Una aproximación metodológica para la valoración de opciones de aplazamiento de proyectos de generación de energía solar fotovoltaica
dc.contributor.advisor | Velásquez Henao, Juan David | |
dc.contributor.author | Jiménez Gómez, Luis Miguel | |
dc.date.accessioned | 2025-07-28T16:32:18Z | |
dc.date.available | 2025-07-28T16:32:18Z | |
dc.date.issued | 2025-07-27 | |
dc.description | Gráficas | spa |
dc.description.abstract | Esta tesis doctoral propone una aproximación metodológica para valorar la opción real de aplazamiento en proyectos de generación de energía solar fotovoltaica en Colombia, considerando la alta incertidumbre asociada al entorno eléctrico nacional. A diferencia del enfoque tradicional basado en el Valor Presente Neto, se incorpora explícitamente la flexibilidad de decidir el momento óptimo de inversión mediante simulación estocástica y técnicas avanzadas de valoración. El desarrollo metodológico se estructura en cuatro etapas. Primero, se identifican las variables más relevantes para la rentabilidad del proyecto a partir de un análisis de sensibilidad determinístico. Luego, se construye un sistema de simulación jerárquico que representa la dinámica de largo plazo de variables clave como el precio de electricidad, la irradiancia, los aportes hídricos y la demanda. En tercer lugar, se formula una metodología de valoración basada en el método Least Squares Monte Carlo (LSMC), adaptada a las condiciones del contexto colombiano. Finalmente, se aplica esta metodología a un caso real de un parque solar de 100 MW en La Guajira. Los resultados muestran que el valor de la opción de aplazamiento puede superar significativamente al VPN tradicional, especialmente en escenarios de alta incertidumbre. La metodología desarrollada permite cuantificar el valor económico de la flexibilidad de esperar, identificar umbrales críticos de ejercicio, y mejorar la calidad de las decisiones de inversión. Así, se aporta un marco integral para valorar proyectos energéticos en contextos donde la incertidumbre, la irreversibilidad y la flexibilidad son factores determinantes. (Tomado de la fuente) | spa |
dc.description.abstract | This doctoral dissertation proposes a methodological framework to value the real option to defer investment in solar photovoltaic (PV) generation projects in Colombia, under conditions of high structural uncertainty. Unlike traditional approaches based on Net Present Value, the proposed method explicitly incorporates managerial flexibility to choose the optimal timing of investment through stochastic simulation and advanced real options valuation techniques. The methodological development is structured into four main stages. First, a deterministic sensitivity analysis identifies the variables with the greatest impact on project profitability. Second, a hierarchical simulation system is built to represent the long-term dynamics of key variables such as electricity prices, solar irradiance, hydrological inflows, and electricity demand. Third, an enhanced version of the Least Squares Monte Carlo (LSMC) method is formulated, tailored to the specific conditions of the Colombian electricity market. Finally, the methodology is applied to a real case study: a 100 MW solar PV project located in La Guajira. Results show that the value of the deferral option can significantly exceed the traditional NPV, especially under high uncertainty. The proposed methodology quantifies the economic value of waiting, identifies critical investment thresholds, and provides a structured framework for decision-making under uncertainty. This approach offers a novel and robust contribution to the real options literature, enabling more informed investment decisions in renewable energy projects where irreversibility, volatility, and flexibility play a central role. | eng |
dc.description.curriculararea | Ingeniería De Sistemas E Informática.Sede Medellín | spa |
dc.description.degreelevel | Doctorado | spa |
dc.description.degreename | Doctor en Ingeniería | spa |
dc.format.extent | 224 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88386 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | spa |
dc.publisher.faculty | Facultad de Minas | spa |
dc.publisher.place | Medellín, Colombia | spa |
dc.publisher.program | Medellín - Minas - Doctorado en Ingeniería - Sistemas | spa |
dc.relation.indexed | LaReferencia | spa |
dc.relation.references | Abdel Sabour, S. A., & Poulin, R. (2006). Valuing real options in mining projects using Monte Carlo simulation: A case study. Journal of Financial Risk Management, 2(1), 1–14. | spa |
dc.relation.references | Acaroğlu, H., & García Márquez, F. P. (2021). Comprehensive review on electricity market price and load forecasting based on wind energy. Energies, 14(22), 7603. https://doi.org/10.3390/en14227603 | spa |
dc.relation.references | Amran, M., & Kulatilaka, N. (1999). Real options: Managing strategic investment in an uncertain world. Harvard Business School Press. | spa |
dc.relation.references | Arenas, A., & Calderón, M. (2022). Impacto del fenómeno El Niño en la operación del sistema eléctrico colombiano: Un análisis hidrológico y energético. Revista Colombiana de Energía, 18(2), 45–60. | spa |
dc.relation.references | Ashuri, B., Kashani, H., & Lu, J. (2011). A real options approach to evaluating investment in solar ready buildings. Management Innovation for a Sustainable Built Environment, June, 1–10. | spa |
dc.relation.references | Bertolini, M., D’Alpaos, C., & Moretto, M. (2018). Do Smart Grids boost investments in domestic PV plants? Evidence from the Italian electricity market. Energy, 149, 890–902. https://doi.org/10.1016/j.energy.2018.02.002 | spa |
dc.relation.references | Box, G. E. P., Jenkins, G. M., & Reinsel, G. C. (1976). Time Series Analysis: Forecasting and Control (Revised ed.). Holden-Day. | spa |
dc.relation.references | Boyle, P. P. (1977). Options: A Monte Carlo approach. Journal of Financial Economics, 4(3), 323– 338. https://doi.org/10.1016/0304-405X(77)90005-8 | spa |
dc.relation.references | Boyle, P., Evnine, J., & Gibbs, S. (1989). Numerical evaluation of multivariate contingent claims. The Review of Financial Studies, 2(2), 241–250. | spa |
dc.relation.references | Brennan, M. J., & Schwartz, E. S. (1985). Evaluating natural resource investments. Journal of Business, 58(2), 135–157. | spa |
dc.relation.references | Cox, J. C., Ross, S. A., & Rubinstein, M. (1979). Option pricing: A simplified approach. Journal of Financial Economics, 7(3), 229–263. https://doi.org/10.1016/0304-405X(79)90015-1 | spa |
dc.relation.references | Damodaran, A. (2024). Data: Historical Returns on Stocks, Bonds and Bills. Recuperado de https://pages.stern.nyu.edu/~adamodar/ | spa |
dc.relation.references | Dixit, A. K., & Pindyck, R. S. (1994). Investment under uncertainty. Princeton University Press | spa |
dc.relation.references | Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133, 285–296. https://doi.org/10.1016/j.jbusres.2021.04.070 | spa |
dc.relation.references | EIA (U.S. Energy Information Administration). (2024). Cost and Performance Characteristics of New Generating Technologies, Annual Energy Outlook 2024. Recuperado de https://www.eia.gov/outlooks/aeo/ | spa |
dc.relation.references | Ersen, M. C., Tas, M., & Kahraman, C. (2018). Real option valuation of wind energy investment using intuitionistic fuzzy numbers. Energy Reports, 4, 317–325. https://doi.org/10.1016/j.egyr.2018.05.002 | spa |
dc.relation.references | Fernandes, B., Cunha, J., & Ferreira, P. (2011). The use of real options approach in energy sector investments. Renewable and Sustainable Energy Reviews, 15(9), 4491–4497. https://doi.org/10.1016/j.rser.2011.07.102 | spa |
dc.relation.references | Franses, P. H., van Dijk, D., & Opschoor, A. (2014). Time Series Models for Business and Economic Forecasting (2nd ed.). Cambridge University Press. https://doi.org/10.1017/CBO9781139343244 | spa |
dc.relation.references | Gazheli, A., & van den Bergh, J. C. J. M. (2018). Real options analysis of investment in solar vs. wind energy: Diversification strategies under uncertain prices and costs. Renewable and Sustainable Energy Reviews, 82, 101–113. https://doi.org/10.1016/j.rser.2017.09.028 | spa |
dc.relation.references | Glensk, B., & Madlener, R. (2019). On the value of flexibility and risk aversion in renewable energy investment: A study of wind power with energy storage. Energy Economics, 80, 831–848. https://doi.org/10.1016/j.eneco.2019.02.004 | spa |
dc.relation.references | Haldrup, N., & Nielsen, M. Ø. (2006). Directional congestion and volatility in electricity markets: Evidence from the Nordic power exchange. Energy Economics, 28(3), 379–395. https://doi.org/10.1016/j.eneco.2005.11.006 | spa |
dc.relation.references | Hewamalage, H., Bergmeir, C., & Bandara, K. (2021). Recurrent neural networks for time series forecasting: Current status and future directions. International Journal of Forecasting, 37(1), 388– 427. https://doi.org/10.1016/j.ijforecast.2020.06.008 | spa |
dc.relation.references | Hinderks, A., & Wagner, N. (2020). Statistical properties and market efficiency of European electricity prices. Energy Economics, 86, 104650. https://doi.org/10.1016/j.eneco.2020.104650 | spa |
dc.relation.references | Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735– 1780. https://doi.org/10.1162/neco.1997.9.8.1735 | spa |
dc.relation.references | INFORMS. (2013). The Analytics Process. Institute for Operations Research and the Management Sciences. https://www.informs.org | spa |
dc.relation.references | Jafarizadeh, A., & Bratvold, R. B. (2012). A comparison of valuation approaches for real options in petroleum projects. Energy Economics, 34(1), 72–79. https://doi.org/10.1016/j.eneco.2011.03.007 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Reconocimiento 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
dc.subject.ddc | 000 - Ciencias de la computación, información y obras generales | spa |
dc.subject.ddc | 330 - Economía | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::621 - Física aplicada | spa |
dc.subject.ddc | 330 - Economía::333 - Economía de la tierra y de la energía | spa |
dc.subject.lemb | Energía solar - Colombia | |
dc.subject.lemb | Generación de energía fotovoltaica - Colombia | |
dc.subject.lemb | Métodos de simulación | |
dc.subject.lemb | Simulación por computadores | |
dc.subject.lemb | Proyectos de inversión - Métodos de simulación | |
dc.subject.proposal | Opción real de aplazamiento | spa |
dc.subject.proposal | Least Squares Monte Carlo (LSMC) | eng |
dc.subject.proposal | Energía solar fotovoltaica | spa |
dc.subject.proposal | Simulación estocástica | spa |
dc.subject.proposal | Análisis de incertidumbre | spa |
dc.subject.proposal | Decisiones de inversión | spa |
dc.subject.proposal | Energía renovable | spa |
dc.subject.proposal | Real option to defer | eng |
dc.subject.proposal | Solar photovoltaic energy | eng |
dc.subject.proposal | Stochastic simulation | eng |
dc.subject.proposal | Uncertainty analysis | eng |
dc.subject.proposal | Investment decisions | eng |
dc.subject.proposal | Renewable energy | eng |
dc.title | Una aproximación metodológica para la valoración de opciones de aplazamiento de proyectos de generación de energía solar fotovoltaica | spa |
dc.title.translated | A methodological approach for the valuation of deferral options in solar photovoltaic generation projects | eng |
dc.type | Trabajo de grado - Doctorado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_db06 | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/doctoralThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TD | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.fundername | MinCiencias | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1128282974.2025.pdf
- Tamaño:
- 10.57 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Doctorado en Ingeniería - Sistemas
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: