Bacterias endolíticas cultivables en minerales (Cuarzo, Feldespato y Calcita) provenientes de muestreos geológicos en áreas de Villa de Leyva, Boyacá y Pescadero, Santander (Colombia)

dc.contributor.advisorTchegliakova, Nadejdaspa
dc.contributor.advisorSánchez Nieves, Jimenaspa
dc.contributor.authorCorzo Acosta, Julian Andreasspa
dc.contributor.researchgroupGrupo de Ciencias Planetarias y Astrobiología (GCPA)spa
dc.date.accessioned2020-04-21T21:58:14Zspa
dc.date.available2020-04-21T21:58:14Zspa
dc.date.issued2018-07-12spa
dc.description.abstractEste trabajo es pionero en la investigación geomicrobiológica en Colombia y abre camino a futuras investigaciones en las que se puedan abordar fenómenos geológicos y microbiológicos desde una visión integral utilizando múltiples ramas de conocimiento. Las comunidades microbianas endolíticas han sido reportadas en zonas áridas e hiperáridas alrededor del mundo y han sido encontradas en diversas litologías que aprovechan como microhábitat y cuyos elementos químicos posiblemente actúan como fuente nutricional. Esta tesis reúne información geológica y microbiológica para detectar la relación entre comunidades microbianas endolíticas nativas y tres minerales formadores de roca (calcita, feldespato alcalino y cuarzo) en Colombia en dos zonas de estudio: Villa de Leyva, Boyacá y Pescadero, Aratoca (Santander). Para este propósito se realizaron ensayos que ayudaron a determinar las características geoquímicas de los minerales (Fluorescencia de Rayos X, Microscopía Electrónica de Barrido, Petrografía) y procedimientos microbiológicos (Aislamiento en Medios de Cultivo, Descripción Macro y Microscópica, Tinción de Gram y Perfil Fisicoquímico) para caracterizar los morfotipos de microorganismos endolíticos nativos. También se compiló información climatológica en las áreas de estudio. Finalmente, por medio de un Análisis de Correspondencias Múltiples se analizó la información recopilada. Dentro de los hallazgos recogidos en este estudio se encontró no solamente la presencia de bacterias y levaduras dentro de tres mineralogías sino también que dichas comunidades microbianas endolíticas cultivables utilizan Ca, C, Si, Al y K como macronutrientes y pequeñas trazas de otros elementos para su crecimiento. La información y metodología aquí reunidas sirven para proponer biomarcadores en Astrobiología y para plantear enfoques en Geomicrobiología, donde se estudie cómo, los factores climáticos determinan la aparición de los microorganismos endolíticos.spa
dc.description.abstractThis is a pioneer work in geomicrobiological research in Colombia and open new paths to future investigations where some geological and microbiological phenomena could be studied with a very new integral vision using multiple branches of knowledge. Endolithic microbial communities have been reported in arid and hyperarid zones around the world. Also, different lithologies have been found to be used by bacteria as a microhabitat whose chemical elements may act as nutritional source. This paper gathers geological and microbiological information to determine the affinity between native endolithic microbial communities and three rock- forming minerals (calcite, K feldespar and quartz) in two zones of study located in Colombia: Villa de Leyva Boyacá and Pescadero, Aratoca (Santander). For this purpose, X Ray Fluorescence; Scan Electronic Microscopy and Petrography were carried out to determine the geochemical characteristics of the minerals. Also, microbiological procedures (Culture techniques, Gram stain and Physicochemical Profile) were performed to characterize the morphotypes of native endolithic microorganisms. Next to that, climatological data were also collected for the zones under study. Finally, for statistical analysis the method of Multiple Correspondence Analysis was used to analyze the collected information. Within the findings collected in this study we found not only the presence of bacteria and yeast within the three mineralogies but also that mentioned endolithic culturable microbial communities harness Ca, C, Si, Al y K as macronutrients and small traces of other elements for their growth. The data and methodology collected here is useful for suggesting biosignatures in Astrobiology and set out approaches to Geomicrobiology, where studies about how climate factors determine microbial endolithic colonization were made.spa
dc.description.additionalMagíster en Ciencias - Geología. Línea de investigación: Geomicrobiologíaspa
dc.description.degreelevelMaestríaspa
dc.format.extent129spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationCorzo-Acosta, J., Tchegliakova, N., & Sánchez, J. (2018). Bacterias endolíticas cultivables en minerales (Cuarzo, Feldespato y Calcita) provenientes de muestreos geológicos en áreas de Villa de Leyva, Boyacá y Pescadero, Santander (Colombia). Universidad Nacional de Colombia, Bogotá.spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77435
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Geocienciasspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Geologíaspa
dc.relation.referencesAlbesiano, S., Rangel, J. O., & Cadena, A. (2003). La vegetación del cañón del río Chicamocha (Santander, colombia). ECOLOGÍA, 73-99.spa
dc.relation.referencesAngel, L., & Ramirez, M. J. (2015). Cartografia geologica y cálculo del balance hidrico para la construccion del tunel de carga en la central hidroelectrica chicamocha - municipio de Aratoca, Santander. UNIVERSIDAD PEDAGOGICA Y TECNOLOGICA DE COLOMBIA, Trabajo de pregrado.spa
dc.relation.referencesAscaso , C., & Wierzchos , J. (2003). The search for biomarkers and microbial fossils in Antarctic rock microhabitats. Geomicrobiology J 20, 439–450.spa
dc.relation.referencesAscaso, C. (2002). Ecología microbiana de sustratos líticos. Ciencia y medio ambiente, 90-103.spa
dc.relation.referencesBandfield, J. L., Hamilton, V. E., Christense, P. R., & McSween Jr, H. Y. (2004a). Identification of quartzofeldspathic materials on Mars. J. Geophys. Res., 109:, E10009.spa
dc.relation.referencesBanfield, J. F., Moreau, J. W., Chan, C. S., Welch, S. A., & Little, B. (2001, ). Mineralogical Biosignatures and the Search for Life on Mars. ASTROBIOLOGY, Volume 1, Number 4,, 447-465.spa
dc.relation.referencesBell , R. A., Athey , P. V., & Sommerfeld , M. R. (1986). ryptoendolithic algal communities of the Colorado Plateau. J Phycol 22:, 429–435.spa
dc.relation.referencesBell, R. A. (1993). Cryptoendolithic algae of hot semiarid lands and deserts. . J Phycol 29:, 133–139.spa
dc.relation.referencesBlyth , A. J., & Frisia , S. (2008). Molecular Evidence for Bacterial Mediation of Calcite Formation in Cold High-Altitude Caves. Geomicrobiology Journal, 101-111.spa
dc.relation.referencesBoyd, E., Cummings, D., & Gessey , G. (2007). Mineralogy influences structure and diversity of bacterial communities associated with geological substrata in a pristine aquifer. . Microbial Ecology 54, 170-182.spa
dc.relation.referencesBrehm, U., Gorbushina, A., & Mottershead, D. (2005). The role of microorganisms and biofilms in the breakdown and dissolution of quartz and glass. Palaeogeography, Palaeoclimatology, Palaeoecology 219, 117– 129.spa
dc.relation.referencesBungartz , F., Garvie , L. J., & Nash , T. I. (2004). Anatomy of the endolithic Sonoran Desert lichen Verrucaria rubrocincta Breuss: implications for biodeterioration and biomineralization. Lichenology 36:, 55–73.spa
dc.relation.referencesCarson, J. K., Campbell, L., Rooney, D., Clipson, N., & Gleeson, D. B. (2009). Minerals in soil select distinct bacterial communities in their microhabitats. FEMS microbiology ecology, 381-388.spa
dc.relation.referencesCasamatta , D. A., Verb , R. G., Beaver , J. R., & Vis , M. L. (2002). An investigation of the cryptobiotic community from sandstone cliffs in southeast Ohio. Int J Plant Sci 163:, 837–845.spa
dc.relation.referencesCastellanos , A. O., Ríos , R. C., & Takasu, A. (2004). Sector-zoned garnets from pelitic schists of the Silgara Formation in the Mutiscua area, Santander Massif, Eastern Cordillera,Colombia. . Boletín de Geología, 26(42):, 8-18.spa
dc.relation.referencesChristopher J. McNamara, T. D. (2005). Epilithic and Endolithic Bacterial Communities in Limestone from a Maya Archaeological Site. Microbial Ecology, Vol 51, 51-64.spa
dc.relation.referencesCockell , C. S., Olsson , K., Knowles , F., Kelly , L., Herrera , A., Thorsteinsson , T., & Marteinsson , V. (2009a). Bacteria in weathered basaltic glass, Iceland. Geomicrobiol J 26, 491–507.spa
dc.relation.referencesCockell , C. S., Osinski , G. R., Banerjee, N. R., Howard , K. T., Gilmour , I., & Watson , J. S. (2010). The microbe-mineral environment and gypsum neogenesis in a weathered polar evaporite. Geobiology 8, 293–308.spa
dc.relation.referencesCockell, C. S., Olsson-Francis , K., Herrera , A., & Meunier , A. (2009b). Alteration textures in terrestrial volcanic glass and the associated bacterial community. . Geobiology 7, 50–65.spa
dc.relation.referencesCockell, C., & Stokes , M. D. (2004). Widespread colonization by polar hypoliths. Nature 431, 414.spa
dc.relation.referencesConrad, P. G., & Nelson, K. H. (2001). A non-Earthcentric approach to life detection. Atrobiology 1, 15-24.spa
dc.relation.referencesCordani, U., Cardona, A., Jimenez, D., Liu, D., & Nutman, A. (2005). Geochronology of Proterozoic basement inliers in Colombian Andes: tectonic history of remnants of a fragmented Grenville belt. In: Terrane Processes at Margins of Gondwana. . Geological Society London, Special Publications. Edited by Vaughan, A.; Leat, P.; Pankhurst, R. 246: , 329-346.spa
dc.relation.referencesCorzo, J. A., & Tchegliakova, N. (2015). Relaciones geobiologicas entre rocas de la Formación Churuvita con bacterias nativas en el sector de Villa De Leyva. Universidad Nacional de Colombia, Faculad de Ciencias, Departamento de geociencias.spa
dc.relation.referencesCousins, C. R., Cockell, C. S., & The Geobiology in Space Exploration Topical Team. (2016). An ESA roadmap for geobiology in space exploration. Acta Astronautica, 286-295.spa
dc.relation.referencesCowan , D. A., Khan , N., Pointing , S. B., & Cary , C. (2010). Diverse hypolithic refuge communities in the McMurdo Dry Valleys. Antarct Sci 22:, 714–720.spa
dc.relation.referencesDietrich, L. E., Tice, M. M., & Newman, D. K. (2006). The co-evolution of life and Earth. Current Biology Vol 16 No 11, R395-R400.spa
dc.relation.referencesDong , H., Rech , J. A., Jiang , H., Sun , H., & Buck , B. J. (2007). Endolithic cyanobacteria in soil gypsum: occurrences in Atacama (Chile), Mojave (United States), and Al-Jafr (Jordan) Deserts. . J Geophys Res Biogeo 112,, G02030.spa
dc.relation.referencesEhrlich, H. L. (1998). Geomicrobiology: its significance for geology. Earth-Science Reviews, 45-60.spa
dc.relation.referencesEtayo, F. (1968). El sistema cretáceo en la región de Villa de Leyva y zonas próximas. Revista Geología Colombiana-No 5, 5-74.spa
dc.relation.referencesEtayo-Serna, F. (1968a). El Sistema Cretáceo en la región de Villa de Leiva y zonas próximas. Geología Colombiana, (5):, 5 - 74.spa
dc.relation.referencesEtayo-Serna, F. (1968b). Sinopsis estratigráfica de la región de Villa de Leiva y zonas próximas. Boletín de Geología, (21):, 19 - 32.spa
dc.relation.referencesEvans, J. (1977). Geological and Geochemical reconnaissance in the Central Santander Massif, Deparments of Santander and Norte de Santander, Colombia. U. S. Geological Survey (edits) , 43.spa
dc.relation.referencesFerris , F. G., & Lowson , E. A. (1997). Ultrastructure and geochemistry of endolithic microorganisms in limestone of the Niagara Escarpment. Can J Microbiol 43:, 211–219.spa
dc.relation.referencesFischer, G., & Lüdders, P. (2002). Efecto d e la altitud sobre el crecimiento y desarrollo vegetativo de la Uchuva (Physalys Peruviana L.). Revista Comalfi, Vol XXIX, número 1, 1-10.spa
dc.relation.referencesFriedman , E. I. (1980). Endolithic microbial life in hot and cold deserts. Origins Life Evolution B 10, 223-235.spa
dc.relation.referencesFriedman, E. I., & Ocampo , R. (1976). Endolithic blue-green algae in the Dry Valleys primary producers in the Antartic desert ecoyistem . Science 193, 1247-1249.spa
dc.relation.referencesFriedmann , E. I., & Weed, R. (1987). Microbial trace fossil formation, biogenousand abiotic weathering in the Antarctic cold dessert. Sciene 236, 654-752.spa
dc.relation.referencesFriedmann , E. I., & Kibler, A. P. (1980). Nitrogen economy of endolithic microbial communities in hot and cold deserts. Microb Ecol 6:, 95–108.spa
dc.relation.referencesFriedmann , E. I., McKay , C. P., & Nienow , J. A. (1987). The cryptoendolithic microbial environment in the Ross Desert of Antarctica: satellite-transmitted continuous nanoclimate data, 1984 to 1986. Polar Biol 7:, 273–287.spa
dc.relation.referencesGarcía, C., & Ríos, C. (1999). Metamorfismo y metalogénia asociada del Macizo de Santander, Cordillera Oriental, Colombia. . Informe fnal Proyecto de Investigación 1102-05-083-95 Colciencias-Universidad Industrial de Santander, Bucaramanga, , 191.spa
dc.relation.referencesGargaud, M., Martin, H., & Claeys, P. (2007). Lectures in Astrobiology. Verlag, Berlin, Heidelberg: Springer.spa
dc.relation.referencesGleeson, D. B., Kennedy, N. M., Clipson, N., Melville, K., Gadd, G. M., & McDermott, F. P. (2005). Characterization of Bacterial Community Structure on a Weathered Pegmatitic Granite. Microbial Ecology, 526-534.spa
dc.relation.referencesGoublic , S., Friedmann, I., & Schneider , J. (1981). The lithobiontic ecological niche, with special reference to microorganisms. J Sediment Petrol 51, 475–478.spa
dc.relation.referencesGreenfield, L. G. (1988). Forms of nitrogen in Beacon sandstone rocks containing endolithic microbial in Southern Victoria Land, Antarctica. . Polarforschung 58:, 211–218.spa
dc.relation.referencesGrotzinger, J. P., & Rothman, D. H. (1996). An abiotic model for stromatolite morphogenesis. Nature VOL: 383, 423-425.spa
dc.relation.referencesHoppert , M., Flies , C., Pohl , W., Günzel , B., & Schneider , J. (2004). Colonization strategies of lithobiontic microorganisms on carbonate rocks. Environ Geol 46, 421–428.spa
dc.relation.referencesHughes , K. A., & Lawley , B. (2003). A novel Antarctic microbial endolithic community within gypsum crusts. . Environ Microbiol 5:, 555–565.spa
dc.relation.referencesIDEAM. (1981-2010). Atlas interactivo IDEAM. Obtenido de Atlas interactivo climatológico: http://atlas.ideam.gov.co/visorAtlasClimatologico.htmlspa
dc.relation.referencesIDEAM. (2014-2015). Atlas interactivo IDEAM. Obtenido de Atlas interactivo radiación IDEAM: http://atlas.ideam.gov.co/visorAtlasRadiacion.htmlspa
dc.relation.referencesIngeominas. (1973). Memoria explicativa plancha 120 Bucaramanga y Pamplona. Boletin geológico Vol XXI N° 1 - 3, pág. 35.spa
dc.relation.referencesIngeominas. (1976). Geología de la plancha 191 tunja. Boletin geológico Vol 24 - N°2, págs. 1-48.spa
dc.relation.referencesJohnston , C. G., & Vestal , J. R. (1986). Does iron inhibit cryptoendolithic communities? . Antarct J US 21:, 225–226.spa
dc.relation.referencesKonhauser, K. O., Schultze-lam, S., Ferris, F. G., Fyfe, W. S., Longstaffe, F. J., & Beveridge, T. J. (1993). Mineral Precipitation by Epilithic Biofilms in the Speed River, Ontario, Canada. Applied and environmental microbiology, 60, No. 2, 549-553.spa
dc.relation.referencesLacap , D. C., Warren-Rhodes , K. A., McKay , C. P., & Pointing , S. b. (2011). Cyanobacteria and chloroflexidominated hypolithic colonization of quartz at the hyper-arid core of the Atacama Desert, Chile. . Extremophiles 15:, 31–38.spa
dc.relation.referencesLange, O. L., Nobel , P. S., Osbond, C. B., & Ziegler, H. (1981). Physiological plant ecology I. Springer-Verl., 170-197.spa
dc.relation.referencesLebart, L., Morineau, A., & Piron, M. (1995). Statistique exploratoire multidimensinoelle. Paris: NUNOD.spa
dc.relation.referencesLéveille, R. J., & Datta, S. (2010). Lava tubes and basaltic caves as astrobiological targets on Earth and Mars: A review. Planetary and Spacy Science 58:, 592-598.spa
dc.relation.referencesLimited, H. X. (2005). Solar PV Panel/ Solar Radiation Maps. Obtenido de Everredtronics: http://www.everredtronics.com/Solar.Download.htmlspa
dc.relation.referencesMadigan, M., Martinko, J., & Parker, J. (2004). Brook, Biología de los microorganismos (Decima edición ed.). Madrid: Pearson educación.spa
dc.relation.referencesMakhalanyane, T. P., Pointing , S. B., & Cowan, D. A. (2014). Lithobionts: Cryptic and Refuge Niches. En D. A. Cowan, Antarctic Terrestrial Microbiology, Physical and Biological Properties of Antarctic Soils (págs. 163-179). London: Springer.spa
dc.relation.referencesMariño, M. A. (2009). Biodegradación estimulada de aguas contaminadas con hidrocarburos aromáticos policíclicos (HAPs) por aislados nativos pseudomonas spp. Universidad Industrial de Santander, Facultad de Ciencias Básicas, Escuela de Química, Tésis de pregrado.spa
dc.relation.referencesMauck, B. S., & Roberts, J. A. (2007). Mineralogic control on abundance and diversity of surface-adherent microbial communities. Geomicrobiology J 24:, 167-177.spa
dc.relation.referencesMcKay , C. P., Friedmann , E. I., Gómez-Silva, Villanueva , L. C., Andersen, D. T., & Landheim, R. (2003). Temperature and Moisture Conditions for Life in the Extreme Arid Region of the Atacama Desert: Four Years of Observations Including the El Niño of 1997–1998. Astrobiology Volume 3, Number 2, 393-406.spa
dc.relation.referencesMcKay, C. P. (2002). Two Dry For Life: The Atacama Desert And Mars Too hostile for Earth microbes, the Atacama is a good simulation of Mars. AD ASTRA -WASHINGTON-. 14(3):, págs. 30-33.spa
dc.relation.referencesMckay, C. P., Friedman, E. I., Wharton, R. A., & Davis, W. L. (1992). History of water on Mars: a biological perspective. Advance Space Research 12, 231-238.spa
dc.relation.referencesMcloughlin, N., Staudigel, H., Furnes, H., Eickmann, B., & Ivarsson, M. (2010). Mechanisms of microtunneling in rock substrates: distinguishing endolithic biosignatures from abiotic microtunnels. Geobiology 8: , 245–255.spa
dc.relation.referencesMcNamara, C. J., Perry, T. D., Bearce, K. A., Hernandez - Duque, G., & MItchell, R. (2005). Epilithic and Endolithic Bacterial Communities in Limestone from a Maya Archaeological Site. Microbial Ecology, Vol 51, 51-64.spa
dc.relation.referencesMendoza, H., & et al. (1979). Geología y geoquímica del área de California, Santander. . Boletín Geológico Ingeominas, 22:, 3-52.spa
dc.relation.referencesMenéndez Valderrey, J. L., Fernández Martínez, R. R., Ruíz, L. C., & Rubio Domínguez., E. (2004-2018). Asturnatura, Revista online, Calcita. Obtenido de https://www.asturnatura.com/mineral/calcita/1256.htmlspa
dc.relation.referencesNewberry, C. J., Webster, G., Cragg, B. A., Parkes, R. J., Weightman, A. J., & Fry, J. C. (2004). Diversity of prokaryotes and methanogenesis in deep subsurface sediments from the Nankai Trough, Ocean Drilling Program Leg 190. Environ Microbiol 6: , 274–287.spa
dc.relation.referencesNoffke, N. (2010). Geobiology. Microbial Mats in Sandy Deposits from the Archean Era to Today . Norfolk Virgin Islands: Springer .spa
dc.relation.referencesNRC. (2007). An astrobiology strategy for the exploration of Mars. The National Academies Press (pág. 118). Washington D.C.: National Research Council.spa
dc.relation.referencesNützel, A. (2017). Palaeoecology Lecture, 1st week. Paleoecology lecture, (pág. pp 27). Munich.spa
dc.relation.referencesÖcal, D. A., Cramer, T., & Siegesmund, S. (2007). Caracterización de agentes del deterioro de los monolitos de piedra arenisca del Infiernito – Colombia. 2do. CONGRESO ARGENTINO Y 1ro. LATINOAMERICANO DE ARQUEOMETRÍA, (pág. 3). Buenos Aires.spa
dc.relation.referencesOmelon , C. R., Pollard , W. H., & Ferris , F. G. (2006a). Environmental controls on microbial colonization of high Arctic cryptoendolithic habitats. Polar Biol 30:, 19–29.spa
dc.relation.referencesOmelon, C. R. (2016). Endolithic Microorganisms and Their Habitats. En C. J. Hurst, Advances in environmental microbiology. Their World: A Diversity of Microbial Environments (págs. 171-201). Cincinati, OH, USA. Universidad del Valle, Cali, Colombia: Springer.spa
dc.relation.referencesOsorio, D., & Sánchez, C. (2017). Evaluación de biopelículas y tapetes microbianos actuales y comparación con estructuras similares en diferentes formaciones cretácicas de colombia. Colombia: Universidad Nacional de Colombia, Departamento de Geociencias.spa
dc.relation.referencesParnell, J., Lee , P., Cockell , C. S., & Osinski , G. R. (2004). Microbial colonization in impact-generated hydrothermal sulphate deposits, Haughton impact structure, and implications for sulphates on Mars. Int J Astrobiol 3, 247–256.spa
dc.relation.referencesPatarroyo, P., & Moreno, M. (1997). Nuevas Consideraciones en torno al Cabeceo del Anticlinal de Arcabuco, en cercanías de Villa de Leyva - Boyacá . Geología Colombiana, Volumen 22, 27-34.spa
dc.relation.referencesPentecost, A., Bayari, S., & Yesertener, C. (1997). Phototrophic Microorganisms of the Pamukkale Travertine, Turkey: Their Distribution and Influence on Travertine Deposition. Geomicrobiology Journal 14:4, 269-283.spa
dc.relation.referencesPointing , S. B., Warren-Rhodes , K. A., Lacap , D. C., Rhodes , K. L., & McKay , C. P. (2007). Hypolithic community shifts occur as a result of liquid water availability along environmental gradients in China’s hot and cold hyperarid deserts. Environmental Microbiology 9, 414–424.spa
dc.relation.referencesR Core Team. (2017). R: A languange and envrironment for Statistical Computing. Viena, Austria.spa
dc.relation.referencesRestrepo, P. (1995). Late Precambrian to early Mesozoic tectonic evolution of the colombian Andes, based on new geochronological, geochemical and isotopic data. Unpub. Ph.D. thesis, University of Arizona, , 195.spa
dc.relation.referencesReyes, Y. C., Vergara, I., Torres, O. E., Díaz, M., & González, E. E. (2016). Contaminación Por Metales Pesados: Implicaciones En Salud, Ambiente Y Seguridad Alimentaria. Revista Ingeniería, Investigación y Desarrollo, Vol. 16 Nº 2:, 66-77.spa
dc.relation.referencesRoberts, J. A. (2004). Mineral stimulation of subsurface microorganisms: release of limiting nutrients from silicates. Chem Geology 203:, 91-108.spa
dc.relation.referencesRogers, J. R., & Bennett, P. C. (2004). Mineral stimulation of subsurface microorganisms: release of limiting nutrients from silicates. Chemical Geology, 91-108.spa
dc.relation.referencesRondanelli, R., Molina, A., & Falvey, M. (2014). The Atacama Surface Solar Maximum. Bulletin of the American Meteorological Society.spa
dc.relation.referencesRoyero , G. M., & Clavijo , J. (2001). Mapa Geológico generalizado departamento de Santander. Escala 1: 400.000. Informe Ingeominas, 92 p.spa
dc.relation.referencesRussell, M. J., Hall, A. J., & Martin, W. (2010). Serpentinization as a source of energy at the origin of life. Geobiology, 8 (5) , 355-371.spa
dc.relation.referencesSchlesinger, W. H., Pippen , J. S., Wallenstein , M. D., Hofmockel , K. S., Klepeis , D. M., & Mahall , B. E. (2003). Community composition and photosynthesis by photoautotrophs under quartz pebbles, southern Mojave desert. . Ecology 84:, 3222–3231.spa
dc.relation.referencesSiebert, J., Hirsch, P., Hoffmann, B., Gliesche, C. G., Peissl , K., & Jendrach , M. (1996). Cryptoendolithic microorganisms from Antarctic sandstone of Linnaeus Terrace (Asgard range): diversity, properties and interactions. Biodiversity Conservation 5, 1337–1363.spa
dc.relation.referencesSigler , W. V., Bachofen , R., & Zeyer , J. (2003). Molecular characterization of endolithic cyanobacteria inhabiting exposed dolomite in central Switzerland. . Environ Microbiol 5:, 618–627.spa
dc.relation.referencesSmith, M. C., Bowman , J. P., Scott , F. J., & Line, M. A. (2000). Sublithic bacteria associated with Antarctic quartz stones. . Antarct Sci 12:, 177–184.spa
dc.relation.referencesSmith, M. R., & Bandfield, J. L. (2012). Geology of quartz and hydrated silica-bearing deposits near Antoniadi Crater, Mars,. J. Geophys. Res., 117:, E06007, .spa
dc.relation.referencesStomeo , F., Valverde , A., Pointing , S. B., McKay , C. P., Warren-Rhodes , K. A., Tuffin, M. I., . . . Cowan, D. A. (2013). Hypolithic and soil microbial community assembly along an aridity gradient in the Namib desert. . Extremophiles 17:, 329–337.spa
dc.relation.referencesUniversidad Nacional de Educación a Distancia, Universidad Politécnica de Madrid. (2000). CristaMine, Subgrupo de los feldespatos potásicos. Obtenido de http://www2.uned.es/cristamine/min_descr/grupos/feldespatos_potasicos/fsppot_gr.htmspa
dc.relation.referencesValencia, H. (2004). Manual de prácticas de microbiología básica. Notas de clase. Departamento de Biología, Facultad de Ciencias. Universidad Nacional de Colombia.: Unilibros, 1Ed. Bogotá. 140 p.spa
dc.relation.referencesVareshi, V. (1980). Vegetationsökologie der Tropen. Verl Stuttgart.spa
dc.relation.referencesVargas, M. (Enero de 2014). Research Gate, CARACTERIZACIÓN GEOLÓGICA DEL TRAVERTINO LOCALIZADO AL NOROCCIDENTE DEL MUNICIPIO DE PESCA, BOYACÁ. Obtenido de https://www.researchgate.net/publication/304252053_CARACTERIZACION_GEOLOGICA_DEL_TRAVERTINO_Lspa
dc.relation.referencesVítek, P., Ascaso, C., Artieda, O., & Wierzchos, J. (2016). Raman imaging in microbiology: Endolithic phototrophic microorganisms in gypsum from the extreme sun radiation area in the Atacama Desert. Analytical and Bioanalytical Chemistry, 4083–4092.spa
dc.relation.referencesWalker , J. J., & Pace , N. R. (2007a). Endolithic microbial ecosystems. Annu Rev Microbiol 61:, 331–347.spa
dc.relation.referencesWard, D., Goldsmith, R., Cruz, B., & Jaramillo, C. (1973). Geología de los Cuadrángulos H-12, Bucaramanga y H-13, Pamplona, Departamento de Santander. . U.S. Geological Survey e Ingeominas Boletín Geológico XXI (1-3), 1-132.spa
dc.relation.referencesWarren-Rhodes , K. A., Rhodes , K. L., Boyle , L. N., Pointing , S. B., Chen , Y., Liu , S., . . . McKay , C. P. (2007a). Cyanobacterial ecology across environmental gradients and spatial scales in China’s hot and cold deserts. FEMS Microbiol Ecol 61:, 470–482.spa
dc.relation.referencesWickham, H. (2009). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. Obtenido de http://ggplot2.orgspa
dc.relation.referencesWierzchos , J., Ascaso , C., Sancho, L. G., & Green , A. (2003). Iron-rich diagenetic minerals are biomarkers of microbial activity in Antarctic rocks. . Geomicrobiol J 20, 15–24.spa
dc.relation.referencesWierzchos , J., Davila , A. F., Artieda , O., Cámara-Gallego, B., de los Ríos, A., Nealson , K. H., . . . Ascaso, C. (2013). Ignimbrite as a substrate for endolithic life in the hyper-arid Atacama Desert: Implications for the search for life on Mars. Icarus 224:, 334–346.spa
dc.relation.referencesWierzchos, J., De los Ríos, A., & Ascaso, C. (2012). Microorganisms in desert rocks: the edge of life on Earth. International Microbiology 15:, 173-183.spa
dc.relation.referencesWong , F. K., Lau , M. C., Lacap , D. C., Aitchison , J. C., Cowan , D. A., & Pointing, S. B. (2010b). Endolithic microbial colonization of limestone in a high-altitude arid environment. . Microb Ecol 59:, 689–699.spa
dc.relation.referencesZuñiga Lopez, I., & Crespo del Arco, E. (2015). Meteorología y climatología. Madrid: Universidad Nacional de Educación a Distancia.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseCC0 1.0 Universalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/spa
dc.subject.ddc550 - Ciencias de la tierra::551 - Geología, hidrología, meteorologíaspa
dc.subject.proposalAstrobiologyeng
dc.subject.proposalAstrobiologíaspa
dc.subject.proposalEndolithic microbial communitieseng
dc.subject.proposalComunidades microbianas endolíticasspa
dc.subject.proposalEcología Microbianaspa
dc.subject.proposalMicrobial ecologyeng
dc.subject.proposalGeomicrobiologíaspa
dc.subject.proposalGeomicrobiologyeng
dc.subject.proposalMinerales formadores de rocasspa
dc.subject.proposalRock- forming mineralseng
dc.titleBacterias endolíticas cultivables en minerales (Cuarzo, Feldespato y Calcita) provenientes de muestreos geológicos en áreas de Villa de Leyva, Boyacá y Pescadero, Santander (Colombia)spa
dc.title.alternativeEndolithic culturable bacteria in minerals (Quartz, K-Feldespar, Calcite) from geologic sampling in Villa de Leyva, Boyacá and Pescadero, Santander (Colombia)spa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032446846.2018.pdf
Tamaño:
4.58 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.9 KB
Formato:
Item-specific license agreed upon to submission
Descripción: