Medidas de disimilitud de procesos dinámicos tipo Lotka-Volterra en sistemas complejos
dc.contributor.advisor | Pérez Riascos, Alejandro | spa |
dc.contributor.advisor | Chaib De Mares, Maryam | spa |
dc.contributor.author | Márquez Ramírez, Nicolás Andrés | spa |
dc.date.accessioned | 2025-03-18T19:09:21Z | |
dc.date.available | 2025-03-18T19:09:21Z | |
dc.date.issued | 2025 | |
dc.description | ilustraciones, diagramas | spa |
dc.description.abstract | En este trabajo se estudian procesos dinámicos tipo Lotka-Volterra entre especies con interacciones descritas por redes. En la primera parte se presenta una introducción a los conceptos básicos de la teoría de redes, así como ejemplos de procesos dinámicos tales como el transporte difusivo o la sincronización, para introducir el modelo matemático de Lotka-Volterra para dos especies interactuantes y su solución numérica. Posteriormente, se explora la caracterización de un parámetro que determina la evolución de las poblaciones de las especies interactuantes y cómo los cambios de dicho parámetro dan cuenta de procesos dinámicos distintos. Con esto presente, se propone y explora una métrica de disimilitud para cuantificar los efectos de los cambios que definen un segundo proceso, al establecerse un proceso de referencia con el cual comparar. También se analiza la aplicación de dicha medida para una serie de procesos dinámicos modelados por redes con tres especies interactuantes comparando tanto diferencias estructurales como distintos tipos de relaciones interespecíficas. En la parte final se estudian redes de doce especies interactuantes caracterizadas por cliques, explorando el comportamiento que presenta la métrica de disimilitud propuesta cuando el proceso modificado se diferencia de la referencia por cambios introducidos en toda la red, cambios en un clique o cambios en el sistema de ecuaciones que modelan la evolución del proceso dinámico modificado. Los resultados obtenidos muestran que la métrica de disimilitud propuesta, contribuye a la comprensión y estudio de los aspectos que caracterizan la dinámica de sistemas de poblaciones interactuantes modelados bajo el formalismo de las redes (Texto tomado de la fuente). | spa |
dc.description.abstract | In this work we study Lotka-Volterra type dynamic processes between species with interactions described by networks. The first part presents an introduction to the basic concepts of network theory, as well as examples of dynamic processes such as diffusive transport or synchronization, to introduce the Lotka-Volterra mathematical model for two interacting species and its numerical solution. Subsequently, the characterization of a parameter that determines the evolution of the populations of the interacting species and how changes in this parameter account for distinct dynamical processes is explored. With this in mind, a dissimilarity metric is proposed and explored to quantify the effects of changes that define a second process, by establishing a reference process with which to compare. The application of such a measure is also analyzed for a series of dynamic processes modeled by networks with three interacting species comparing both structural differences and different types of interspecific relationships. In the final part, networks of twelve interacting species characterized by \textit{cliques} are studied, exploring the behavior of the proposed dissimilarity metric when the modified process differs from the reference due to changes introduced in the whole network, changes in a clique or changes in the system of equations that model the evolution of the modified dynamic process. The results obtained show that the proposed dissimilarity metric contributes to the understanding and study of the aspects that characterize the dynamics of interacting population systems modeled under the network formalism. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias - Física | spa |
dc.format.extent | 62 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87688 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Física | spa |
dc.relation.references | R. Albert and A.-L. Barabási. Statistical mechanics of complex networks. Reviews of Modern Physics, 2002 | spa |
dc.relation.references | M. Newman. Networks. Oxford University Press, second ed. edition, 2018 | spa |
dc.relation.references | A. Barrat, M. Barthélemy, and A. Vespignani. Dynamical Processes on Complex Networks. Cambridge University Press, Cambridge, 2008 | spa |
dc.relation.references | E. Estrada. The Structure of Complex Networks: Theory and Applications. Oxford University Press, 10 2011 | spa |
dc.relation.references | A. P. Riascos and J. L. Mateos. Fractional dynamics on networks: Emergence of anomalous diffusion and l´evy flights. Physical Review E, 90:032809, 2014 | spa |
dc.relation.references | N. Masuda, M. A. Porter, and R. Lambiotte. Random walks and diffusion on networks. Physics Reports, 716-717:1–58, 2017 | spa |
dc.relation.references | A. P. Riascos. Dissimilarity between synchronization processes on networks. Physical Review E, 109:044301, 2024 | spa |
dc.relation.references | G. Simmons and J. S. Robertson. Ecuaciones diferenciales: con aplicaciones y notas históricas. McGraw-Hill, 1993 | spa |
dc.relation.references | M. Kot. Elements of Mathematical Ecology. Cambridge University Press, 2001 | spa |
dc.relation.references | J. D. Murray. Mathematical Biology I. An Introduction, volume 17 of Interdisciplinary Applied Mathematics. Springer, New York, 3 edition, 2002 | spa |
dc.relation.references | R. May. Will a large complex system be stable? Nature, 238:413–414, 1972 | spa |
dc.relation.references | S. Allesina and S. Tang. Stability criteria for complex ecosystems. Nature, 483(7388):205–208, 2012 | spa |
dc.relation.references | A. M. Mambuca, C. Cammarota, and I. Neri. Dynamical systems on large networks with predator-prey interactions are stable and exhibit oscillations. Physical Review E, 105, 1 2022 | spa |
dc.relation.references | X. Liu, G. W. Constable, and J. W. Pitchford. Feasibility and stability in large Lotka Volterra systems with interaction structure. Physical Review E, 107, 5 2023 | spa |
dc.relation.references | T. A. D. Pirey and G. Bunin. Many-species ecological fluctuations as a jump process from the brink of extinction. Physical Review X, 14, 1 2024 | spa |
dc.relation.references | A. Castellanos. Towards an ecological and functional framework for modeling the structure and dynamics of the human gut microbiome, 2023. Tesis de Maestría, Universidad de los Andes. Asesores: Andrés Quiñones, Maryam Chaib De Mares, Alejandro Reyes, Katherine Coyte | spa |
dc.relation.references | A.-L. Barabási. Network science. Cambridge University Press, Cambridge, 2016 | spa |
dc.relation.references | A. P. Riascos and J. L. Mateos. Random walks on weighted networks: A survey of local and non-local dynamics. Journal of Complex Networks, 9, 2021 | spa |
dc.relation.references | T. M. Michelitsch, A. P. Riascos, B. A. Collet, A. F. Nowakowski, and F. C. G. A. Nicolleau. Fractional Dynamics on Networks and Lattices. ISTE/Wiley, London, 2019 | spa |
dc.relation.references | J. D. Noh and H. Rieger. Random walks on complex networks. Physical Review Letters, 92:118701, 2004 | spa |
dc.relation.references | A. P. Riascos and F. H. Padilla. A measure of dissimilarity between diffusive processes on networks. Journal of Physics A: Mathematical and Theoretical, 56, 2023 | spa |
dc.relation.references | Y. Kuramoto. Chemical Oscillations, Waves, and Turbulence. Springer Berlin, Heidelberg, Berlin, Heidelberg, 1984 | spa |
dc.relation.references | A. Arenas, A. D´ıaz-Guilera, J. Kurths, Y. Moreno, and C. Zhou. Synchronization in complex networks. Physics Reports, 469(3):93–153, 2008 | spa |
dc.relation.references | P. Ji, J. Ye, Y. Mu, W. Lin, Y. Tian, C. Hens, M. Perc, Y. Tang, J. Sun, and J. Kurths. Signal propagation in complex networks. Physics Reports, 1017:1–96, 2023 | spa |
dc.relation.references | M. E. Muscarella and J. P. O’Dwyer. Species dynamics and interactions via metabolically informed consumer-resource models. Theoretical Ecology, 13(4):503–518, 2020 | spa |
dc.relation.references | S. C. Chapra and R. P. Canale. Numerical methods for engineers. McGraw-Hill Higher Education, 2010 | spa |
dc.relation.references | M. J. Hernandez. Disentangling nature, strength and stability issues in the characterization of population interactions. Journal of Theoretical Biology, 261:107–119, 11 2009. | spa |
dc.relation.references | I. Akjouj, M. Barbier, M. Clenet, W. Hachem, M. Ma¨ıda, F. Massol, J. Najim, and V. C. Tran. Complex systems in ecology: a guided tour with large Lotka-Volterra models and random matrices. Proceedings of the Royal Society A, 480, 2024 | spa |
dc.relation.references | Y. Dou and Z. Zhou. Continuity of periodic solutions for lotka–volterra equations in coefficient functions. Zeitschrift f¨ur angewandte Mathematik und Physik, 74, 2023 | spa |
dc.relation.references | A. Ferrarini. Evolutionary network control also holds for nonlinear networks: Ruling the Lotka-Volterra model. Network Biology, 5:34–42, 2015 | spa |
dc.relation.references | C. G. Chakrabarti, S. Ghosh, and S. Bhadra. Non-equilibrium thermodynamics of Lotka-Volterra ecosystems: Stability and evolution. Journal of Biological Physics, 21(4):273–284, 1995 | spa |
dc.relation.references | Q. Yu, D. Fang, X. Zhang, C. Jin, and Q. Ren. Stochastic evolution dynamic of the rock-scissors-paper game based on a quasi birth and death process. Scientific Reports, 6(1):28585, 2016 | spa |
dc.relation.references | D. Griffon and M. J. Hernandez. Some theoretical notes on agrobiodiversity: spatial heterogeneity and population interactions. Agroecology and Sustainable Food Systems, 44:795–823, 7 2020 | spa |
dc.relation.references | T. Verma and A. K. Gupta. Evolutionary dynamics of rock-paper-scissors game in the patchy network with mutations. Chaos, Solitons & Fractals, 153:111538, 2021 | spa |
dc.relation.references | T. E. Gibson, Y. Kim, S. Acharya, D. E. Kaplan, N. DiBenedetto, R. Lavin, B. Berger, J. R. Allegretti, L. Bry, and G. K. Gerber. Intrinsic instability of the dysbiotic microbiome revealed through dynamical systems inference at scale. bioRxiv, 2021. bioRxiv 2021.12.14.469105 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.ddc | 530 - Física::539 - Física moderna | spa |
dc.subject.ddc | 510 - Matemáticas::511 - Principios generales de las matemáticas | spa |
dc.subject.lemb | ECUACIONES DIFERENCIALES | spa |
dc.subject.lemb | Differential equations | eng |
dc.subject.lemb | TEORIA DE GRAFOS | spa |
dc.subject.lemb | Graph theory | eng |
dc.subject.lemb | ANALISIS DE REDES (PLANIFICACION) | spa |
dc.subject.lemb | Network analysis (planning) | eng |
dc.subject.lemb | ARBOLES (TEORIA DE GRAFOS) | spa |
dc.subject.lemb | Trees (graph theory) | eng |
dc.subject.lemb | TOMA DE DECISIONES-MODELOS MATEMATICOS | spa |
dc.subject.lemb | Decision-making - Mathematical models | eng |
dc.subject.proposal | Disimilitud | spa |
dc.subject.proposal | Procesos dinámicos | spa |
dc.subject.proposal | Lotka-Volterra | spa |
dc.subject.proposal | Sistemas complejos | spa |
dc.subject.proposal | Redes complejas | spa |
dc.subject.proposal | Cliques | spa |
dc.subject.proposal | Poblaciones interactuantes | spa |
dc.subject.proposal | Dissimilarity | eng |
dc.subject.proposal | Dynamical processes | eng |
dc.subject.proposal | Lotka-Volterra | eng |
dc.subject.proposal | Complex systems | eng |
dc.subject.proposal | Complex networks | eng |
dc.subject.proposal | Cliques | eng |
dc.subject.proposal | Interacting species | eng |
dc.title | Medidas de disimilitud de procesos dinámicos tipo Lotka-Volterra en sistemas complejos | spa |
dc.title.translated | Dissimilarity measures of Lotka-Volterra type dynamic processes in complex systems | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1018481572.2025.pdf
- Tamaño:
- 4.34 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias - Física
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: