Estudio de la dinamica de sólidos de revolución inmersos en fluidos

dc.contributor.advisorHerrera, William Javierspa
dc.contributor.authorLuque González, Hugo Fernandospa
dc.date.accessioned2023-12-07T20:03:27Z
dc.date.available2023-12-07T20:03:27Z
dc.date.issued2023-07
dc.descriptionilustracionesspa
dc.description.abstractHacemos una revisión de fluidos potenciales con el propósito de analizar el flujo alrededor de sólidos que presentan una simetrı́a determinada, en particular, para objetos que presentan una simetrı́a axisimétrica. Mostramos como se puede llegar a la ecuación de Laplace para fluidos potenciales y encontramos un funcional que corresponde a la misma con su generalización en coordenadas curvilı́neas. Solucionamos en casos particulares como la esfera y el cilindro haciendo el cálculo de la masa aparente. Posteriormente, a partir de la función de flujo en simetrı́as conocidas, proponemos una ecuación diferencial para la función de flujo en coordenadas curvilı́neas cuya solución pueda obtenerse a partir de aplicar condiciones de Dirichlet. Deducimos el funcional que, al minimizarse, corresponde a esta ecuación diferencial y mostramos métodos de solución de esta ecuación diferencial cuando se presenta una simetrı́a en una de las coordenadas curvilı́neas. Planteamos una estrategia para solucionar objetos con simetrı́as dadas inmersos en fluidos potenciales usando condiciones asintóticas para poder resolver problemas de objetos con simetrı́as parabólicas y elipsoidales tanto cilı́ndricas como esféricas. (Texto tomado de la fuente).spa
dc.description.abstractWe outline a review of potential fluids with the aim to analyze the flow around solids that have a given simmetry, i. e. axysimmetric bodies. We show how to reach the Laplace equation for potential fluids and find a Functional that is generalized in curvilinear coordinates. We solve the sphere and the cylinder and computing the apparent mass. Subsequently, starting from the stream function in given simmetries, we propose a differential equation for the stream function in curvilinear coordinates whose solution can be found by using Dirichlet conditions. We found the functional that corresponds to the differential equation and show methods of solution when there is a simmetry in one of the coordinates. We outline a strategy to solve objects with given symmetries in potential fluids using asymptotic behaviors in order to solve problems parabolic and elliptic shaped-objects with cilindrical and spherical simmetries.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Físicaspa
dc.format.extent99 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85055
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Físicaspa
dc.relation.referencesPlakhov, A., & Aleksenko, A. (2008). The problem of the body of revolution of minimal resistance. ESAIM: Control, Optimisation and Calculus of Variations, 16(1), 206–220. https://doi.org/10.1051/cocv:2008070spa
dc.relation.referencesErshkov, S. V., Prosviryakov, E. Y., Burmasheva, N. V., & Christianto, V. (2021). Towards understanding the algorithms for solving the Navier–Stokes equations. Fluid Dynamics Research, 53(4), 044501. https://doi.org/10.1088/1873-7005/ac10f0spa
dc.relation.referencesHu, X., Mu, L., & Ye, X. (2019). A weak Galerkin finite element method for the Navier–Stokes equations. Journal of Computational and Applied Mathematics, 362, 614–625. https://doi.org/10.1016/j.cam.2018.08.022spa
dc.relation.referencesPinelli, A., Naqavi, I. Z., Piomelli, U., & Favier, J. (2010). Immersed-boundary methods for general finite-difference and finite-volume Navier–Stokes solvers.JournalofComputationalPhysics,229(24),9073–9091. https://doi.org/10.1016/j.jcp.2010.08.021spa
dc.relation.referencesKundu, P. K., Cohen, I. M., & Dowling, D. R., PhD. (2012). Fluid Mechanics. Academic Press.spa
dc.relation.referencesOlivier Glass, Christophe Lacave, Franck Sueur. On the motion of a small body immersed in a two dimensional incompressible perfect fluid. Bulletin de la société mathématique de France, 2014, 142 (3), pp.489-536. <10.24033/bsmf.2672>. <hal-00589499>spa
dc.relation.referencesGlass, O., Sueur, F., & Takahashi, T. (2012). Smoothness of the motion of a rigid body immersed in an incompressible perfect fluid. Annales Scientifiques De L Ecole Normale Superieure, 45 (1), 1–51. https://doi.org/10.24033/asens.2159spa
dc.relation.referencesTalischi, C., Pereira, A., Paulino, G. H., Menezes, I. F. M., & Carvalho, M. S. (2013). Polygonal finite elements for incompressible fluid flow. International Journal for Numerical Methods in Fluids, 74 (2), 134–151. https://doi.org/10.1002/fld.3843spa
dc.relation.referencesNasser, M. M. S., & Green, C. C. (2018). A fast numerical method for ideal fluid flow in domains with multiple stirrers. Nonlinearity, 31(3), 815–837. https://doi.org/10.1088/1361-6544/aa99a5spa
dc.relation.referencesMunson, B. R., Young, D. F., & Okiishi, T. H. (1998). Fundamentals of Fluid Mechanics (3rd ed.). Wiley.spa
dc.relation.referencesDrew, D. A., & Lahey, R. (1987). The virtual mass and lift force on a sphere in rotating and straining inviscid flow. International Journal of Multiphase Flow, 13 (1), 113–121. https://doi.org/10.1016/0301-9322(87)90011-5spa
dc.relation.referencesMcIver,M.,&McIver,P.(2016).Theadded two-dimensionalfloatingstructures.WaveMotion, https://doi.org/10.1016/j.wavemoti.2016.02.007massfor 64,1–12.spa
dc.relation.referencesSysoev, D. V., Sisoeva, A. A., Sazonova, S., Zvyagintseva, A. V., & Mozgovoj, N. V. (2021). Variational method for solving the boundary value problem of hydrodynamics. IOP Conference Series: Materials Science and Engineering, 1047(1), 012195. https://doi.org/10.1088/1757-899x/1047/1/012195spa
dc.relation.referencesCai, Z., Liu, Y., Chen, T., & Liu, T. (2020). Variational method for determining pressure from velocity in two dimensions. Experiments in Fluids, 61(5). https://doi.org/10.1007/s00348-020-02954-2spa
dc.relation.referencesRodrı́guez, D. E., Martı́nez, R., & Rendón, L. (2011). Solución de la Ecuación de Laplace Para Flujos Potenciales. Revista Colombiana De Fı́sica, 43 (2).spa
dc.relation.referencesMorales, M. J., Diaz, R. A., & Herrera, W. J. (2015). Solutions of Laplace’s equation with simple boundary conditions, and their applications for capacitors with multiple symmetries. Journal of Electrostatics, 78, 31–45. https://doi.org/10.1016/j.elstat.2015.09.006spa
dc.relation.referencesQiu, J., Peng, B., & Tian, Z. (2018). A compact streamfunction-velocity scheme for the 2-D unsteady incompressible Navier-Stokes equations in arbitrary curvilinear coordinates. Journal of Hydrodynamics, 31(4), 827–839. https://doi.org/10.1007/s42241-018-0171-xspa
dc.relation.referencesThompson, J. F., Thames, F. C., & Mastin, C. W. (1974). Automatic numerical generation of body-fitted curvilinear coordinate system for field containing any number of arbitrary two-dimensional bodies. Journal of Computational Physics, 15(3), 299–319. https://doi.org/10.1016/0021-9991(74)90114-4spa
dc.relation.referencesNikitin,N.(2006).Finite-differencemethodforincompressible Navier–Stokesequationsinarbitraryorthogonalcurvilinear coordinates. Journal of Computational Physics, 217(2), 759–781. https://doi.org/10.1016/j.jcp.2006.01.036spa
dc.relation.referencesJackson, J. D. (1999). Classical Electrodynamics (3rd ed.). Wiley.spa
dc.relation.referencesHaitjema, H. M., & Kelson, V. A. (1997). Using the stream function for flow governed by Poisson’s equation. Journal of Hydrology. https://doi.org/10.1016/s0022-1694(95)02992-3spa
dc.relation.referencesBrown, J., & Churchill, R. (2009). Complex Variables and Applications. McGraw-Hill Science/Engineering/Math.spa
dc.relation.referencesOrloff, J., MIT OpenCourseWare, & Libretexts. (2021, September 5). 7: Two dimensional hydrodynamics and complex potentials. MathematicsLibreTexts.RetrievedJuly23,2023,from https://math.libretexts.org/Bookshelves/Analysis/Complex Variables with Applicationspa
dc.relation.referencesPonce,J.C.(2019).Complexanalysis.Applicationsof ConformalMappings.RetrievedJuly23,2023,from https://complex-analysis.com/content/applications conformal.htmlspa
dc.relation.referencesZemlyanova, A. Y., Manly, I., & Handley, D. (2017). Vortex generated fluid flows in multiply connected domains. Complex Variables and Elliptic Equations, 63 (2), 151–170. https://doi.org/10.1080/17476933.2017.1289516spa
dc.relation.referencesEldredge, J. D. (2009). A reconciliation of viscous and inviscid approaches to computing locomotion of deforming bodies. Experimental Mechanics, 50(9), 1349–1353. https://doi.org/10.1007/s11340-009-9275-0spa
dc.relation.referencesHowe, M. S. (1995). ON THE FORCE AND MOMENT ON A BODY IN AN INCOMPRESSIBLE FLUID, WITH APPLICATION TO RIGID BODIES AND BUBBLES AT HIGH AND LOW REYNOLDS NUMBERS. Quarterly Journal of Mechanics and Applied Mathematics, 48(3), 401–426. https://doi.org/10.1093/qjmam/48.3.401spa
dc.relation.referencesGraham, W. (2019). Decomposition of the forces on a body moving in an incompressible fluid. Journal of Fluid Mechanics, 881, 1097-1122. doi:10.1017/jfm.2019.788spa
dc.relation.referencesGrimberg, G., Pauls, W., & Frisch, U. (2008). Genesis of d’Alembert’sparadoxandanalyticalelaborationofthedrag problem. Physica D: Nonlinear Phenomena, 237 (14–17), 1878–1886. https://doi.org/10.1016/j.physd.2008.01.015spa
dc.relation.referencesLandau, L. D., & Lifshitz, E. M. (1985). Mecánica de fluidos (2nd ed., Vol. 6). Reverte.spa
dc.relation.referencesEyink, G. L. (2021). Josephson-Anderson relation and the classical D’Alembert paradox. Physical Review X, 11 (3). https://doi.org/10.1103/physrevx.11.031054spa
dc.relation.referencesHao, Q., & Eyink, G. L. (2022). Onsager Theory of turbulence, the Josephson-Anderson Relation, and the D’Alembert Paradox. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2206.05326spa
dc.relation.referencesGratton, J., & Perazzo, C. A. (2009). EFECTO DE LA MASA INDUCIDA SOBRE LA ACELERACIÓN DE CUERPOS DE BAJA DENSIDAD. Anales AFA, 21(1). https://anales.fisica.org.ar/index.php/analesafa/article/view/49spa
dc.relation.referencesByron, F. W., & Fuller, R. W. (1992). Mathematics of Classical and Quantum Physics. Courier Corporation.spa
dc.relation.referencesSparenberg, J. A. (1989). Note on the stream function in curvilinearcoordinates.FluidDynamicsResearch,5(1),61–67. https://doi.org/10.1016/0169-5983(89)90011-7spa
dc.relation.referencesYamasaki, K., Yajima, T., & Iwayama, T. (2011). Differential geometricstructuresofstreamfunctions:incompressible two-dimensionalflowandcurvatures.JournalofPhysicsA. https://doi.org/10.1088/1751-8113/44/15/155501spa
dc.relation.referencesHouot, J., Martı́n, J. S., & Tucsnak, M. (2010). Existence of solutions for the equations modeling the motion of rigid bodies in an ideal fluid. Journal of Functional Analysis, 259 (11), 2856–2885. https://doi.org/10.1016/j.jfa.2010.07.006spa
dc.relation.referencesHernández, J. A. (2012). Familias de Campos Ondulatorios Fundamentales de la Ecuación de Helmholtz en Sistemas de Coordenadas Curvilı́neas Ortogonales [PhD]. Instituto Nacional de Astrofı́sica, Óptica y Electrónica. https://inaoe.repositorioinstitucional.mx/jspui/bitstream/1009/289/1/Hernandezspa
dc.relation.referencesYAVUZ, T. (1986). Theretical Evaluations of Apparent Masses for Certain Classes of Bodies in Frictionless Fluid. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 2(1986), 335-350.spa
dc.relation.referencesDiaz, R. A., Herrera, W. J., & Martinez, R. (2006). Moments of inertia for solids of revolution and variational methods. European Journal of Physics, 27(2), 183–192. https://doi.org/10.1088/0143-0807/27/2/001spa
dc.relation.referencesMohammadi, B., & Pironneau, O. (2004). SHAPE OPTIMIZATION IN FLUID MECHANICS. Annual Review of Fluid Mechanics, 36 (1), 255–279. https://doi.org/10.1146/annurev.fluid.36.050802.121926spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc530 - Física::532 - Mecánica de fluidosspa
dc.subject.ddc510 - Matemáticas::515 - Análisisspa
dc.subject.proposalSólidos de revoluciónspa
dc.subject.proposalCoordenadas curvilíneasspa
dc.subject.proposalEcuación de Laplacespa
dc.subject.proposalPotential Floweng
dc.subject.proposalSolids of revolutioneng
dc.subject.proposalCurvilinear coordinateseng
dc.subject.proposalLaplace equationeng
dc.subject.proposalFluidos potencialesspa
dc.subject.unescoFísicaspa
dc.subject.unescoPhysicseng
dc.subject.unescoDinámica de fluidosspa
dc.subject.unescoFluid dynamicseng
dc.subject.unescoCiencias físicasspa
dc.subject.unescoPhysical scienceseng
dc.titleEstudio de la dinamica de sólidos de revolución inmersos en fluidosspa
dc.title.translatedStudy about the dynamics of solids of revolution in fluidseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentProveedores de ayuda financiera para estudiantesspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032361559.2023.pdf
Tamaño:
3.3 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Física

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: