Método de negociación para riego en condiciones de baja disponibilidad de agua

dc.contributor.advisorHerrera Cárdenas, Pedro Fabián
dc.contributor.advisorJímenez López, Andrés Fernando
dc.contributor.authorSalazar Sánchez, Carlos Alejandro
dc.contributor.cvlacSalazar Sánchez, Carlos Alejandro [0000132326]spa
dc.contributor.orcidSalazar Sánchez, Carlos Alejandro [0000000171475204]spa
dc.date.accessioned2023-10-24T16:17:05Z
dc.date.available2023-10-24T16:17:05Z
dc.date.issued2022
dc.descriptionilustraciones, graficas, tablasspa
dc.description.abstractEn este documento se encuentran los procedimientos experimentales, los resultados y las conclusiones de un proyecto de sistemas multiagentes aplicado a la estimación, gestión y la toma de decisiones para riego de cultivos en los distritos presentes en Boyacá. Para la construcción de este proyecto se plantearon los objetivos de Modelar un agente para el reservorio, obtener un modelo para los cultivos, simular el rendimiento de cultivos con un software especializado, construir un agente de estimación de requerimiento hídrico, y , finalmente, implementar un algoritmo de negociación basado en agentes para el manejo del riego. Para cumplir estos objetivos se planteó crear agentes con variadas técnicas de inteligencia artificial como convolutional neural networks y random forests para realizar las labores de: estimar la cantidad de agua en el embalse La Copa del cual se saca el recurso para las fincas aledañas, estimar el requerimiento hídrico de acuerdo a las condiciones ambientales y del cultivo, calcular la validez de renegociación y ejecutarla usando un algoritmo de consenso y, por último, simular el comportamiento del cultivo con las condiciones de suelo y riego estimados para evidenciar el efecto de las decisiones del sistema en las fincas (Texto tomado de la fuente)spa
dc.description.abstractShown in this document are the experimental procedures, the results and conclusions of a project using multiagent systems for estimation, management and decision making for irri gation in crops in the districts of Boyac´ a. For the development of this project the following objectives were created and satisfied: Modeling of a reservoir management agent, obtain ment of crop models, Simulation of crops using specialized software, making of an irrigation estimation agent, and, finally, implementation of an agent based negotiation algorithm for irrigation management. Agents with various techniques of artificial intelligence were designed to complete these objectives doing the following tasks: estimate the quantity of water in La Copa Reservoir from which the water resource is obtained, estimate the water requirement according to the enviromental and crop conditions, estimate the validity of negotiation and execute it and, finally, simulate the crop behaviour with the soil conditions and the calcula ted irrigation profile to show and analize the effect of the system decisions in the crops.eng
dc.description.curricularareaIngeniería Eléctrica y Electrónica.Sede Bogotáspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Automatización Industrialspa
dc.description.researchareaSistemas multiagentes e inteligencia artificialspa
dc.format.extentx, 81 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84827
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Automatización Industrialspa
dc.relation.referencesAlameda, Teresa. Machine learning: What is it and how does it work? Nov 2019spa
dc.relation.referencesAllen, Richard G.: Evapotranspiracion del Cultivo: Guias Para determinacion Los Requerimientos de Agua de los cultivos. Food & Agriculture Org, 2006spa
dc.relation.referencesAlpaydin, Ethem: Introduction to Machine Learning. 3. Cambridge, MA : MIT Press, 2014 (Adaptive Computation and Machine Learning). – ISBN 978–0–262–02818–9spa
dc.relation.referencesAlvergue, Luis D. ; Pandey, Abhishek ; Gu, Guoxiang ; Chen, Xiang: Consensus Control for Heterogeneous Multi-Agent Systems. (2015), 10spa
dc.relation.referencesAndales, A A. ; Chavez, J L. ; Bauder, T A.: Irrigation Scheduling: The Water Balance Approach. (2015)spa
dc.relation.referencesAndr ́es, Jorge ; Ayala, Sanabria: Maestr ́ıa en Ingenier ́ıa Civil GU ́IA METODOL ́OGI- CA PARA EL AN ́ALISIS DE LA GESTI ́ON DE EMBALSES. CASO DE ESTUDIO EMBALSE LA COPA. (2019)spa
dc.relation.referencesBelaqziz, Salwa ; Fazziki, Aziz E. ; Mangiarotti, Sylvain ; Le Page, Michel ; Khabba, Said ; Raki, Salah E. ; Adnani, Mohamed E. ; Jarlan, Lionel: An Agent based Modeling for the Gravity Irrigation Management. En: Procedia Environmental Sciences 19 (2013), Nr. 0, p. 804–813. – ISSN 18780296spa
dc.relation.referencesBreiman, Leo: Random Forests. En: Machine Learning 45 (2001), Nr. 1, p. 5–32. – ISSN 0885–6125spa
dc.relation.referencesCambra, Carlos ; Sendra, Sandra ; Lloret, Jaime ; Garcia, Laura: An IoT service- oriented system for agriculture monitoring. En: IEEE International Conference on Communications (2017). – ISBN 9781467389990spa
dc.relation.referencesCapraro, Flavio ; Pati ̃no, Daniel ; Tosetti, Santiago ; Schugurensky, Carlos: Neural network-based irrigation control for precision agriculture. En: Proceedings of 2008 IEEE International Conference on Networking, Sensing and Control, ICNSC (2008), p. 357–362. ISBN 9781424416851spa
dc.relation.referencesCoulouris, George ; Dollimore, Jean ; Kindberg, Tim: Distributed Systems: Con- cepts and Design. Vol. 4. 2012. – 772 p.. – ISBN 0321263545spa
dc.relation.referencesCruz, John R. ; Baldovino, Renann G. ; Bandala, Argel A. ; Dadios, Elmer P.: Water usage optimization of Smart Farm Automated Irrigation System using artificial neural network. En: 2017 5th International Conference on Information and Communi- cation Technology, ICoIC7 2017 0 (2017), Nr. c. ISBN 9781509049127spa
dc.relation.referencesCruz, Yenifer D. ; Mart ́ınez, Camilo ; Pantoja, Andr ́es: Drip Irrigation System based on Distributed Control – Part 1 : Design and Model. (2015). ISBN 9781467393058spa
dc.relation.referencesDe la Cruz, Yenifer ; Martinez, Camilo ; Pantoja, Andres: Drip irrigation system based on distributed control — Part 2: Implementation. En: 2015 IEEE 2nd Colombian Conference on Automatic Control (CCAC) (2015), p. 1–6. ISBN 978–1–4673–9305–8spa
dc.relation.referencesDemazeau, Yves ; Pechoucek, Michal ; Corchado, Juan M. ; Bajo, Perez J.: Advances on practical applications of agents and Multiagent Systems: 9th Internatio- nal Conference on practical applications of agents and Multiagent Systems, Salamanca, Spain, 06-08.04.2011. Springer, 2011spa
dc.relation.referencesElsalahy, Heba H. ; Bellingrath-Kimura, Sonoko D. ; Roß, Christina-Luise ; Kautz, Timo ; D ̈oring, Thomas F.: Crop resilience to drought with and without response diversity. En: Frontiers in Plant Science 11 (2020)spa
dc.relation.referencesEOS Data Analytics. EOSDA landviewer: Browse real-time Earth observation. 2002spa
dc.relation.referencesFeng, Youcan ; Burian, Steven J. ; Pardyjak, Eric R.: Observation and Estimation of Evapotranspiration from an Irrigated Green Roof in a Rain-Scarce Environment. En: Water 10 (2018), Nr. 3. – ISSN 2073–4441spa
dc.relation.referencesFeng, Yuanzhen ; Zheng, Wei X.: Group consensus control for discrete-time hete- rogeneous first- and second-order multiagent systems. En: IET Control Theory and Applications 12 (2018), 4, p. 753–760. – ISSN 17518652spa
dc.relation.referencesFerris, Santiago. Cuatro Formas de entender la inteligencia artificial. 2017spa
dc.relation.referencesFood and Agriculture Organization of the United Nations: Reference ma- nuals Aquacrop. 2022spa
dc.relation.referencesGasmelseid, Tagelsir M.: A Multi Agent Negotiation Framework in Resource Bounded Environments. En: 2006 2nd International Conference on Information & Communica- tion Technologies - Proceedings (2006), p. 465–470. ISBN 0780395212spa
dc.relation.referencesGema, Roberto. C ́alculo del ́ındice NDWI. Jul 2018spa
dc.relation.referencesGhorbani, Mohammad A. ; Shamshirband, Shahaboddin ; Zare Haghi, Davoud ; Azani, Atefe ; Bonakdari, Hossein ; Ebtehaj, Isa: Application of firefly algorithm- based support vector machines for prediction of field capacity and permanent wilting point. En: Soil and Tillage Research 172 (2017), p. 32–38. – ISSN 0167–1987spa
dc.relation.referencesGonzalez, Ligdi. Regresi ́on Lineal - Pr ́actica Con python. Sep 2022spa
dc.relation.referencesHernandez Sampieri, Roberto ; Fernandez Collado, Carlos ; Baptista Lucio, Maria del P.: Metodolog ́ıa de la investigaci ́on. 2010. – 656 p.. – ISBN 9786071502919spa
dc.relation.referencesIDEAM. Precipitaci ́on Diaria en Mil ́ımetros - IDEAM. 2018spa
dc.relation.referencesInguere, Tifaine ; Carlier, Florent ; Renault, Valerie: Task Delegation through Multi-Agent Negotiation in Embedded Systems by the Platform MERMAID. (2017). ISBN 9781509059355spa
dc.relation.referencesJimenez, Andres: Modelo Basado en Agentes Inteligentes como Soporte a la Gesti ́on del Riego en Cultivos Agr ́ıcolas. (2018), p. 70spa
dc.relation.referencesJuliard, Alexandre. What is wine? 2008spa
dc.relation.referencesKitchenham, Barbara ; Pearl Brereton, O. ; Budgen, David ; Turner, Mark ; Bailey, John ; Linkman, Stephen: Systematic literature reviews in software engi- neering – A systematic literature review. En: Information and Software Technology 51 (2009), Nr. 1, p. 7–15. – Special Section - Most Cited Articles in 2002 and Regular Research Papers. – ISSN 0950–5849spa
dc.relation.referencesLaroseri, Salwa B. ; Page, Michel L. ; Aparicio, Carlos F. ; Kharrou, Mohamed H. ; Khabba, Sa ̈ıd ; Fazziki, Aziz E. ; Hennigan, Paul ; Jarlan, Lionel: Simulating Ne- gotiations over Limited Water Resources: A Multi-Agent System Approach for Irrigation Systems Facilitates the Analysis of the Decision-making Process 1. En: International Journal of Interbehaviorism and Behavior Analysis Belaqziz 4 (2016), p. 116–135. – ISSN 2340–0242spa
dc.relation.referencesLe Bars, M. ; Attonaty, J. M.: A multi-agent system to the common management of a renewable resource: Application to water sharing. En: Proceedings of the International Conference on Tools with Artificial Intelligence (2001), Nr. 1, p. 42–49. – ISBN 1082– 3409spa
dc.relation.referencesLiu, Jia ; Chen, Zengqiang ; Liu, Zhongxin ; Zhang, Xinghui: Distributed robust con- sensus control for nonlinear multi-agent systems by using output regulation approach. En: IMA Journal of Mathematical Control and Information 32 (2013), 11, p. 515–535. – ISSN 14716887spa
dc.relation.referencesMehran Mesbahi ; Egersted, Magnus: Graph Theoretic Methods in Multiagent Networks. New Jersey : Princeston University Press, 2010. – ISBN 9780691140612spa
dc.relation.referencesMeng, Wenchao ; Yang, Qinmin ; Si, Jennie ; Sun, Youxian: Consensus Control of Nonlinear Multiagent Systems with Time-Varying State Constraints. En: IEEE Transactions on Cybernetics 47 (2017), 8, p. 2110–2120. – ISSN 21682267spa
dc.relation.referencesMojica, Eduardo: TALLER OPTIMIZACI ́ON Y CONTROL DE SISTEMAS DIS- TRIBUIDOS. (2017), p. 2–4spa
dc.relation.referencesNautiyal, Mayank ; Grabow, Garry ; Miller, Grady ; Huffman, Rodney: Eva- luation of Two Smart Irrigation Technologies in Cary, North Carolina, 2010spa
dc.relation.referencesOndo, Ian ; Burns, Janice ; Piedallu, Christian: Including the lateral redistribution of soil moisture in a supra regional water balance model to better identify suitable areas for tree species. En: CATENA 153 (2017), p. 207–218. – ISSN 0341–8162spa
dc.relation.referencesPalanca, Javi. Spade Smart Python Agent Development Environment. 2016spa
dc.relation.referencesPedregosa, F. ; Varoquaux, G. ; Gramfort, A. ; Michel, V. ; Thirion, B. ; Grisel, O. ; Blondel, M. ; Prettenhofer, P. ; Weiss, R. ; Dubourg, V. ; Vanderplas, J. ; Passos, A. ; Cournapeau, D. ; Brucher, M. ; Perrot, M. ; Duchesnay, E.: Scikit-learn: Machine Learning in Python. En: Journal of Machine Learning Research 12 (2011), p. 2825–2830spa
dc.relation.referencesPeyrot, Emmanuel G. ; Saiyeed, Kawsar ; Alvefur, Kim ; Wild, Matthew: Pro- sodyctl. En: prosodyctl – Prosody IM (2019), Febspa
dc.relation.referencesPipitone, Claudia ; Maltese, Antonino ; Dardanelli, Gino ; Brutto, Mauro L. ; Loggia, Goffredo L.: Monitoring water surface and level of a reservoir using diffe- rent remote sensing approaches and comparison with dam displacements evaluated via GNSS. En: Remote Sensing 10 (2018), 1. – ISSN 20724292spa
dc.relation.referencesPython Software Foundation. Subprocess - subprocess management. 2001spa
dc.relation.referencesRen, Chang E. ; Shi, Zhiping ; Du, Tao: Distributed Observer-Based Leader-Following Consensus Control for Second-Order Stochastic Multi-Agent Systems. En: IEEE Access 6 (2018), 4, p. 20077–20084. – ISSN 21693536spa
dc.relation.referencesRen, Wei: Overview of Consensus Algorithms in Cooperative Control. (2007)spa
dc.relation.referencesRodrigo, Joaqu ́ın A. Selecci ́on de predictores, Regularizaci ́on Ridge, lasso, elastic net y reducci ́on de Dimensionalidad. 2018spa
dc.relation.referencesRodriguez-Ortega, W.M. ; Martinez, V. ; Rivero, R.M. ; Camara-Zapata, J.M. ; Mestre, T. ; Garcia-Sanchez, F.: Use of a smart irrigation system to study the effects of irrigation management on the agronomic and physiological responses of tomato plants grown under different temperatures regimes. En: Agricultural Water Management 183 (2017), p. 158–168. – Special Issue: Advances on ICTs for Water Management in Agriculture. – ISSN 0378–3774spa
dc.relation.referencesRussell, Stuart ; Norvig, Peter: Artificial Intelligence A Modern Approach. 2013. – 1151 p.. – ISBN 9780136042594spa
dc.relation.referencesSalvi, S ; Jain, S. A. F. ; Sanjay, H. A. ; Harshita, T. K. ; Farhana, M ; Jain, Naveen ; Suhas, M: Cloud Based Data Analysis and Monitoring of Smart Multi-level Irrigation System Using IoT. En: 2017 International Conference on I-SMAC (IoT in So- cial, Mobile, Analytics and Cloud) (I-SMAC) (2017), p. 752–757. ISBN 9781509032433spa
dc.relation.referencesShoham, Yoav ; Leyton-Brown, Kevin: Multiagent Systems: Algorithmic, game- theoretic, and logical foundations. Cambridge University Press, 2009spa
dc.relation.referencesTrudeau, Richard J.: Introduction to graph theory. Stanford, 2017spa
dc.relation.referencesUSOCHICAMOCHA. PLAN DE GESTION Y MANEJO DEL RIESGO DEL EM- BALSE “LA COPA” CON EL FIN DE EVITAR FUTURAS INUNDACIONES. 2019spa
dc.relation.referencesUSOCHICAMOCHA: Niveles diarios de la Copa 2019. (2020)spa
dc.relation.referencesWooldridge, Michael: An Introduction to MultiAgent Systems. 2nd. Wiley Pu- blishing, 2009. – ISBN 0470519460, 9780470519462spa
dc.relation.referencesYahyaoui’s, Amani ; Yahyaoui, Imene ; Yumus ̧ak, Nejat: 13 - Machine Learning Techniques for Data Classification. En: Yahyaoui, Imene (Ed.): Advances in Renewable Energies and Power Technologies. Elsevier, 2018. – ISBN 978–0–12–813185–5, p. 441 – 450spa
dc.relation.referencesYang, Xin-She: 8 - Neural networks and deep learning. En: Yang, Xin-She (Ed.): Introduction to Algorithms for Data Mining and Machine Learning. Academic Press, 2019. – ISBN 978–0–12–817216–2, p. 139 – 161spa
dc.relation.referencesZhao, Tiebiao ; Stark, Brandon ; Chen, YangQuan ; Ray, Andrew L. ; Doll, David: Challenges in water stress quantification using small unmanned aerial system (sUAS): Lessons from a growing season of almond. En: 2016 International Conference on Un- manned Aircraft Systems (ICUAS), 2016, p. 1366–1370spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::633 - Cultivos de campo y de plantaciónspa
dc.subject.proposalControlspa
dc.subject.proposalEvapotranspiracióneng
dc.subject.proposalInteligencia artificialspa
dc.subject.proposalRiegospa
dc.subject.proposalSistemas multiagentesspa
dc.subject.proposalSensado remotospa
dc.subject.proposalArtificial intelligenceeng
dc.subject.proposalEvapotranspirationeng
dc.subject.proposalIrrigationeng
dc.subject.proposalMultiagent systemseng
dc.subject.proposalRemote sensingeng
dc.subject.unescoCultivospa
dc.subject.unescoCultivationeng
dc.titleMétodo de negociación para riego en condiciones de baja disponibilidad de aguaspa
dc.title.translatedIntelligent negotiation method for irrigation under low water quantity conditionseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis_Maestría_SMAR.pdf
Tamaño:
8.94 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Automatización Industrial

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: