On the generation of subphotospheric acoustic sources

dc.contributor.advisorCalvo Mozo, Benjamín
dc.contributor.advisorMartínez Oliveros, Juan Carlos
dc.contributor.authorMartínez Cifuentes, Angel Daniel
dc.contributor.researchgroupAstronomía, Astrofísica y Cosmologiaspa
dc.date.accessioned2022-07-19T00:06:33Z
dc.date.available2022-07-19T00:06:33Z
dc.date.issued2021
dc.descriptionilustraciones, fotograficas, graficas, tablasspa
dc.description.abstractThis work explored the possibility of the generation of seismic signals on the Sun from a confinement of energy located in the solar interior. This idea was developed through two sections. In the first section, corresponding to the observational part, the computational heliseismic holographic technique was applied to a series of photospheric velocity maps. The results obtained were contrasted with physical observables in the surface of the Sun. The analyzed data corresponded to images of the intensity of the continuum and of the line of sight magnetic and of velocity fields. The images were obtained with the HMI instrument on board the SDO spacecraft, which provides measurements of the entire solar disk at the 6173.3 Å Fe-I absorption line with a spatial resolution of 0.503" and a cadence of 45 s. With this method, we found acoustic signals at high frequencies extending beyond 10 mHz. These results allow to have a better discrimination of the spatial morphology of acoustic transients. On the other hand, taking into account the focus-defocus technique in computational holography, it was possible to analyze these ultra-impulsive signals at different depths in the solar interior. We discovered that these signals are not strictly confined to the solar surface but have a significant degree of vertical extension in the active region. In the second part, a magnetohydrodynamic simulation in 2 and 3 dimensions was developed. In this numerical scheme the magnetic structure immersed in a solar model of the interior was disturbed. We found that disturbances located at different depths are capable of generating seismic signals that can be detected on the surface, reinforcing the hypothesis raised in the observational section. These results open new prospects in helioseismology, which involves the generation of acoustic signals in solar flare events. This would allow a better understanding of the processes that take place in the solar interior as well as their relationship with the generation of acoustic signals, a mystery that still remains in solar astrophysics.eng
dc.description.abstractEste trabajo exploró la posibilidad de generación de señales sísmicas en el Sol a partir de un confinamiento de energía localizado en el interior solar. Esta idea se desarrolló a través de dos secciones. En la primera sección, correspondiente a la parte observacional, se aplicó la técnica de heliosismología holográfica computacional a series de mapas de velocidad fotosféricos. Los resultados se contrastaron con observables físicos de la superficie del Sol. Los datos analizados correspondieron a imágenes de la intensidad del continuo y del campo magnético y de velocidades en la línea de la visual. Las imágenes fueron obtenidas con el instrumento HMI a bordo del observatorio SDO, cuyos datos de ciencia brindan mediciones del disco solar completo en la línea de absorción Fe-I a 6173.3 Å con una resolución espacial de 0.504" por píxel y una cadencia temporal de 45 s. Con este método, encontramos señales acústicas a altas frecuencias que se extienden más allá de 10 mHz. Dichos resultados permiten tener una mejor discriminación de la morfología espacial de transientes acústicos. Ahora bien, teniendo en cuenta la técnica de enfoque-desenfoque en holografía computacional, fue posible analizar dichas señales ultra-impulsivas a diferentes profundidades en el interior solar. Descubrimos que las señales que se observan no están confinadas estrictamente a la superficie solar sino que tienen un grado de extensión vertical en la región activa. En la segunda parte se desarrolló una simulación magnetohidrodinámica en 2 y 3 dimensiones. En dicho esquema numérico se perturbó la estructura magnética inmersa en un modelo solar del interior. Encontramos que perturbaciones localizadas a diferentes profundidades son capaces de generar señales sísmicas que pueden ser detectadas en la superficie, reforzando la hipótesis planteada en la sección observacional. Dichos resultados abren la posibilidad a una rama de estudio más profunda dentro de la heliosismología, la cual involucra la generación de señales acústicas en eventos de fulguraciones solares. Esto permitiría entender mejor los procesos que se llevan a cabo en el interior solar así como su relación con la generación de señales acústicas, un misterio que permanece todavía en la astrofísica solar. (Texto tomado de la fuente)spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Astronomíaspa
dc.description.researchareaAstrofísica Solarspa
dc.format.extentvii, 71 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81704
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentObservatorio Astronómico Nacionalspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Astronomíaspa
dc.relation.referencesConny Aerts, Jørgen Christensen-Dalsgaard, and Donald W. Kurtz. Asteroseismology. 2010.spa
dc.relation.referencesJ. D. Alvarado-Gómez, J. C. Buitrago-Casas, J. C. Martínez-Oliveros, C. Lindsey, H. Hudson, and B. Calvo-Mozo. Magneto-Acoustic Energetics Study of the Seismically Active Flare of 15 February 2011. Solar Phys., 280(2):335–345, October 2012. doi: 10.1007/s11207-012-0009-6.spa
dc.relation.referencesJohn N. Bahcall, Aldo M. Serenelli, and Sarbani Basu. New Solar Opacities, Abundances, Helioseismology, and Neutrino Fluxes. Astrophys. J. Lett., 621(1):L85–L88, March 2005. doi: 10.1086/428929.spa
dc.relation.referencesSarbani Basu. Global seismology of the Sun. Living Reviews in Solar Physics, 13(1):2, August 2016. doi: 10.1007/s41116-016-0003-4.spa
dc.relation.referencesArnold O. Benz. Flare Observations. Living Reviews in Solar Physics, 14(1):2, December 2017. doi: 10.1007/s41116-016-0004-3.spa
dc.relation.referencesD. C. Braun. Scattering of p-Modes by Sunspots. I. Observations. Astrophys. J., 451:859, October 1995. doi: 10.1086/176272spa
dc.relation.referencesD. C. Braun, Jr. Duvall, T. L., and B. J. Labonte. Acoustic Absorption by Sunspots. Astrophys. J. Lett., 319:L27, August 1987. doi: 10.1086/184949.spa
dc.relation.referencesD. C. Braun, Jr. Duvall, T. L., B. J. Labonte, S. M. Jefferies, J. W. Harvey, and M. A. Pomerantz. Scattering of p-Modes by a Sunspot. Astrophys. J. Lett., 391:L113, June 1992. doi: 10.1086/186410.spa
dc.relation.referencesD. C. Braun, A. C. Birch, and C. Lindsey. Local Helioseismology of Near-Surface Flows. In D. Danesy, editor, SOHO 14 Helio- and Asteroseismology: Towards a Golden Future, volume 559 of ESA Special Publication, page 337, October 2004.spa
dc.relation.referencesJ. C. Buitrago-Casas, J. C. Martínez Oliveros, C. Lindsey, B. Calvo-Mozo, S. Krucker, L. Glesener, and S. Zharkov. A Statistical Correlation of Sunquakes Based on Their Seismic and White-Light Emission. Solar Phys., 290(11):3151–3162, November 2015. doi: 10.1007/s11207-015-0786-9.spa
dc.relation.referencesR. H. Cameron, L. Gizon, H. Schunker, and A. Pietarila. Constructing Semi-Empirical Sunspot Models for Helioseismology. Solar Phys., 268(2):293–308, February 2011. doi: 10.1007/s11207-010-9631-3.spa
dc.relation.referencesH. Carmichael. A Process for Flares, volume 50, page 451. 1964.spa
dc.relation.referencesR. C. Carrington. Description of a Singular Appearance seen in the Sun on September 1, 1859. Mon. Not. Roy. Astron. Soc., 20:13–15, November 1859. doi: 10.1093/mnras/20.1. 13.spa
dc.relation.referencesJ. S. Castellanos Durán, L. Kleint, and B. Calvo-Mozo. A Statistical Study of Photospheric Magnetic Field Changes During 75 Solar Flares. Astrophys. J., 852(1):25, January 2018. doi: 10.3847/1538-4357/aa9d37.spa
dc.relation.referencesSubrahmanyan Chandrasekhar. Radiative transfer. 1960.spa
dc.relation.referencesChristensen-Dalsgaard. Lecture Notes on Stellar Oscillations, Fifth Edition. January 2014. URL https://users-phys.au.dk/jcd/oscilnotes/Lecture_Notes_on_Stellar_Oscillations.pdf.spa
dc.relation.referencesJ. Christensen-Dalsgaard, D. Gough, and J. Toomre. Seismology of the Sun. Science, 229 (4717):923–931, September 1985. doi: 10.1126/science.229.4717.923.spa
dc.relation.referencesJ. Christensen-Dalsgaard, W. Dappen, S. V. Ajukov, E. R. Anderson, H. M. Antia, S. Basu, V. A. Baturin, G. Berthomieu, B. Chaboyer, S. M. Chitre, A. N. Cox, P. Demarque, J. Donatowicz, W. A. Dziembowski, M. Gabriel, D. O. Gough, D. B. Guenther, J. A. Guzik, J. W. Harvey, F. Hill, G. Houdek, C. A. Iglesias, A. G. Kosovichev, J. W. Leibacher, P. Morel, C. R. Proffitt, J. Provost, J. Reiter, Jr. Rhodes, E. J., F. J. Rogers, I. W. Roxburgh, M. J. Thompson, and R. K. Ulrich. The Current State of Solar Modeling. Science, 272(5266):1286–1292, May 1996. doi: 10.1126/science.272.5266.1286.spa
dc.relation.referencesJørgen Christensen-Dalsgaard. Helioseismology. Reviews of Modern Physics, 74(4):1073– 1129, November 2002. doi: 10.1103/RevModPhys.74.1073.spa
dc.relation.referencesSébastien Couvidat, S. P. Rajaguru, Richard Wachter, K. Sankarasubramanian, Jesper Schou, and Philip H. Scherrer. Line-of-Sight Observables Algorithms for the Helioseismic and Magnetic Imager (HMI) Instrument Tested with Interferometric Bidimensional Spectrometer (IBIS) Observations. Solar Phys., 278(1):217–240, May 2012a. doi: 10.1007/s11207-011-9927-y.spa
dc.relation.referencesSébastien Couvidat, Jesper Schou, Richard A. Shine, Rock I. Bush, John W. Miles, Philip H. Scherrer, and Richard L. Rairden. Wavelength Dependence of the Helioseismic and Magnetic Imager (HMI) Instrument onboard the Solar Dynamics Observatory (SDO). Solar Phys., 275(1-2):285–325, January 2012b. doi: 10.1007/s11207-011-9723-8.spa
dc.relation.referencesMargarida S. Cunha. Theory of Stellar Oscillations. In Tiago L. Campante, Nuno C. Santos, and Mário J. P. F. G. Monteiro, editors, Asteroseismology and Exoplanets: Listening to the Stars and Searching for New Worlds, volume 49, page 27, January 2018. doi: 10.1007/978-3-319-59315-9_2.spa
dc.relation.referencesA. C. Donea and C. Lindsey. Seismic Emission from the Solar Flares of 2003 October 28 and 29. Astrophys. J., 630(2):1168–1183, September 2005. doi: 10.1086/432155.spa
dc.relation.referencesA. C. Donea, D. C. Braun, and C. Lindsey. Seismic Images of a Solar Flare. Astrophys. J. Lett., 513(2):L143–L146, March 1999. doi: 10.1086/311915.spa
dc.relation.referencesJr. Duvall, T. L. A dispersion law for solar oscillations. Nature, 300(5889):242–243, November 1982. doi: 10.1038/300242a0.spa
dc.relation.referencesJr. Duvall, T. L., S. M. Jefferies, J. W. Harvey, and M. A. Pomerantz. Time-distance helioseismology. Nature, 362(6419):430–432, April 1993. doi: 10.1038/362430a0.spa
dc.relation.referencesA. S. Eddington. The Internal Constitution of the Stars. 1926.spa
dc.relation.referencesG. H. Fisher, D. J. Bercik, B. T. Welsch, and H. S. Hudson. Global Forces in Eruptive Solar Flares: The Lorentz Force Acting on the Solar Atmosphere and the Solar Interior. Solar Phys., 277(1):59–76, March 2012. doi: 10.1007/s11207-011-9907-2.spa
dc.relation.referencesL. Fletcher, B. R. Dennis, H. S. Hudson, S. Krucker, K. Phillips, A. Veronig, M. Battaglia, L. Bone, A. Caspi, Q. Chen, P. Gallagher, P. T. Grigis, H. Ji, W. Liu, R. O. Milligan, and M. Temmer. An Observational Overview of Solar Flares. Space Sci. Rev., 159(1-4): 19–106, September 2011. doi: 10.1007/s11214-010-9701-8.spa
dc.relation.referencesLaurent Gizon and Aaron C. Birch. Local Helioseismology. Living Reviews in Solar Physics, 2(1):6, December 2005. doi: 10.12942/lrsp-2005-6.spa
dc.relation.referencesKolja Glogowski, Monica G. Bobra, Nitin Choudhary, Arthur B. Amezcua, and Stuart J. Mumford. drms: A python package for accessing hmi and aia data. Journal of Open Source Software, 4(40):1614, 2019. doi: 10.21105/joss.01614. URL https://doi.org/10. 21105/joss.01614.spa
dc.relation.referencesPeter Goldreich, Norman Murray, and Pawan Kumar. Excitation of Solar p-Modes. Astrophys. J., 424:466, March 1994. doi: 10.1086/173904.spa
dc.relation.referencesD. O. Gough. Theory of Solar Oscillations. In Erica Rolfe and Bruce Battrick, editors, Future Missions in Solar, Heliospheric & Space Plasma Physics, volume 235 of ESA Special Publication, page 183, June 1985.spa
dc.relation.referencesD. O. Gough and M. J. Thompson. The inversion problem., pages 519–561. 1991.spa
dc.relation.referencesD. O. Gough and J. Toomre. On the Detection of Subphotospheric Convective Velocities and Temperature Fluctuations. Solar Phys., 82(1-2):401–410, Jan 1983. doi: 10.1007/ BF00145579.spa
dc.relation.referencesFrank Hill. Rings and Trumpets—Three-dimensional Power Spectra of Solar Oscillations. Astrophys. J., 333:996, October 1988. doi: 10.1086/166807.spa
dc.relation.referencesT. Hirayama. Theoretical Model of Flares and Prominences. I: Evaporating Flare Model. Solar Phys., 34(2):323–338, February 1974. doi: 10.1007/BF00153671.spa
dc.relation.referencesH. S. Hudson, G. H. Fisher, and B. T. Welsch. Flare Energy and Magnetic Field Variations. In R. Howe, R. W. Komm, K. S. Balasubramaniam, and G. J. D. Petrie, editors, Subsurface and Atmospheric Influences on Solar Activity, volume 383 of Astronomical Society of the Pacific Conference Series, page 221, January 2008.spa
dc.relation.referencesR. A. Kopp and G. W. Pneuman. Magnetic reconnection in the corona and the loop prominence phenomenon. Solar Phys., 50(1):85–98, October 1976. doi: 10.1007/BF00206193.spa
dc.relation.referencesA. G. Kosovichev. Helioseismic Response to the X2.2 Solar Flare of 2011 February 15. Astrophys. J. Lett., 734(1):L15, June 2011. doi: 10.1088/2041-8205/734/1/L15.spa
dc.relation.referencesA. G. Kosovichev and V. V. Zharkova. X-ray flare sparks quake inside Sun. Nature, 393 (6683):317–318, May 1998. doi: 10.1038/30629.spa
dc.relation.referencesA. G. Kosovichev, Jr. Duvall, T. L. Jr., and P. H. Scherrer. Time-Distance Inversion Methods and Results - (Invited Review). Solar Phys., 192:159–176, March 2000. doi: 10.1023/A:1005251208431.spa
dc.relation.referencesJohn Leibacher, Takashi Sakurai, Carolus J. Schrijver, and Lidia van Driel-Gesztelyi. Solar Observation Target Identification Convention for use in Solar Physics. Solar Phys., 263 (1-2):1–2, May 2010. doi: 10.1007/s11207-010-9553-0.spa
dc.relation.referencesRobert B. Leighton, Robert W. Noyes, and George W. Simon. Velocity Fields in the Solar Atmosphere. I. Preliminary Report. Astrophys. J., 135:474, March 1962. doi: 10.1086/ 147285.spa
dc.relation.referencesJames R. Lemen, Alan M. Title, David J. Akin, Paul F. Boerner, Catherine Chou, Jerry F. Drake, Dexter W. Duncan, Christopher G. Edwards, Frank M. Friedlaender, Gary F. Heyman, Neal E. Hurlburt, Noah L. Katz, Gary D. Kushner, Michael Levay, Russell W. Lindgren, Dnyanesh P. Mathur, Edward L. McFeaters, Sarah Mitchell, Roger A. Rehse, Carolus J. Schrijver, Larry A. Springer, Robert A. Stern, Theodore D. Tarbell, Jean- Pierre Wuelser, C. Jacob Wolfson, Carl Yanari, Jay A. Bookbinder, Peter N. Cheimets, David Caldwell, Edward E. Deluca, Richard Gates, Leon Golub, Sang Park, William A. Podgorski, Rock I. Bush, Philip H. Scherrer, Mark A. Gummin, Peter Smith, Gary Auker, Paul Jerram, Peter Pool, Regina Soufli, David L. Windt, Sarah Beardsley, Matthew Clapp, James Lang, and Nicholas Waltham. The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys., 275(1-2):17–40, January 2012. doi: 10.1007/s11207-011-9776-8.spa
dc.relation.referencesC. Lindsey and D. C. Braun. Helioseismic Holography. Astrophys. J., 485(2):895–903, August 1997. doi: 10.1086/304445.spa
dc.relation.referencesC. Lindsey and D. C. Braun. Acoustic Signatures of Subphotospheric Structure Underlying Sunspots. Astrophys. J. Lett., 509(2):L129–L132, December 1998. doi: 10.1086/311766.spa
dc.relation.referencesC. Lindsey and D. C. Braun. Basic Principles of Solar Acoustic Holography - (Invited Review). Solar Phys., 192:261–284, March 2000. doi: 10.1023/A:1005227200911.spa
dc.relation.referencesC. Lindsey, D. C. Braun, S. M. Jefferies, M. F. Woodard, Y. Fan, Y. Gu, and S. Redfield. Doppler Acoustic Diagnostics of Subsurface Solar Magnetic Structure. Astrophys. J., 470: 636, October 1996. doi: 10.1086/177895.spa
dc.relation.referencesCharles Lindsey. Helioseismology Presentation, Curso de Astrofísica 2017-I, Observatorio Astronómico Nacional, Universidad Nacional de Colombia. January 2017.spa
dc.relation.referencesCharles Lindsey and Douglas C. Braun. Helioseismic Imaging of Sunspots at Their Antipodes. Solar Phys., 126(1):101–115, March 1990. doi: 10.1007/BF00158301.spa
dc.relation.referencesCharles Lindsey, J. C. Buitrago-Casas, Juan Carlos Martínez Oliveros, Douglas Braun, Angel D. Martínez, Valeria Quintero Ortega, Benjamín Calvo-Mozo, and Alina-Catalina Donea. Submerged Sources of Transient Acoustic Emission from Solar Flares. Astrophys. J. Lett., 901(1):L9, September 2020. doi: 10.3847/2041-8213/abad2a.spa
dc.relation.referencesD. Lynden-Bell and J. P. Ostriker. On the stability of differentially rotating bodies. Mon. Not. Roy. Astron. Soc., 136:293, January 1967. doi: 10.1093/mnras/136.3.293.spa
dc.relation.referencesMarcos E. Machado, A. Gordon Emslie, and Eugene H. Avrett. Radiative Backwarming in White-Light Flares. Solar Phys., 124(2):303–317, September 1989. doi: 10.1007/ BF00156272.spa
dc.relation.referencesAngel D. Martínez, Valeria Quintero Ortega, J. C. Buitrago-Casas, Juan Carlos Martínez Oliveros, Benjamín Calvo-Mozo, and Charles Lindsey. Ultra-impulsive Solar Flare Seismology. Astrophys. J. Lett., 895(1):L19, May 2020. doi: 10.3847/2041-8213/ab9173.spa
dc.relation.referencesJ. C. Martínez-Oliveros and A. C. Donea. Magnetic field variations and seismicity of solar active regions. Mon. Not. Roy. Astron. Soc., 395(1):L39–L42, May 2009. doi: 10.1111/j. 1745-3933.2009.00637.x.spa
dc.relation.referencesJ. C. Martínez-Oliveros, H. Moradi, and A. C. Donea. Seismic Emissions from a Highly Impulsive M6.7 Solar Flare. Solar Phys., 251(1-2):613–626, September 2008. doi: 10. 1007/s11207-008-9122-y.spa
dc.relation.referencesJ. C. Martínez Oliveros, C. Lindsey, H. S. Hudson, and J. C. Buitrago Casas. Transient Artifacts in a Flare Observed by the Helioseismic and Magnetic Imager on the Solar Dynamics Observatory. Solar Phys., 289(3):809–819, March 2014. doi: 10.1007/s11207-013-0358-9.spa
dc.relation.referencesA. Mignone, G. Bodo, S. Massaglia, T. Matsakos, O. Tesileanu, C. Zanni, and A. Ferrari. PLUTO: A Numerical Code for Computational Astrophysics. Astrophys. J. Suppl., 170 (1):228–242, May 2007. doi: 10.1086/513316.spa
dc.relation.referencesA. Mignone, C. Zanni, P. Tzeferacos, B. van Straalen, P. Colella, and G. Bodo. The PLUTO Code for Adaptive Mesh Computations in Astrophysical Fluid Dynamics. Astrophys. J. Suppl., 198(1):7, January 2012. doi: 10.1088/0067-0049/198/1/7.spa
dc.relation.referencesH. Moradi, C. Baldner, A. C. Birch, D. C. Braun, R. H. Cameron, T. L. Duvall, L. Gizon, D. Haber, S. M. Hanasoge, B. W. Hindman, J. Jackiewicz, E. Khomenko, R. Komm, P. Rajaguru, M. Rempel, M. Roth, R. Schlichenmaier, H. Schunker, H. C. Spruit, K. G. Strassmeier, M. J. Thompson, and S. Zharkov. Modeling the Subsurface Structure of Sunspots. Solar Phys., 267(1):1–62, November 2010. doi: 10.1007/s11207-010-9630-4.spa
dc.relation.referencesDermott Mullan. Physics of the Sun. 2009. doi: 10.1201/b15843.spa
dc.relation.referencesValery M. Nakariakov. Coronal waves and oscillations. In Volker Bothmer and Ahmed Abdel Hady, editors, Solar Activity and its Magnetic Origin, volume 233, pages 464–471, January 2006. doi: 10.1017/S174392130600250X.spa
dc.relation.referencesW. D. Pence, L. Chiappetti, C. G. Page, R. A. Shaw, and E. Stobie. Definition of the Flexible Image Transport System (FITS), version 3.0. Astron. Astrophys., 524:A42, December 2010. doi: 10.1051/0004-6361/201015362.spa
dc.relation.referencesW. Dean Pesnell, B. J. Thompson, and P. C. Chamberlin. The Solar Dynamics Observatory (SDO). Solar Phys., 275(1-2):3–15, January 2012. doi: 10.1007/s11207-011-9841-3.spa
dc.relation.referencesDavid I. Pontin and Gunnar Hornig. The Parker problem: existence of smooth force-free fields and coronal heating. Living Reviews in Solar Physics, 17(1):5, August 2020. doi: 10.1007/s41116-020-00026-5.spa
dc.relation.referencesF. Roddier. Principle of production of an acoustic hologram of the solar surface. Academie des Sciences Paris Comptes Rendus Serie B Sciences Physiques, 281(4):93–95, July 1975.spa
dc.relation.referencesA. J. B. Russell, M. K. Mooney, J. E. Leake, and H. S. Hudson. Sunquake Generation by Coronal Magnetic Restructuring. Astrophys. J., 831(1):42, November 2016. doi: 10.3847/0004-637X/831/1/42.spa
dc.relation.referencesJ. Schou, H. M. Antia, S. Basu, R. S. Bogart, R. I. Bush, S. M. Chitre, J. Christensen- Dalsgaard, M. P. Di Mauro, W. A. Dziembowski, A. Eff-Darwich, D. O. Gough, D. A. Haber, J. T. Hoeksema, R. Howe, S. G. Korzennik, A. G. Kosovichev, R. M. Larsen, F. P. Pijpers, P. H. Scherrer, T. Sekii, T. D. Tarbell, A. M. Title, M. J. Thompson, and J. Toomre. Helioseismic Studies of Differential Rotation in the Solar Envelope by the Solar Oscillations Investigation Using the Michelson Doppler Imager. Astrophys. J., 505 (1):390–417, September 1998. doi: 10.1086/306146.spa
dc.relation.referencesJ. Schou, P. H. Scherrer, R. I. Bush, R. Wachter, S. Couvidat, M. C. Rabello-Soares, R. S. Bogart, J. T. Hoeksema, Y. Liu, T. L. Duvall, D. J. Akin, B. A. Allard, J. W. Miles, R. Rairden, R. A. Shine, T. D. Tarbell, A. M. Title, C. J. Wolfson, D. F. Elmore, A. A. Norton, and S. Tomczyk. Design and Ground Calibration of the Helioseismic and Magnetic Imager (HMI) Instrument on the Solar Dynamics Observatory (SDO). Solar Phys., 275 (1-2):229–259, January 2012. doi: 10.1007/s11207-011-9842-2.spa
dc.relation.referencesCarolus J. Schrijver and George L. Siscoe. Heliophysics: Space Storms and Radiation: Causes and Effects. 2010.spa
dc.relation.referencesH. Schunker, D. C. Braun, C. Lindsey, and P. S. Cally. Physical Properties of Wave Motion in Inclined Magnetic Fields within Sunspot Penumbrae. Solar Phys., 251(1-2):341–359, September 2008. doi: 10.1007/s11207-008-9142-7.spa
dc.relation.referencesHarlow Shapley. On the Nature and Cause of Cepheid Variation. Astrophys. J., 40:448, December 1914. doi: 10.1086/142137.spa
dc.relation.referencesI. N. Sharykin and A. G. Kosovichev. Dynamics of Electric Currents, Magnetic Field Topology, and Helioseismic Response of a Solar Flare. Astrophys. J., 808(1):72, July 2015. doi: 10.1088/0004-637X/808/1/72.spa
dc.relation.referencesI. N. Sharykin, A. G. Kosovichev, and I. V. Zimovets. Energy Release and Initiation of a Sunquake in a C-class Flare. Astrophys. J., 807(1):102, July 2015. doi: 10.1088/ 0004-637X/807/1/102.spa
dc.relation.referencesK. Shibata. Reconnection Models of Flares. In T. S. Bastian, N. Gopalswamy, and K. Shibasaki, editors, Proceedings of the Nobeyama Symposium, pages 381–389, December 1999.spa
dc.relation.referencesKazunari Shibata and Tetsuya Magara. Solar Flares: Magnetohydrodynamic Processes. Living Reviews in Solar Physics, 8(1):6, December 2011. doi: 10.12942/lrsp-2011-6.spa
dc.relation.referencesE. A. Spiegel and J. P. Zahn. The solar tachocline. Astron. Astrophys., 265:106–114, November 1992.spa
dc.relation.referencesH. C. Spruit and T. J. Bogdan. The Conversion of p-Modes to Slow Modes and the Absorption of Acoustic Waves by Sunspots. Astrophys. J. Lett., 391:L109, June 1992. doi: 10.1086/186409.spa
dc.relation.referencesMichael Stix. The Sun: An Introduction. Astronomy and Astrophysics Library. Springer- Verlag Berlin Heidelberg, 3 edition, 2004.spa
dc.relation.referencesP. A. Sturrock. Model of the High-Energy Phase of Solar Flares. Nature, 211(5050):695–697, August 1966. doi: 10.1038/211695a0.spa
dc.relation.referencesJ. J. Sudol and J. W. Harvey. Longitudinal Magnetic Field Changes Accompanying Solar Flares. Astrophys. J., 635(1):647–658, December 2005. doi: 10.1086/497361.spa
dc.relation.referencesM. Tassoul. Asymptotic approximations for stellar nonradial pulsations. Astrophys. J.s, 43: 469–490, August 1980. doi: 10.1086/190678.spa
dc.relation.referencesW. T. Thompson. Coordinate systems for solar image data. Astron. Astrophys., 449(2): 791–803, April 2006. doi: 10.1051/0004-6361:20054262.spa
dc.relation.referencesCharles L. Wolff. Free Oscillations of the Sun and Their Possible Stimulation by Solar Flares. Astrophys. J., 176:833, September 1972. doi: 10.1086/151680.spa
dc.relation.referencesM. F. Woodard. Solar Subsurface Flow Inferred Directly from Frequency-Wavenumber Correlations in the Seismic Velocity Field. Astrophys. J., 565(1):634–639, January 2002. doi: 10.1086/324546.spa
dc.relation.referencesS. Zharkov, L. M. Green, S. A. Matthews, and V. V. Zharkova. 2011 February 15: Sunquakes Produced by Flux Rope Eruption. Astrophys. J. Lett., 741(2):L35, November 2011. doi: 10.1088/2041-8205/741/2/L35.spa
dc.relation.referencesS. Zharkov, L. M. Green, S. A. Matthews, and V. V. Zharkova. Properties of the 15 February 2011 Flare Seismic Sources. Solar Phys., 284(2):315–327, June 2013. doi: 10.1007/s11207-012-0169-4.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc520 - Astronomía y ciencias afines::523 - Cuerpos y fenómenos celestes específicosspa
dc.subject.lembSUPEFICIE SOLARspa
dc.subject.lembSun - Surfaceeng
dc.subject.lembSOL - OBSERVACIONESspa
dc.subject.lembTERREMOTOSspa
dc.subject.lembEarthquakeseng
dc.subject.proposalSolar physicseng
dc.subject.proposalSolar flareseng
dc.subject.proposalHelioseismologyeng
dc.subject.proposalSolar interioreng
dc.subject.proposalMagnetohydrodynamicseng
dc.subject.proposalFísica solarspa
dc.subject.proposalFulguraciones solaresspa
dc.subject.proposalHeliosismologíaspa
dc.subject.proposalInterior Solarspa
dc.subject.proposalMagnetohidrodinámicaspa
dc.titleOn the generation of subphotospheric acoustic sourceseng
dc.title.translatedSobre la generación de fuentes acústicas subfotosféricasspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1030651674.2021.pdf
Tamaño:
17.12 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Astronomía

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: