Método de negociación para riego en condiciones de baja disponibilidad de agua
| dc.contributor.advisor | Herrera Cárdenas, Pedro Fabián | |
| dc.contributor.advisor | Jímenez López, Andrés Fernando | |
| dc.contributor.author | Salazar Sánchez, Carlos Alejandro | |
| dc.contributor.cvlac | Salazar Sánchez, Carlos Alejandro [0000132326] | spa |
| dc.contributor.orcid | Salazar Sánchez, Carlos Alejandro [0000000171475204] | spa |
| dc.date.accessioned | 2023-10-24T16:17:05Z | |
| dc.date.available | 2023-10-24T16:17:05Z | |
| dc.date.issued | 2022 | |
| dc.description | ilustraciones, graficas, tablas | spa |
| dc.description.abstract | En este documento se encuentran los procedimientos experimentales, los resultados y las conclusiones de un proyecto de sistemas multiagentes aplicado a la estimación, gestión y la toma de decisiones para riego de cultivos en los distritos presentes en Boyacá. Para la construcción de este proyecto se plantearon los objetivos de Modelar un agente para el reservorio, obtener un modelo para los cultivos, simular el rendimiento de cultivos con un software especializado, construir un agente de estimación de requerimiento hídrico, y , finalmente, implementar un algoritmo de negociación basado en agentes para el manejo del riego. Para cumplir estos objetivos se planteó crear agentes con variadas técnicas de inteligencia artificial como convolutional neural networks y random forests para realizar las labores de: estimar la cantidad de agua en el embalse La Copa del cual se saca el recurso para las fincas aledañas, estimar el requerimiento hídrico de acuerdo a las condiciones ambientales y del cultivo, calcular la validez de renegociación y ejecutarla usando un algoritmo de consenso y, por último, simular el comportamiento del cultivo con las condiciones de suelo y riego estimados para evidenciar el efecto de las decisiones del sistema en las fincas (Texto tomado de la fuente) | spa |
| dc.description.abstract | Shown in this document are the experimental procedures, the results and conclusions of a project using multiagent systems for estimation, management and decision making for irri gation in crops in the districts of Boyac´ a. For the development of this project the following objectives were created and satisfied: Modeling of a reservoir management agent, obtain ment of crop models, Simulation of crops using specialized software, making of an irrigation estimation agent, and, finally, implementation of an agent based negotiation algorithm for irrigation management. Agents with various techniques of artificial intelligence were designed to complete these objectives doing the following tasks: estimate the quantity of water in La Copa Reservoir from which the water resource is obtained, estimate the water requirement according to the enviromental and crop conditions, estimate the validity of negotiation and execute it and, finally, simulate the crop behaviour with the soil conditions and the calcula ted irrigation profile to show and analize the effect of the system decisions in the crops. | eng |
| dc.description.curriculararea | Ingeniería Eléctrica y Electrónica.Sede Bogotá | spa |
| dc.description.degreelevel | Maestría | spa |
| dc.description.degreename | Magíster en Ingeniería - Automatización Industrial | spa |
| dc.description.researcharea | Sistemas multiagentes e inteligencia artificial | spa |
| dc.format.extent | x, 81 páginas | spa |
| dc.format.mimetype | application/pdf | spa |
| dc.identifier.instname | Universidad Nacional de Colombia | spa |
| dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
| dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/84827 | |
| dc.language.iso | spa | spa |
| dc.publisher | Universidad Nacional de Colombia | spa |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
| dc.publisher.faculty | Facultad de Ingeniería | spa |
| dc.publisher.place | Bogotá, Colombia | spa |
| dc.publisher.program | Bogotá - Ingeniería - Maestría en Ingeniería - Automatización Industrial | spa |
| dc.relation.references | Alameda, Teresa. Machine learning: What is it and how does it work? Nov 2019 | spa |
| dc.relation.references | Allen, Richard G.: Evapotranspiracion del Cultivo: Guias Para determinacion Los Requerimientos de Agua de los cultivos. Food & Agriculture Org, 2006 | spa |
| dc.relation.references | Alpaydin, Ethem: Introduction to Machine Learning. 3. Cambridge, MA : MIT Press, 2014 (Adaptive Computation and Machine Learning). – ISBN 978–0–262–02818–9 | spa |
| dc.relation.references | Alvergue, Luis D. ; Pandey, Abhishek ; Gu, Guoxiang ; Chen, Xiang: Consensus Control for Heterogeneous Multi-Agent Systems. (2015), 10 | spa |
| dc.relation.references | Andales, A A. ; Chavez, J L. ; Bauder, T A.: Irrigation Scheduling: The Water Balance Approach. (2015) | spa |
| dc.relation.references | Andr ́es, Jorge ; Ayala, Sanabria: Maestr ́ıa en Ingenier ́ıa Civil GU ́IA METODOL ́OGI- CA PARA EL AN ́ALISIS DE LA GESTI ́ON DE EMBALSES. CASO DE ESTUDIO EMBALSE LA COPA. (2019) | spa |
| dc.relation.references | Belaqziz, Salwa ; Fazziki, Aziz E. ; Mangiarotti, Sylvain ; Le Page, Michel ; Khabba, Said ; Raki, Salah E. ; Adnani, Mohamed E. ; Jarlan, Lionel: An Agent based Modeling for the Gravity Irrigation Management. En: Procedia Environmental Sciences 19 (2013), Nr. 0, p. 804–813. – ISSN 18780296 | spa |
| dc.relation.references | Breiman, Leo: Random Forests. En: Machine Learning 45 (2001), Nr. 1, p. 5–32. – ISSN 0885–6125 | spa |
| dc.relation.references | Cambra, Carlos ; Sendra, Sandra ; Lloret, Jaime ; Garcia, Laura: An IoT service- oriented system for agriculture monitoring. En: IEEE International Conference on Communications (2017). – ISBN 9781467389990 | spa |
| dc.relation.references | Capraro, Flavio ; Pati ̃no, Daniel ; Tosetti, Santiago ; Schugurensky, Carlos: Neural network-based irrigation control for precision agriculture. En: Proceedings of 2008 IEEE International Conference on Networking, Sensing and Control, ICNSC (2008), p. 357–362. ISBN 9781424416851 | spa |
| dc.relation.references | Coulouris, George ; Dollimore, Jean ; Kindberg, Tim: Distributed Systems: Con- cepts and Design. Vol. 4. 2012. – 772 p.. – ISBN 0321263545 | spa |
| dc.relation.references | Cruz, John R. ; Baldovino, Renann G. ; Bandala, Argel A. ; Dadios, Elmer P.: Water usage optimization of Smart Farm Automated Irrigation System using artificial neural network. En: 2017 5th International Conference on Information and Communi- cation Technology, ICoIC7 2017 0 (2017), Nr. c. ISBN 9781509049127 | spa |
| dc.relation.references | Cruz, Yenifer D. ; Mart ́ınez, Camilo ; Pantoja, Andr ́es: Drip Irrigation System based on Distributed Control – Part 1 : Design and Model. (2015). ISBN 9781467393058 | spa |
| dc.relation.references | De la Cruz, Yenifer ; Martinez, Camilo ; Pantoja, Andres: Drip irrigation system based on distributed control — Part 2: Implementation. En: 2015 IEEE 2nd Colombian Conference on Automatic Control (CCAC) (2015), p. 1–6. ISBN 978–1–4673–9305–8 | spa |
| dc.relation.references | Demazeau, Yves ; Pechoucek, Michal ; Corchado, Juan M. ; Bajo, Perez J.: Advances on practical applications of agents and Multiagent Systems: 9th Internatio- nal Conference on practical applications of agents and Multiagent Systems, Salamanca, Spain, 06-08.04.2011. Springer, 2011 | spa |
| dc.relation.references | Elsalahy, Heba H. ; Bellingrath-Kimura, Sonoko D. ; Roß, Christina-Luise ; Kautz, Timo ; D ̈oring, Thomas F.: Crop resilience to drought with and without response diversity. En: Frontiers in Plant Science 11 (2020) | spa |
| dc.relation.references | EOS Data Analytics. EOSDA landviewer: Browse real-time Earth observation. 2002 | spa |
| dc.relation.references | Feng, Youcan ; Burian, Steven J. ; Pardyjak, Eric R.: Observation and Estimation of Evapotranspiration from an Irrigated Green Roof in a Rain-Scarce Environment. En: Water 10 (2018), Nr. 3. – ISSN 2073–4441 | spa |
| dc.relation.references | Feng, Yuanzhen ; Zheng, Wei X.: Group consensus control for discrete-time hete- rogeneous first- and second-order multiagent systems. En: IET Control Theory and Applications 12 (2018), 4, p. 753–760. – ISSN 17518652 | spa |
| dc.relation.references | Ferris, Santiago. Cuatro Formas de entender la inteligencia artificial. 2017 | spa |
| dc.relation.references | Food and Agriculture Organization of the United Nations: Reference ma- nuals Aquacrop. 2022 | spa |
| dc.relation.references | Gasmelseid, Tagelsir M.: A Multi Agent Negotiation Framework in Resource Bounded Environments. En: 2006 2nd International Conference on Information & Communica- tion Technologies - Proceedings (2006), p. 465–470. ISBN 0780395212 | spa |
| dc.relation.references | Gema, Roberto. C ́alculo del ́ındice NDWI. Jul 2018 | spa |
| dc.relation.references | Ghorbani, Mohammad A. ; Shamshirband, Shahaboddin ; Zare Haghi, Davoud ; Azani, Atefe ; Bonakdari, Hossein ; Ebtehaj, Isa: Application of firefly algorithm- based support vector machines for prediction of field capacity and permanent wilting point. En: Soil and Tillage Research 172 (2017), p. 32–38. – ISSN 0167–1987 | spa |
| dc.relation.references | Gonzalez, Ligdi. Regresi ́on Lineal - Pr ́actica Con python. Sep 2022 | spa |
| dc.relation.references | Hernandez Sampieri, Roberto ; Fernandez Collado, Carlos ; Baptista Lucio, Maria del P.: Metodolog ́ıa de la investigaci ́on. 2010. – 656 p.. – ISBN 9786071502919 | spa |
| dc.relation.references | IDEAM. Precipitaci ́on Diaria en Mil ́ımetros - IDEAM. 2018 | spa |
| dc.relation.references | Inguere, Tifaine ; Carlier, Florent ; Renault, Valerie: Task Delegation through Multi-Agent Negotiation in Embedded Systems by the Platform MERMAID. (2017). ISBN 9781509059355 | spa |
| dc.relation.references | Jimenez, Andres: Modelo Basado en Agentes Inteligentes como Soporte a la Gesti ́on del Riego en Cultivos Agr ́ıcolas. (2018), p. 70 | spa |
| dc.relation.references | Juliard, Alexandre. What is wine? 2008 | spa |
| dc.relation.references | Kitchenham, Barbara ; Pearl Brereton, O. ; Budgen, David ; Turner, Mark ; Bailey, John ; Linkman, Stephen: Systematic literature reviews in software engi- neering – A systematic literature review. En: Information and Software Technology 51 (2009), Nr. 1, p. 7–15. – Special Section - Most Cited Articles in 2002 and Regular Research Papers. – ISSN 0950–5849 | spa |
| dc.relation.references | Laroseri, Salwa B. ; Page, Michel L. ; Aparicio, Carlos F. ; Kharrou, Mohamed H. ; Khabba, Sa ̈ıd ; Fazziki, Aziz E. ; Hennigan, Paul ; Jarlan, Lionel: Simulating Ne- gotiations over Limited Water Resources: A Multi-Agent System Approach for Irrigation Systems Facilitates the Analysis of the Decision-making Process 1. En: International Journal of Interbehaviorism and Behavior Analysis Belaqziz 4 (2016), p. 116–135. – ISSN 2340–0242 | spa |
| dc.relation.references | Le Bars, M. ; Attonaty, J. M.: A multi-agent system to the common management of a renewable resource: Application to water sharing. En: Proceedings of the International Conference on Tools with Artificial Intelligence (2001), Nr. 1, p. 42–49. – ISBN 1082– 3409 | spa |
| dc.relation.references | Liu, Jia ; Chen, Zengqiang ; Liu, Zhongxin ; Zhang, Xinghui: Distributed robust con- sensus control for nonlinear multi-agent systems by using output regulation approach. En: IMA Journal of Mathematical Control and Information 32 (2013), 11, p. 515–535. – ISSN 14716887 | spa |
| dc.relation.references | Mehran Mesbahi ; Egersted, Magnus: Graph Theoretic Methods in Multiagent Networks. New Jersey : Princeston University Press, 2010. – ISBN 9780691140612 | spa |
| dc.relation.references | Meng, Wenchao ; Yang, Qinmin ; Si, Jennie ; Sun, Youxian: Consensus Control of Nonlinear Multiagent Systems with Time-Varying State Constraints. En: IEEE Transactions on Cybernetics 47 (2017), 8, p. 2110–2120. – ISSN 21682267 | spa |
| dc.relation.references | Mojica, Eduardo: TALLER OPTIMIZACI ́ON Y CONTROL DE SISTEMAS DIS- TRIBUIDOS. (2017), p. 2–4 | spa |
| dc.relation.references | Nautiyal, Mayank ; Grabow, Garry ; Miller, Grady ; Huffman, Rodney: Eva- luation of Two Smart Irrigation Technologies in Cary, North Carolina, 2010 | spa |
| dc.relation.references | Ondo, Ian ; Burns, Janice ; Piedallu, Christian: Including the lateral redistribution of soil moisture in a supra regional water balance model to better identify suitable areas for tree species. En: CATENA 153 (2017), p. 207–218. – ISSN 0341–8162 | spa |
| dc.relation.references | Palanca, Javi. Spade Smart Python Agent Development Environment. 2016 | spa |
| dc.relation.references | Pedregosa, F. ; Varoquaux, G. ; Gramfort, A. ; Michel, V. ; Thirion, B. ; Grisel, O. ; Blondel, M. ; Prettenhofer, P. ; Weiss, R. ; Dubourg, V. ; Vanderplas, J. ; Passos, A. ; Cournapeau, D. ; Brucher, M. ; Perrot, M. ; Duchesnay, E.: Scikit-learn: Machine Learning in Python. En: Journal of Machine Learning Research 12 (2011), p. 2825–2830 | spa |
| dc.relation.references | Peyrot, Emmanuel G. ; Saiyeed, Kawsar ; Alvefur, Kim ; Wild, Matthew: Pro- sodyctl. En: prosodyctl – Prosody IM (2019), Feb | spa |
| dc.relation.references | Pipitone, Claudia ; Maltese, Antonino ; Dardanelli, Gino ; Brutto, Mauro L. ; Loggia, Goffredo L.: Monitoring water surface and level of a reservoir using diffe- rent remote sensing approaches and comparison with dam displacements evaluated via GNSS. En: Remote Sensing 10 (2018), 1. – ISSN 20724292 | spa |
| dc.relation.references | Python Software Foundation. Subprocess - subprocess management. 2001 | spa |
| dc.relation.references | Ren, Chang E. ; Shi, Zhiping ; Du, Tao: Distributed Observer-Based Leader-Following Consensus Control for Second-Order Stochastic Multi-Agent Systems. En: IEEE Access 6 (2018), 4, p. 20077–20084. – ISSN 21693536 | spa |
| dc.relation.references | Ren, Wei: Overview of Consensus Algorithms in Cooperative Control. (2007) | spa |
| dc.relation.references | Rodrigo, Joaqu ́ın A. Selecci ́on de predictores, Regularizaci ́on Ridge, lasso, elastic net y reducci ́on de Dimensionalidad. 2018 | spa |
| dc.relation.references | Rodriguez-Ortega, W.M. ; Martinez, V. ; Rivero, R.M. ; Camara-Zapata, J.M. ; Mestre, T. ; Garcia-Sanchez, F.: Use of a smart irrigation system to study the effects of irrigation management on the agronomic and physiological responses of tomato plants grown under different temperatures regimes. En: Agricultural Water Management 183 (2017), p. 158–168. – Special Issue: Advances on ICTs for Water Management in Agriculture. – ISSN 0378–3774 | spa |
| dc.relation.references | Russell, Stuart ; Norvig, Peter: Artificial Intelligence A Modern Approach. 2013. – 1151 p.. – ISBN 9780136042594 | spa |
| dc.relation.references | Salvi, S ; Jain, S. A. F. ; Sanjay, H. A. ; Harshita, T. K. ; Farhana, M ; Jain, Naveen ; Suhas, M: Cloud Based Data Analysis and Monitoring of Smart Multi-level Irrigation System Using IoT. En: 2017 International Conference on I-SMAC (IoT in So- cial, Mobile, Analytics and Cloud) (I-SMAC) (2017), p. 752–757. ISBN 9781509032433 | spa |
| dc.relation.references | Shoham, Yoav ; Leyton-Brown, Kevin: Multiagent Systems: Algorithmic, game- theoretic, and logical foundations. Cambridge University Press, 2009 | spa |
| dc.relation.references | Trudeau, Richard J.: Introduction to graph theory. Stanford, 2017 | spa |
| dc.relation.references | USOCHICAMOCHA. PLAN DE GESTION Y MANEJO DEL RIESGO DEL EM- BALSE “LA COPA” CON EL FIN DE EVITAR FUTURAS INUNDACIONES. 2019 | spa |
| dc.relation.references | USOCHICAMOCHA: Niveles diarios de la Copa 2019. (2020) | spa |
| dc.relation.references | Wooldridge, Michael: An Introduction to MultiAgent Systems. 2nd. Wiley Pu- blishing, 2009. – ISBN 0470519460, 9780470519462 | spa |
| dc.relation.references | Yahyaoui’s, Amani ; Yahyaoui, Imene ; Yumus ̧ak, Nejat: 13 - Machine Learning Techniques for Data Classification. En: Yahyaoui, Imene (Ed.): Advances in Renewable Energies and Power Technologies. Elsevier, 2018. – ISBN 978–0–12–813185–5, p. 441 – 450 | spa |
| dc.relation.references | Yang, Xin-She: 8 - Neural networks and deep learning. En: Yang, Xin-She (Ed.): Introduction to Algorithms for Data Mining and Machine Learning. Academic Press, 2019. – ISBN 978–0–12–817216–2, p. 139 – 161 | spa |
| dc.relation.references | Zhao, Tiebiao ; Stark, Brandon ; Chen, YangQuan ; Ray, Andrew L. ; Doll, David: Challenges in water stress quantification using small unmanned aerial system (sUAS): Lessons from a growing season of almond. En: 2016 International Conference on Un- manned Aircraft Systems (ICUAS), 2016, p. 1366–1370 | spa |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
| dc.rights.license | Reconocimiento 4.0 Internacional | spa |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
| dc.subject.ddc | 630 - Agricultura y tecnologías relacionadas::633 - Cultivos de campo y de plantación | spa |
| dc.subject.proposal | Control | spa |
| dc.subject.proposal | Evapotranspiración | eng |
| dc.subject.proposal | Inteligencia artificial | spa |
| dc.subject.proposal | Riego | spa |
| dc.subject.proposal | Sistemas multiagentes | spa |
| dc.subject.proposal | Sensado remoto | spa |
| dc.subject.proposal | Artificial intelligence | eng |
| dc.subject.proposal | Evapotranspiration | eng |
| dc.subject.proposal | Irrigation | eng |
| dc.subject.proposal | Multiagent systems | eng |
| dc.subject.proposal | Remote sensing | eng |
| dc.subject.unesco | Cultivo | spa |
| dc.subject.unesco | Cultivation | eng |
| dc.title | Método de negociación para riego en condiciones de baja disponibilidad de agua | spa |
| dc.title.translated | Intelligent negotiation method for irrigation under low water quantity conditions | eng |
| dc.type | Trabajo de grado - Maestría | spa |
| dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
| dc.type.content | Text | spa |
| dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
| dcterms.audience.professionaldevelopment | Bibliotecarios | spa |
| dcterms.audience.professionaldevelopment | Estudiantes | spa |
| dcterms.audience.professionaldevelopment | Investigadores | spa |
| dcterms.audience.professionaldevelopment | Maestros | spa |
| dcterms.audience.professionaldevelopment | Público general | spa |
| oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Tesis_Maestría_SMAR.pdf
- Tamaño:
- 8.94 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Automatización Industrial
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:

