Dynkin Functions and Its Applications

dc.contributor.advisorMoreno Cañadas, Agustín
dc.contributor.authorBravo Rios, Gabriel
dc.contributor.researchgroupTERENUFIA-UNALspa
dc.date.accessioned2021-05-05T18:44:11Z
dc.date.available2021-05-05T18:44:11Z
dc.date.issued2020-10
dc.description.abstractDynkin functions were introduced by Ringel as a tool to investigate combinatorial properties of hereditary artin algebras. According to Ringel, a Dynkin function consists of four sequences associated to An, Bn, Cn, Dn and five single values associated to the diagrams E6, E7, E8, F4 and G2. He also proposes to create an On-line Encyclopedia of Dynkin functions (OEDF) with the same purposes as the famous OEIS. Dynkin functions arise from the context of categorification of integer sequences, which according to Ringel and Fahr it means to consider suitable objects in a category instead of numbers of a given integer sequence. They gave a categorification of Fibonacci numbers by using the Gabriel's universal covering theory and the structure of the Auslander-Reiten quiver of the 3-Kronecker quiver. For instance, if Λ denotes a hereditary artin algebra associated to a Dynkin diagram ∆n then r(∆n) the number of indecomposable modules, a(∆n) the number of antichains in mod Λ, and tn(∆n) the number of tilting modules are Dynkin functions. In particular, we are focused on the way that some Dynkin functions act on Dynkin diagrams of type An. In this work, we follow the ideas of Ringel regarding Dynkin functions by investigating the number of sections in the Auslander-Reiten quiver of algebras of finite representation type. Dyck paths categories are introduced as a combinatorial model of the category of representations of quivers of Dynkin type An and it is shown an algebraic interpretation of frieze patterns as a direct sum of indecomposable objects of the category of Dyck paths. In particular, it is proved that there is a bijection between some Dyck paths and perfect matchings of some snake graphs. The approach allows us to give formulas for cluster variables in cluster algebras of Dynkin type An in terms of Dyck paths. At last but not least, it is introduced some Brauer configuration algebras such that the dimension of these algebras and its corresponding centers can be obtained via some combinatorial properties of the Catalan triangle. This research was partially supported by COLCIENCIAS convocatoria doctorados nacionales 785 de 2017.eng
dc.description.abstractLas funciones Dynkin fueron introducidas por Ringel como una herramienta para investigar las propiedades combinatorias de las álgebras hereditarias de artin. Según Ringel, una función Dynkin consta de cuatro sucesiones asociadas a An, Bn, Cn, Dn y cinco valores únicos asociados a los diagramas E6, E7, E8, F4 y G2. También propone crear una Enciclopedia en línea de funciones Dynkin (OEDF) con los mismos propósitos que la famosa OEIS. Las funciones Dynkin surgen del contexto de categorización de sucesiones enteras, que según Ringel y Fahr significa considerar objetos adecuados en una categoría en lugar de números de una sucesión entera dada. Ellos dieron una categorización de los números de Fibonacci utilizando la teoría de cubrimiento universal de Gabriel y la estructura del carcaj Auslander-Reiten del carcaj 3-Kronecker. Por ejemplo, si Λ denota una álgebra hereditaria de artin asociada a un diagrama de Dynkin ∆n entonces r (∆n) el número de módulos indescomponibles, a(∆n) el número de anticadenas en mod Λ, y tn (∆n) el número de módulos inclinantes son funciones Dynkin. En particular, nos centramos en la forma en que algunas funciones Dynkin actúan en los diagramas de Dynkin de tipo An. En este trabajo, seguimos las ideas de Ringel con respecto a las funciones Dynkin investigando el número de secciones en el carcaj de Auslander-Reiten de álgebras de tipo representación finita. Las categorías de caminos de Dyck se introducen como un modelo combinatorio de la categoría de representaciones de carcajes de tipo Dynkin An y se muestra una interpretación algebraica de patrones de friso como una suma directa de objetos indescomponibles de la categoría de caminos de Dyck. En particular, se ha demostrado que existe una biyección entre algunas caminos de Dyck y emparejamientos perfectos de algunos grafos serpientes. El enfoque nos permite dar fórmulas para las variables de conglomerado en álgebras de conglomerado Dynkin de tipo An en términos de caminos de Dyck. Por último, pero no menos importante, se introducen algunas álgebras de configuración de Brauer de modo que la dimensión de estas álgebras y sus correspondientes centros se puede obtener mediante algunas propiedades combinatorias del triángulo de catalán. Esta investigación fue apoyada parcialmente por COLCIENCIAS convocatoria doctorados nacionales 785 de 2017.spa
dc.description.degreelevelDoctoradospa
dc.description.researchareaTeoría de representaciones de álgebrasspa
dc.format.extent1 recurso en línea (135 páginas)spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79480
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Matemáticasspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotáspa
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Matemáticasspa
dc.relation.references[1] G. Andrews, The Theory of Partitions, Cambridge University. Press, Cambridge, 1998.spa
dc.relation.references[2] D.M. Arnold, Abelian Groups and Representations of Finite Partially Ordered Sets, CMS Books in Mathematics, vol. 2, Springer, 2000.spa
dc.relation.references[3] I. Assem, D. Simson, and A. Skowronski, Elements of the Representation Theory of Associative Algebras, Cambridge University Press, Cambridge UK, 2006.spa
dc.relation.references[4] I. Assem, C. Reutenauer, and D. Smith, Friezes, Adv. Math. 225 (2010), 3134-3165.spa
dc.relation.references[5] M. Auslander, I. Reiten, and S. O. Smalo , Representation theory of Artin algebras, volume 36 of Cambridge Studies in Advanced Mathematics., Cambridge University Press, Cambridge, 1995.spa
dc.relation.references[6] E. Barcucci, A. Del Lungo, S. Fezzi, and R. Pinzani, Nondecreasing Dyck paths and q-Fibonacci numbers, Discrete Mathematics 170 (1997), 211-217.spa
dc.relation.references[7] K. Baur, E. Faber, S. Gratz, K. Serhiyenko, and G. Todorov, Mutation of friezes, Bull. Sci. Math 142 (2018), 1-48.spa
dc.relation.references[8] K. Baur, E. Faber, S. Gratz, K. Serhiyenko, and G. Todorov, Conway-Coxeter Friezes and Mutation: A Survey, Advances in the Mathematical Sciences. 2017. Association for Women in Mathematics Series 15 (2018), 47-68.spa
dc.relation.references[9] K. Baur and R. Marsh, Frieze patterns for punctured discs, J. Algebraic Combin 30 (2009), 349-379.spa
dc.relation.references[10] S. Bilotta, F. Disanto, R. Pinzani, and S. Rinaldi, Catalan structures and Catalan pairs, Theoretical Computer Science 502 (2013), 239-248.spa
dc.relation.references[11] V. M. Bondarenko and A. G. Zavadskij, Posets with an equivalence relation of tame type and of finite gowth, Can, Math. Soc. Conf. Proc. 11 (1991), 67-88.spa
dc.relation.references[12] M. Bousquet-Melou, Square lattice walks avoiding a quadrant, Journal of Combinatorial Theory 144 (2016), 37-79.spa
dc.relation.references[13] A. Buan, M. Marsh, M. Reineke, I. Reiten, and G. Todorov, Tilting theory and cluster combinatorics, Advances in Mathematics 204 (2006), 572-628.spa
dc.relation.references[14] A. Buan, M. Marsh, and I. Reiten, Cluster-tilted algebras, Trans. Amer. Math. Soc. 359 (2007), 323-332.spa
dc.relation.references[15] A. Buan, M. Marsh, and I. Reiten, Cluster mutation via quiver representations, Commentarii Mathematici Helvetici 83 (2008), no. 1, 143-177.spa
dc.relation.references[16] A. Buan, M. Marsh, and I. Reiten, Cluster-tilted algebras of finite representation type, Journal of Algebra 306 (2006), no. 2, 412-431.spa
dc.relation.references[17] P. Caldero, F. Chapoton, and R. Schiffler, Quivers with relations arising from clusters (An case), Trans. Amer. Math. Soc. 358 (2006), no. 3, 1347-1364.spa
dc.relation.references[18] P. Caldero and F. Chapoton, Cluster algebras as Hall algebras of quiver representations, Commentarii Mathematici Helvetici 81 (2006), 595-616.spa
dc.relation.references[19] I. Canakci and R. Schiffler, Snake graph calculus and cluster algebras from surfaces, J. Algebra 382 (2013), 240-281.spa
dc.relation.references[20] I. Canakci and R. Schiffler, Snake graph calculus and cluster algebras from surfaces II: self-crossing snake graphs, Math. Z 281 (2015), 55-102.spa
dc.relation.references[21] I. Canakci and R. Schiffler, Snake Graph Calculus and Cluster Algebras from Surfaces III: Band Graphs and Snake Rings, International Mathematics Research Notices 4 (2019), 1145-1226.spa
dc.relation.references[22] I. Canakci and R. Schiffler, Cluster algebras and continued fractions, Compositio Mathematica 154 (2018), 565-593.spa
dc.relation.references[23] I. Canakci and R. Schiffler, Snake Graphs and continued fractions, European Journal of Combinatorics. 86 (2020), 103081.spa
dc.relation.references[24] A.M. Cañadas, Descripción categórica de algunos algoritmos de diferenciación, (Tesis de Doctorado) Universidad Nacional de Colombia (2007).spa
dc.relation.references[25] A.M. Cañadas, Morphisms in categories of representations of equipped posets, JPANTA 25 (2012), no. 2,145-176.spa
dc.relation.references[26] A.M. Cañadas, Some categorical properties of the algorithm of differentiation VII for equipped posets, JPANTA 25 (2012), no. 2, 177-213.spa
dc.relation.references[27] A.M. Cañadas, P.F.F. Espinosa, and I.D.M. Gaviria, Categorification of some integer sequences via Kronecker modules, JPANTA 38 (2016), no. 4, 339-347.spa
dc.relation.references[28] A.M. Cañadas, I.D.M. Gaviria, and P.F.F. Espinosa, Categorical properties of the algorithm of differentiation D-VIII, and on the algorithm of differentiation DIX for equipped posets, JPANTA 29 (2013), no. 2, 133-156.spa
dc.relation.references[29] A.M. Cañadas, I.D.M. Gaviria, and P.F.F. Espinosa, On the algorithm of differentiation D-IX for equipped posets, JPANTA 29 (2013), no. 12, 157-173.spa
dc.relation.references[30] A.M. Cañadas and H. Giraldo, Completion for equipped posets, JPANTA 26 (2012), no. 2, 173-196.spa
dc.relation.references[31] A.M. Cañadas, H. Giraldo, and P.F.F. Espinosa, Categorification of some integer sequences, FJMS 92 (2014), no. 2, 125-139.spa
dc.relation.references[32] A.M. Cañadas, H. Giraldo, and G.B. Rios, On the number of sections in the Auslander-Reiten quiver of algebras of Dynkin type, FJMS 101 (2017), no. 8, 1631-1654.spa
dc.relation.references[33] A.M. Cañadas, H. Giraldo, and G.B. Rios, An algebraic approach to the number of some antichains in the powerset 2^n, JPANTA 38 (2016), no. 1, 45-62.spa
dc.relation.references[34] A.M. Cañadas, H. Giraldo, and R.J. Serna, Some integer partitions induced by orbits of Dynkin type, FJMS 101 (2017), no. 12, 2745-2766.spa
dc.relation.references[35] A.M. Cañadas, H. Giraldo, and V. C Vargas, Categorification of some integer sequences and Higher Dimensional Partitions, FJMS 93 (2014), no. 2, 133-149.spa
dc.relation.references[36] A.M. Cañadas, J.S. Mora, and I.D.M. Gaviria, On the Gabriel's quiver of some equipped posets, JPANTA 36 (2015), no. 1, 63-90.spa
dc.relation.references[37] A.M. Cañadas, N. P. Quitian, and A. M. Palma, Algorithms of differentiation of posets to analyze tactics of war, FJMS Specc. (Comput. Sci.) (2013), 501-525.spa
dc.relation.references[38] A.M. Cañadas, G. B. Rios, and H. Giraldo, Integer sequences arising from Auslander-Reiten quivers of some hereditary artin algebras, Journal of Algebra and Its Applications. (2020), 1-33.spa
dc.relation.references[39] A.M. Cañadas and V. C. Vargas, On the apparatus of differentiation DI-DV for posets, Sao Paulo Journal of Mathematical Sciences 14 (2020), 249-286.spa
dc.relation.references[40] A.M. Cañadas, V. C. Vargas, and P. F. F. Espinosa, On sums of figurate numbers by using algorithms of differentiation of posets, FJMS 32 (2014), no. 2, 99-140.spa
dc.relation.references[41] A.M. Cañadas, V. C. Vargas, and A. F. Gonzales, On the number of two-point antichains in the powerset of an n-element set ordered by inclusion, JPANTA 38 (2016), no. 3, 279-293.spa
dc.relation.references[42] A.M. Cañadas and A.G. Zavadskij, Categorical description of some differentiation algorithms, Journal of Algebra and Its Applications 5 (2006), no. 5, 629-652.spa
dc.relation.references[43] J.H. Conway and H.S.M. Coxeter, Triangulated polygons and frieze patterns, Math. Gaz. 57 (1973), 87-94.spa
dc.relation.references[44] J.H. Conway and H.S.M. Coxeter, Triangulated polygons and frieze patterns, Math. Gaz. 57 (1973), 175-183.spa
dc.relation.references[45] H.S.M. Coxeter, Frieze patterns, Acta Arith 18 (1971), 297-310.spa
dc.relation.references[46] B. A. Davey and H. A. Priestley, Introduction to lattices and order, 2nd ed.,Cambridge University Press, 2002.spa
dc.relation.references[47] M. Delest and X.G. Viennot, Algebraic languages and polyominoes enumeration, Theoret. Comput. Sci. 34 (1984), 169-206.spa
dc.relation.references[48] P. Duchon, On the enumeration and generation of generalized Dyck words, Discrete Mathematics 225 (2000), 121-135.spa
dc.relation.references[49] P. Fahr, C. Ringel, and D. Thurston, A partition formula for Fibonacci numbers, Journal of integer sequences 11 (2008), no. 08.14.spa
dc.relation.references[50] P. Fahr and C. Ringel, Categorification of the Fibonacci numbers using representation of quiver, Journal of integer sequences 15 (2012), no. 12.2.1.spa
dc.relation.references[51] A. Felikson, M. Shapiro, and P. Tumarkin, Skew-symmetric cluster algebras of finite mutation type, J. Eur. Math. Soc. 14 (2012), 1135-1180.spa
dc.relation.references[52] S. Fomin, M. Shapiro, and D. Thurston, Cluster algebras and triangulated surfaces. Part I: Cluster complexes, Acta Math. 201 (2008), 83-146.spa
dc.relation.references[53] S. Fomin and D. Thurston, Cluster algebras and triangulated surfaces. Part II: Lambda Lengths, Mem. Amer. Math. Soc. 255 (2018), no. 1223.spa
dc.relation.references[54] S. Fomin and A. Zelevinsky, Cluster algebra. I: Foundations, J. Amer. Math. Soc. 15 (2002), 497-529.spa
dc.relation.references[55] S. Fomin and A. Zelevinsky, Cluster algebra. II: Finite type classification, Invent. Math. 154 (2003), no. 1, 63-121.spa
dc.relation.references[56] S. Fomin and A. Zelevinsky, Cluster algebra. IV: Coefficients, Compositio Mathematica 143 (2007), 112-164.spa
dc.relation.references[57] B. Fontaine and P.-G. Plamondon, Counting friezes in type Dn, J. Algebraic Combin. 44 (2016), no. 2, 433-445.spa
dc.relation.references[58] P. Gabriel, Unzerlegbare Darstellungen I, Manuscripta Math. 6 (1972), 71-103.spa
dc.relation.references[59] P. Gabriel and J. A. De la Peña, Quotients of representation-finite algebras, Comm.Algebra 15 (1987), 279-307.spa
dc.relation.references[60] P. Gabriel and A.V. Roiter, Representations of Finite-Dimensional Algebras, Algebra VIII, Encyclopedia of Math.Sc., vol. 73, Springer-Verlag, Berlin, New York, 1992.spa
dc.relation.references[61] E. Green and S. Schroll, Brauer configuration algebras: A generalization of Brauer graph algebras, Bull. Sci. Math 141 (2017), no. 6, 539-572.spa
dc.relation.references[62] E. Gunawan and R. Schiffler, Frieze Vectors and Unitary Friezes, Journal of Combinatorics 11 (2020), no. 4, 681-703.spa
dc.relation.references[63] M.M. Kleiner, Partially ordered sets of finite type, Zap. Nauchn. Semin. LOMI 28 (1972), 32-41 (in Russian); English transl., J. Sov. Math 23 (1975), no. 5, 607-615.spa
dc.relation.references[64] A.C.M. Lopez, Emparejamientos perfectos, álgebras de conglomerado y algunas de sus aplicaciones, (Tesis de Maestría) Universidad Nacional de Colombia (2019), 74-77 p.spa
dc.relation.references[65] R. Marczinzik, M. Rubey, and C. Stump, A combinatorial classification of 2-regular simple modules for Nakayama algebras, Journal of Pure and Applied Algebra 225 (2020), no. 3.spa
dc.relation.references[66] S. Morier-Genoud, Coxeter's frieze patterns at the crossroads of algebra, geometry and combinatorics, Bull. Lond. Math. Soc. 47 (2015), no. 6, 895-938.spa
dc.relation.references[67] S. Morier-Genoud, V. Ovsienko, and S. Tabachnikov, 2-frieze patterns and the cluster structure of the space of polygons, Ann. Inst. Fourier. 62 (2012), no. 3, 937-987.spa
dc.relation.references[68] G. Musiker and R. Schiffler, Cluster expansion formulas and perfect matchings, J. Algebraic Combin. 32 (2010), no. 2, 187-209.spa
dc.relation.references[69] G. Musiker, R. Schiffler, and L. Williams, Positivity for cluster algebras from surfaces, Adv. Math. 227 (2011), 2241-2308.spa
dc.relation.references[70] T.K. Petersen, Enriched P-partitions and peak algebras, Advances in Mathematics 209 (2007), no. 2, 561-610.spa
dc.relation.references[71] J. Propp, The combinatorics of frieze patterns and Markoff numbers, Integers 20 (2020), 1-38.spa
dc.relation.references[72] L.A. Nazarova, Representations of quivers of infinite type, Izv. Akad. Nauk SSSR 37 (1973), 752-791 (in Russian.)spa
dc.relation.references[73] L.A. Nazarova, Partially ordered sets of infinite type, Math. USSR Izvestija 9 (1975), 911-938.spa
dc.relation.references[74] L.A. Nazarova and A.V. Roiter, Representations of partially ordered sets, Zap. Nauchn. Semin. LOMI 28 (1972), 5-31 (in Russian); English transl., J. Sov. Math. 3 (1975), 585-606.spa
dc.relation.references[75] L.A. Nazarova and A.V. Roiter, Categorical matrix problems and the Brauer-Thrall conjecture, Preprint Ins. Math. AN UkSSR, Ser. Mat. 73.9 (1973), 1-100 (in Russian); English transl. in oin Mitt. Math. Semin. Giessen 115 (1975).spa
dc.relation.references[76] L.A. Nazarova and A.G. Zavadskij, Partially ordered sets of tame type, Akad. Nauk Ukrain. SSR Inst. Mat., Kiev (1977), 122-143 (Russian).spa
dc.relation.references[77] L.A. Nazarova and A.G. Zavadskij, Partially ordered sets of finite growth, Function. Anal. i Prilozhen., 19 (1982), no. 2, 72-73 (in Russian); English transl., Functional. Anal. Appl., 16 (1982), 135-137.spa
dc.relation.references[78] C. M. Ringel, The Catalan combinatorics of the hereditary artin algebras, Recent Developments in Representation Theory. Contemp Math 673 (2016).spa
dc.relation.references[79] C. M. Ringel, Tame algebras and integral quadratic forms, LNM, Springer- Verlag 1099 (1984), 1-371.spa
dc.relation.references[80] R. Schiffler, Quiver Representations, Springer, 2010.spa
dc.relation.references[81] R. Schiffler, A cluster expansion formula (An), Electron J. Combin. 15 (2008), no. 1, R64.spa
dc.relation.references[82] B.S.W Schröder, Ordered sets. An Introduction, Birkhäuser, 2003.spa
dc.relation.references[83] A. Sierra, The dimension of the center of a Brauer configuration algebra, J. Algebra 510 (2018), 289-318.spa
dc.relation.references[84] D. Simson, Linear Representations of Partially Ordered Sets and Vector Space Categories, Gordon and Breach, London, 1992.spa
dc.relation.references[85] N.J.A. Sloane, On-Line Encyclopedia of Integer Sequences, Vol. http://oeis.org/A083329, The OEIS Foundation.spa
dc.relation.references[86] N.J.A. Sloane, On-Line Encyclopedia of Integer Sequences, Vol. http://oeis.org/A000295, The OEIS Foundation.spa
dc.relation.references[87] N.J.A. Sloane, On-Line Encyclopedia of Integer Sequences, Vol. http://oeis.org/A049611, The OEIS Foundation.spa
dc.relation.references[88] N.J.A. Sloane, On-Line Encyclopedia of Integer Sequences, Vol. http://oeis.org/A176448, The OEIS Foundation.spa
dc.relation.references[89] N.J.A. Sloane, On-Line Encyclopedia of Integer Sequences, Vol. http://oeis.org/A052951, The OEIS Foundation.spa
dc.relation.references[90] N.J.A. Sloane, On-Line Encyclopedia of Integer Sequences, Vol. http://oeis.org/A009766, The OEIS Foundation.spa
dc.relation.references[91] R. Stanley, Enumerative Combinatorics, Vol. 1, Cambridge University Press, 1986.spa
dc.relation.references[92] R. Stanley, Enumerative Combinatorics, Vol. 2, Cambridge University Press, 1999.spa
dc.relation.references[93] R. Stanley, Ordered structures and partitions, Mem. Amer, Math. Soc. 1-111 (1972).spa
dc.relation.references[94] J. Stembridge, Enriched P-partitions, Trans. Amer. Math. Soc. 349 (1997).spa
dc.relation.references[95] H. A. Torkildsen, Counting cluster-tilted algebras of type An, Int Elec J Algebra 4 (2008), 149-158.spa
dc.relation.references[96] M. Wallner, Combinatorics of Lattice Paths and Tree-Like Structures, PhD thesis, PhD thesis, 2016. 1-4p.spa
dc.relation.references[97] A.G. Zavadskij, Differentiation with respect to a pair of points, Matrix problems, Collect. sci. Works. Kiev (1977), 115-121 (in Russian).spa
dc.relation.references[98] A.G. Zavadskij, An algorithm for posets with an equivalence relation, Canad. Math. Soc. Conf. Proc. 11 (1991), 299-322.spa
dc.relation.references[99] A.G. Zavadskij, On Two Point Differentiation and its Generalization, Algebraic Structures and their Representations, AMS, Contemporary Math. Ser. 376 (2005), 413-436.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc510 - Matemáticas::519 - Probabilidades y matemáticas aplicadasspa
dc.subject.proposalAuslander-Reiten quivereng
dc.subject.proposalCategorificationeng
dc.subject.proposalBrauer configurationeng
dc.subject.proposalBrauer configuration algebraeng
dc.subject.proposalCatalan triangleeng
dc.subject.proposalCluster algebraseng
dc.subject.proposalDyck pathseng
dc.subject.proposalDynkin algebraeng
dc.subject.proposalDynkin functioneng
dc.subject.proposalFrieze patternseng
dc.subject.proposalLattice patheng
dc.subject.proposalMutation classeng
dc.subject.proposalPerfect matchingseng
dc.subject.proposalPoseteng
dc.subject.proposalQuiver representationeng
dc.subject.proposalSectioneng
dc.subject.proposalTriangulationseng
dc.subject.proposalCarcaj de Auslander-Reitenspa
dc.subject.proposalConfiguración de Brauerspa
dc.subject.proposalÁlgebra de Configuración de Brauerspa
dc.subject.proposalTriángulo de Catalanspa
dc.subject.proposalÁlgebra de Conglomeradospa
dc.subject.proposalCaminos de Dyckspa
dc.subject.proposalÁlgebra Dynkinspa
dc.subject.proposalFunción Dynkinspa
dc.subject.proposalPatrones de frizospa
dc.subject.proposalCamino reticularspa
dc.subject.proposalClases de mutaciónspa
dc.subject.proposalEmparejamiento perfectospa
dc.subject.proposalConjunto parcialmente ordenadospa
dc.subject.proposalRepresentación de carcajspa
dc.subject.proposalSecciónspa
dc.subject.proposalTriangulacionesspa
dc.subject.proposalCategorizaciónspa
dc.subject.unescoAnálisis matemático
dc.subject.unescoMathematical analysis
dc.titleDynkin Functions and Its Applicationseng
dc.title.translatedFunciones Dynkin y sus Aplicacionesspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleDynkin Functions and Its Applicationsspa
oaire.fundernameCOLCIENCIASspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1012346226.2020.pdf
Tamaño:
1007.11 KB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ciencias - Matemáticas

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: