.119164 | spa |
dc.relation.references | Su, Y. (2020). Revisiting carbon, nitrogen, and phosphorus metabolisms in microalgae for wastewater treatment. Science of the Total Environment, 144590. https://doi.org/10.1016/j.scitotenv.2020.144590 | spa |
dc.relation.references | Su, Y., Mennerich, A., & Urban, B. (2011). Municipal wastewater treatment and biomass accumulation with a wastewater-born and settleable algal-bacterial culture. Water Research, 45(11), 3351–3358. https://doi.org/10.1016/j.watres.2011.03.046 | spa |
dc.relation.references | Taiz, L., Zeiger, E., Møller, I. M., & Murphy, A. (2014). Physiology Plants. In Plants Physiology (Quinta). Sinauer Associates Inc. http://www.sinauer.com/media/wysiwyg/tocs/PlantPhysiology5.pdf | spa |
dc.relation.references | Takáčová, A., Smolinská, M., Semerád, M., & Matúš, P. (2015). DEGRADATION OF BTEX BY MICROALGAE Parachlorella kessleri. Petroleum & Coal, 57(2), 101–107. | spa |
dc.relation.references | Torres-Valenzuela, L. S., Sanín-Villarrea, A., Arango-Ramírez, A., & Serna-Jiménez, J. A. (2019). Caracterización fisicoquímica y microbiológica de aguas mieles del beneficio del café. Revista ION, 32(2), 59–66. https://doi.org/10.18273/revion.v32n2-2019006 | spa |
dc.relation.references | Wang, Y., Wang, S., Sun, L., Sun, Z., & Li, D. (2020). Screening of a Chlorella-bacteria consortium and research on piggery wastewater purification. Algal Research, 47(October 2019), 101840. https://doi.org/10.1016/j.algal.2020.101840 | spa |
dc.relation.references | Watanabe, K., Takihana, N., Aoyagi, H., Hanada, S., Watanabe, Y., Ohmura, N., Saiki, H., & Tanaka, H. (2005). Symbiotic association in Chlorella culture. FEMS Microbiology Ecology, 51(2), 187–196. https://doi.org/10.1016/j.femsec.2004.08.004 | spa |
dc.relation.references | Zhang, H., Chen, X., Song, L., Liu, S., & Li, P. (2022). The mechanism by which Enteromorpha Linza polysaccharide promotes Bacillus subtilis growth and nitrate removal. International Journal of Biological Macromolecules, 209(PA), 840–849. https://doi.org/10.1016/j.ijbiomac.2022.04.082 | spa |
dc.relation.references | Andersen, R. A. (2005). Algal Culturing Techniques. In Elsevier (Vol. 1). | spa |
dc.relation.references | Ayala, F. (2017). Búsqueda de compuestos con posible actividad a partir de cianobacterias marinas del Caribe colombiano. Tesis de Maestría. | spa |
dc.relation.references | Bayona Maldonado, L. M. (2014). Estudio químico y evaluación de la actividad citotóxica de metabolitos secundarios provenientes de cianobacterias bentónicas arrecifales del Caribe colombiano. http://www.bdigital.unal.edu.co/20433/ | spa |
dc.relation.references | Becerra, L. (2017). Evaluación del perfil metabólico de un consorcio de cianobacterias bentónicas arrecifales del Caribe colombiano bajo condiciones de cultivo. (Tesis de Maestría). https://repositorio.unal.edu.co/handle/unal/62324 | spa |
dc.relation.references | Cano, J. (2018). Conservación in vitro y cultivo de Cyanoprocariotas bentónicas arrecifales de Providencia y Santa Catalina Islas, Colombia. Tesis de Maestría. In Universidad Nacional de Colombia. | spa |
dc.relation.references | Charitos, G., Trafalis, D. T., Dalezis, P., Potamitis, C., Sarli, V., Zoumpoulakis, P., & Camoutsis, C. (2019). Synthesis and anticancer activity of novel 3,6-disubstituted 1,2,4-triazolo-[3,4-b]-1,3,4-thiadiazole derivatives. Arabian Journal of Chemistry, 12(8), 4784–4794. https://doi.org/10.1016/j.arabjc.2016.09.015 | spa |
dc.relation.references | Costa, M., Garcia, M., Costa-Rodrigues, J., Costa, M. S., Ribeiro, M. J., Fernandez, M. H., Barros, P., Barreiro, A., Vasconcelos, V., & Martins, R. (2014). Exploring Bioactive Properties of Marine Cyanobacteria Isolated from the Portuguese Coast: High Potential as a Source of Anticancer Compounds. Marine Drugs, 12(December 2013), 98–114. https://doi.org/10.3390/md12010098 | spa |
dc.relation.references | Ferreira, L., Morais, J., Preto, M., Silva, R., Urbatzka, R., Vasconcelos, V., & Reis, M. (2021). Uncovering the bioactive potential of a cyanobacterial natural products library aided by untargeted metabolomics. Marine Drugs, 19(11). https://doi.org/10.3390/md19110633 | spa |
dc.relation.references | Ferreira, L., Morais, J., Vasconcelos, V., & Reis, M. (2022). Discovery of a Novel Potent Cytotoxic Compound from Leptothoe sp. 778069, 46. https://doi.org/10.3390/blsf2022014046 | spa |
dc.relation.references | Girão, M., Ribeiro, I., Ribeiro, T., Azevedo, I. C., Pereira, F., Urbatzka, R., Leão, P. N., & Carvalho, M. F. (2019). Actinobacteria isolated from laminaria ochroleuca: A source of new bioactive compounds. Frontiers in Microbiology, 10(APR), 1–13. https://doi.org/10.3389/fmicb.2019.00683 | spa |
dc.relation.references | Grkovic, T., Akee, R. K., Thornburg, C. C., Trinh, S. K., Britt, J. R., Harris, M. J., Evans, J. R., Kang, U., Ensel, S., Henrich, C. J., Gustafson, K. R., Schneider, J. P., & O’Keefe, B. R. (2020). National Cancer Institute (NCI) Program for Natural Products Discovery: Rapid Isolation and Identification of Biologically Active Natural Products from the NCI Prefractionated Library. ACS Chemical Biology, 15(4), 1104–1114. https://doi.org/10.1021/acschembio.0c00139 | spa |
dc.relation.references | Guesmi, F., Saidi, I., Abbassi, R., Saidani, M., Hfaiedh, N., & Landoulsi, A. (2022). Therapeutic potential of second degree’s skin burns by topical dressing of Teucrium ramosissimum that promotes re-epithelialization. Dermatologic Therapy, 35(5), 1–9. https://doi.org/10.1111/dth.15428 | spa |
dc.relation.references | Hassouani, M., Sabour, B., Belattmania, Z., Atouani, S. El, Reani, A., Ribeiro, T., Ramos, V., Preto, M., Costa, P. M., Urbatzka, R., Leão, P., & Vasconcelos, V. (2017). In vitro anticancer , antioxidant and antimicrobial potential of Lyngbya aestuarii ( Cyanobacteria ) from the Atlantic coast of Morocco. 2508, 4923–4933. | spa |
dc.relation.references | Klinngam, W., Rungkamoltip, P., Thongin, S., Joothamongkhon, J., Khumkhrong, P., Khongkow, M., Namdee, K., Tepaamorndech, S., Chaikul, P., Kanlayavattanakul, M., Lourith, N., Piboonprai, K., Ruktanonchai, U., Asawapirom, U., & Iempridee, T. (2022). Polymethoxyflavones from Kaempferia parviflora ameliorate skin aging in primary human dermal fibroblasts and ex vivo human skin. Biomedicine and Pharmacotherapy, 145(September 2021), 112461. https://doi.org/10.1016/j.biopha.2021.112461 | spa |
dc.relation.references | Lorenzi, A. S., Bonatelli, M. L., Varani, A. M., Quecine, M. C., & Bittencourt-Oliveira, M. do C. (2022). Draft genome sequence of the cyanobacterium Sphaerospermopsis aphanizomenoides BCCUSP55 from the Brazilian semiarid region reveals potential for anti-cancer applications. Archives of Microbiology, 204(1), 1–7. https://doi.org/10.1007/s00203-021-02602-1 | spa |
dc.relation.references | Parida, S., Satybrata, D., Bhanaja, C., Sahoo, B., & Bhanja, C. (2022). In Vitro Screening of Antioxidant, Antimicrobial and Anticancer Activities of Cyanobacteria Found Across Odisha Coast, India SATYABRATA DASH Maharaja Sriram Chandra Bhanja Deo University. Research Square, 1–19. https://doi.org/10.21203/rs.3.rs-1272821/v1 | spa |
dc.relation.references | Prato-Valderrama, J. A. (2013). Afloramientos de cianobacterias marinas bentónicas en San Andrés, Providencia y las Islas del Rosario (Caribe colombiano): Caracterización y evaluación de su posible papel ecológico. | spa |
dc.relation.references | Quintana Bulla, J. I. (2011). Evaluación de la toxicidad y del potencial bioactivo de afloramientos de cianobacterias bentónicas arrecifales del Caribe Colombiano / Evaluation of toxicity and bioactive potential of benthic marine cyanobacteria from Colombian Caribbean Sea. http://www.bdigital.unal.edu.co/8094/ | spa |
dc.relation.references | Robles-Bañuelos, B., Durán-Riveroll, L. M., Rangel-López, E., Pérez-López, H. I., & González-Maya, L. (2022). Marine Cyanobacteria as Sources of Lead Anticancer Compounds: A Review of Families of Metabolites with Cytotoxic, Antiproliferative, and Antineoplastic Effects. Molecules, 27(15). https://doi.org/10.3390/molecules27154814 | spa |
dc.relation.references | Sousa, M. L. da S. (2020). Cyanobacterial bioactive metabolites for anticancer drug discovery: Characterization of new compounds and molecular mechanisms in physiologically relevant 3D cell culture. https://repositorio-aberto.up.pt/handle/10216/126888 | spa |
dc.relation.references | Sousa, M. L., Preto, M., Vasconcelos, V., Linder, S., & Urbatzka, R. (2019). Antiproliferative effects of the natural oxadiazine nocuolin A are associated with impairment of mitochondrial oxidative phosphorylation. Frontiers in Oncology, 9(APR), 1–13. https://doi.org/10.3389/fonc.2019.00224 | spa |
dc.relation.references | Sousa, M. L., Ribeiro, T., Vasconcelos, V., Linder, S., & Urbatzka, R. (2020). Portoamides A and B are mitochondrial toxins and induce cytotoxicity on the proliferative cell layer of in vitro microtumours. Toxicon, 175, 49–56. https://doi.org/10.1016/j.toxicon.2019.12.159 | spa |
dc.relation.references | Gkotsis, P., Peleka, E., & Zouboulis, A. (2020). The use of natural minerals in a pilot-scale MBR for membrane fouling mitigation. Separations, 7(2), 1–13. https://doi.org/10.3390/separations7020024 | spa |
dc.relation.references | Suraraksa, B., Nopharatana, A., Chaiprasert, P., Bhumiratana, S., & Tanticharoen, M. (2017). Effect of Substrate Feeding Concentration on Initial Biofilm Development in Anaerobic Hybrid Reactor. ASEAN Journal on Science and Technology for Development, 20(3&4), 361–372. https://doi.org/10.29037/ajstd.357 | spa |
dc.relation.references | Cegłowska, M., Kwiecień, P., Szubert, K., Brzuzan, P., Florczyk, M., Edwards, C., Kosakowska, A., & Mazur-Marzec, H. (2022). Biological Activity and Stability of Aeruginosamides from Cyanobacteria. Marine Drugs, 20(2). https://doi.org/10.3390/md20020093 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.agrovoc | Demanda bioquímica de oxígeno | spa |
dc.subject.agrovoc | Biochemical oxygen demand | eng |
dc.subject.ddc | 570 - Biología::579 - Historia natural microorganismos, hongos, algas | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::628 - Ingeniería sanitaria | spa |
dc.subject.ddc | 570 - Biología::572 - Bioquímica | spa |
dc.subject.decs | Cianobacterias | spa |
dc.subject.decs | Cyanobacteria | eng |
dc.subject.decs | Anticarcinogenic Agents | eng |
dc.subject.decs | Anticarcinógenos | spa |
dc.subject.lemb | Microbiología de aguas residuales | spa |
dc.subject.lemb | Sewage - microbiology | eng |
dc.subject.other | Metabolitos microbianos | spa |
dc.subject.other | Microbial metabolites | eng |
dc.subject.proposal | Biotecnología | spa |
dc.subject.proposal | Cianobacterias | spa |
dc.subject.proposal | Metabolitos primarios | spa |
dc.subject.proposal | Depuración de aguas | spa |
dc.subject.proposal | Anticancerígenos | spa |
dc.subject.proposal | HCT116 | zho |
dc.subject.proposal | MG063 | spa |
dc.subject.proposal | Promotores de crecimiento | spa |
dc.subject.proposal | Biotechnology | eng |
dc.subject.proposal | Cyanobacteria | eng |
dc.subject.proposal | Wastewater treatment | eng |
dc.subject.proposal | Anticancer | eng |
dc.subject.proposal | Growth promoters | eng |
dc.subject.wikidata | Synechococcales | eng |
dc.subject.wikidata | Oscillatoriales | eng |
dc.title | Potencial biotecnológico de Synechococcales y Oscillatoriales (cyanobacteria) colombianas | spa |
dc.title.translated | Biotechnological potential of colombian Synechococcales and Oscillatoriales (cyanobacteria) | eng |
dc.type | Trabajo de grado - Doctorado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_db06 | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/doctoralThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TD | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1144054446.2023.pdf
- Tamaño:
- 1.47 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Doctorado en Ciencias-Biología
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: