Medidas de disimilitud de procesos dinámicos tipo Lotka-Volterra en sistemas complejos

dc.contributor.advisorPérez Riascos, Alejandrospa
dc.contributor.advisorChaib De Mares, Maryamspa
dc.contributor.authorMárquez Ramírez, Nicolás Andrésspa
dc.date.accessioned2025-03-18T19:09:21Z
dc.date.available2025-03-18T19:09:21Z
dc.date.issued2025
dc.descriptionilustraciones, diagramasspa
dc.description.abstractEn este trabajo se estudian procesos dinámicos tipo Lotka-Volterra entre especies con interacciones descritas por redes. En la primera parte se presenta una introducción a los conceptos básicos de la teoría de redes, así como ejemplos de procesos dinámicos tales como el transporte difusivo o la sincronización, para introducir el modelo matemático de Lotka-Volterra para dos especies interactuantes y su solución numérica. Posteriormente, se explora la caracterización de un parámetro que determina la evolución de las poblaciones de las especies interactuantes y cómo los cambios de dicho parámetro dan cuenta de procesos dinámicos distintos. Con esto presente, se propone y explora una métrica de disimilitud para cuantificar los efectos de los cambios que definen un segundo proceso, al establecerse un proceso de referencia con el cual comparar. También se analiza la aplicación de dicha medida para una serie de procesos dinámicos modelados por redes con tres especies interactuantes comparando tanto diferencias estructurales como distintos tipos de relaciones interespecíficas. En la parte final se estudian redes de doce especies interactuantes caracterizadas por cliques, explorando el comportamiento que presenta la métrica de disimilitud propuesta cuando el proceso modificado se diferencia de la referencia por cambios introducidos en toda la red, cambios en un clique o cambios en el sistema de ecuaciones que modelan la evolución del proceso dinámico modificado. Los resultados obtenidos muestran que la métrica de disimilitud propuesta, contribuye a la comprensión y estudio de los aspectos que caracterizan la dinámica de sistemas de poblaciones interactuantes modelados bajo el formalismo de las redes (Texto tomado de la fuente).spa
dc.description.abstractIn this work we study Lotka-Volterra type dynamic processes between species with interactions described by networks. The first part presents an introduction to the basic concepts of network theory, as well as examples of dynamic processes such as diffusive transport or synchronization, to introduce the Lotka-Volterra mathematical model for two interacting species and its numerical solution. Subsequently, the characterization of a parameter that determines the evolution of the populations of the interacting species and how changes in this parameter account for distinct dynamical processes is explored. With this in mind, a dissimilarity metric is proposed and explored to quantify the effects of changes that define a second process, by establishing a reference process with which to compare. The application of such a measure is also analyzed for a series of dynamic processes modeled by networks with three interacting species comparing both structural differences and different types of interspecific relationships. In the final part, networks of twelve interacting species characterized by \textit{cliques} are studied, exploring the behavior of the proposed dissimilarity metric when the modified process differs from the reference due to changes introduced in the whole network, changes in a clique or changes in the system of equations that model the evolution of the modified dynamic process. The results obtained show that the proposed dissimilarity metric contributes to the understanding and study of the aspects that characterize the dynamics of interacting population systems modeled under the network formalism.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Físicaspa
dc.format.extent62 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87688
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Físicaspa
dc.relation.referencesR. Albert and A.-L. Barabási. Statistical mechanics of complex networks. Reviews of Modern Physics, 2002spa
dc.relation.referencesM. Newman. Networks. Oxford University Press, second ed. edition, 2018spa
dc.relation.referencesA. Barrat, M. Barthélemy, and A. Vespignani. Dynamical Processes on Complex Networks. Cambridge University Press, Cambridge, 2008spa
dc.relation.referencesE. Estrada. The Structure of Complex Networks: Theory and Applications. Oxford University Press, 10 2011spa
dc.relation.referencesA. P. Riascos and J. L. Mateos. Fractional dynamics on networks: Emergence of anomalous diffusion and l´evy flights. Physical Review E, 90:032809, 2014spa
dc.relation.referencesN. Masuda, M. A. Porter, and R. Lambiotte. Random walks and diffusion on networks. Physics Reports, 716-717:1–58, 2017spa
dc.relation.referencesA. P. Riascos. Dissimilarity between synchronization processes on networks. Physical Review E, 109:044301, 2024spa
dc.relation.referencesG. Simmons and J. S. Robertson. Ecuaciones diferenciales: con aplicaciones y notas históricas. McGraw-Hill, 1993spa
dc.relation.referencesM. Kot. Elements of Mathematical Ecology. Cambridge University Press, 2001spa
dc.relation.referencesJ. D. Murray. Mathematical Biology I. An Introduction, volume 17 of Interdisciplinary Applied Mathematics. Springer, New York, 3 edition, 2002spa
dc.relation.referencesR. May. Will a large complex system be stable? Nature, 238:413–414, 1972spa
dc.relation.referencesS. Allesina and S. Tang. Stability criteria for complex ecosystems. Nature, 483(7388):205–208, 2012spa
dc.relation.referencesA. M. Mambuca, C. Cammarota, and I. Neri. Dynamical systems on large networks with predator-prey interactions are stable and exhibit oscillations. Physical Review E, 105, 1 2022spa
dc.relation.referencesX. Liu, G. W. Constable, and J. W. Pitchford. Feasibility and stability in large Lotka Volterra systems with interaction structure. Physical Review E, 107, 5 2023spa
dc.relation.referencesT. A. D. Pirey and G. Bunin. Many-species ecological fluctuations as a jump process from the brink of extinction. Physical Review X, 14, 1 2024spa
dc.relation.referencesA. Castellanos. Towards an ecological and functional framework for modeling the structure and dynamics of the human gut microbiome, 2023. Tesis de Maestría, Universidad de los Andes. Asesores: Andrés Quiñones, Maryam Chaib De Mares, Alejandro Reyes, Katherine Coytespa
dc.relation.referencesA.-L. Barabási. Network science. Cambridge University Press, Cambridge, 2016spa
dc.relation.referencesA. P. Riascos and J. L. Mateos. Random walks on weighted networks: A survey of local and non-local dynamics. Journal of Complex Networks, 9, 2021spa
dc.relation.referencesT. M. Michelitsch, A. P. Riascos, B. A. Collet, A. F. Nowakowski, and F. C. G. A. Nicolleau. Fractional Dynamics on Networks and Lattices. ISTE/Wiley, London, 2019spa
dc.relation.referencesJ. D. Noh and H. Rieger. Random walks on complex networks. Physical Review Letters, 92:118701, 2004spa
dc.relation.referencesA. P. Riascos and F. H. Padilla. A measure of dissimilarity between diffusive processes on networks. Journal of Physics A: Mathematical and Theoretical, 56, 2023spa
dc.relation.referencesY. Kuramoto. Chemical Oscillations, Waves, and Turbulence. Springer Berlin, Heidelberg, Berlin, Heidelberg, 1984spa
dc.relation.referencesA. Arenas, A. D´ıaz-Guilera, J. Kurths, Y. Moreno, and C. Zhou. Synchronization in complex networks. Physics Reports, 469(3):93–153, 2008spa
dc.relation.referencesP. Ji, J. Ye, Y. Mu, W. Lin, Y. Tian, C. Hens, M. Perc, Y. Tang, J. Sun, and J. Kurths. Signal propagation in complex networks. Physics Reports, 1017:1–96, 2023spa
dc.relation.referencesM. E. Muscarella and J. P. O’Dwyer. Species dynamics and interactions via metabolically informed consumer-resource models. Theoretical Ecology, 13(4):503–518, 2020spa
dc.relation.referencesS. C. Chapra and R. P. Canale. Numerical methods for engineers. McGraw-Hill Higher Education, 2010spa
dc.relation.referencesM. J. Hernandez. Disentangling nature, strength and stability issues in the characterization of population interactions. Journal of Theoretical Biology, 261:107–119, 11 2009.spa
dc.relation.referencesI. Akjouj, M. Barbier, M. Clenet, W. Hachem, M. Ma¨ıda, F. Massol, J. Najim, and V. C. Tran. Complex systems in ecology: a guided tour with large Lotka-Volterra models and random matrices. Proceedings of the Royal Society A, 480, 2024spa
dc.relation.referencesY. Dou and Z. Zhou. Continuity of periodic solutions for lotka–volterra equations in coefficient functions. Zeitschrift f¨ur angewandte Mathematik und Physik, 74, 2023spa
dc.relation.referencesA. Ferrarini. Evolutionary network control also holds for nonlinear networks: Ruling the Lotka-Volterra model. Network Biology, 5:34–42, 2015spa
dc.relation.referencesC. G. Chakrabarti, S. Ghosh, and S. Bhadra. Non-equilibrium thermodynamics of Lotka-Volterra ecosystems: Stability and evolution. Journal of Biological Physics, 21(4):273–284, 1995spa
dc.relation.referencesQ. Yu, D. Fang, X. Zhang, C. Jin, and Q. Ren. Stochastic evolution dynamic of the rock-scissors-paper game based on a quasi birth and death process. Scientific Reports, 6(1):28585, 2016spa
dc.relation.referencesD. Griffon and M. J. Hernandez. Some theoretical notes on agrobiodiversity: spatial heterogeneity and population interactions. Agroecology and Sustainable Food Systems, 44:795–823, 7 2020spa
dc.relation.referencesT. Verma and A. K. Gupta. Evolutionary dynamics of rock-paper-scissors game in the patchy network with mutations. Chaos, Solitons & Fractals, 153:111538, 2021spa
dc.relation.referencesT. E. Gibson, Y. Kim, S. Acharya, D. E. Kaplan, N. DiBenedetto, R. Lavin, B. Berger, J. R. Allegretti, L. Bry, and G. K. Gerber. Intrinsic instability of the dysbiotic microbiome revealed through dynamical systems inference at scale. bioRxiv, 2021. bioRxiv 2021.12.14.469105spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc530 - Física::539 - Física modernaspa
dc.subject.ddc510 - Matemáticas::511 - Principios generales de las matemáticasspa
dc.subject.lembECUACIONES DIFERENCIALESspa
dc.subject.lembDifferential equationseng
dc.subject.lembTEORIA DE GRAFOSspa
dc.subject.lembGraph theoryeng
dc.subject.lembANALISIS DE REDES (PLANIFICACION)spa
dc.subject.lembNetwork analysis (planning)eng
dc.subject.lembARBOLES (TEORIA DE GRAFOS)spa
dc.subject.lembTrees (graph theory)eng
dc.subject.lembTOMA DE DECISIONES-MODELOS MATEMATICOSspa
dc.subject.lembDecision-making - Mathematical modelseng
dc.subject.proposalDisimilitudspa
dc.subject.proposalProcesos dinámicosspa
dc.subject.proposalLotka-Volterraspa
dc.subject.proposalSistemas complejosspa
dc.subject.proposalRedes complejasspa
dc.subject.proposalCliquesspa
dc.subject.proposalPoblaciones interactuantesspa
dc.subject.proposalDissimilarityeng
dc.subject.proposalDynamical processeseng
dc.subject.proposalLotka-Volterraeng
dc.subject.proposalComplex systemseng
dc.subject.proposalComplex networkseng
dc.subject.proposalCliqueseng
dc.subject.proposalInteracting specieseng
dc.titleMedidas de disimilitud de procesos dinámicos tipo Lotka-Volterra en sistemas complejosspa
dc.title.translatedDissimilarity measures of Lotka-Volterra type dynamic processes in complex systemseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1018481572.2025.pdf
Tamaño:
4.34 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Física

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: