Experimental assessment of rutting in permeable asphalt mixtures

dc.contributor.advisorGraciano Gallego, Carlos Albertospa
dc.contributor.advisorVega Posada, Carlos Albertospa
dc.contributor.authorSenior Arrieta, Vanessaspa
dc.contributor.corporatenameUniversidad Nacional de Colombia - sede Medellínspa
dc.contributor.researchgroupVIAS Y TRANSPORTE (VITRA)spa
dc.date.accessioned2020-09-08T20:27:54Zspa
dc.date.available2020-09-08T20:27:54Zspa
dc.date.issued2020-08-20spa
dc.description.abstractThis study presents an experimental investigation on the rutting resistance of permeable asphalt mixes (PAM). In practice, PAM, also referred to as Open-graded friction courses (OGFC) or permeable friction courses (PFC), are prone to permanent deformation due to heavy vehicle traffic loads and a weak mineral skeleton caused by their high air void contents. Consequently, the draining capacity of the PAM is diminished making the roads unsafe particularly in wet conditions. Hence, the rutting mechanism of PAM is evaluated through three laboratory tests: dynamic modulus, flow number, and Hamburg wheel tracking test (HWTT). The laboratory samples were prepared and compacted considering four air voids (AV) contents: 18%, 20%, 22% and 25%. From the HWTT, a comparative analysis was conducted using X-ray computer tomography (X-ray CT) images obtained before and after the tests in order to investigate AV distribution due to rutting. Results from the tests indicated that an increase in AV content reduced the rutting performance of PAM, as well as higher AV content led to larger mix densification and thus a deeper rut was achieved. Similar results were attained from the analysis of the X-ray CT images, nevertheless, a larger AV densification was observed in the upper part of the samples beneath the developed rut, which can lead to further weakening the mineral skeleton and progress of other several distress that typically develop for PAM.spa
dc.description.abstractEste estudio presenta una investigación experimental sobre la resistencia al ahuellamiento en las mezclas asfálticas permeables (PAM). En la práctica, estas mezclas también conocidas como OGFC, (capas asfálticas de gradación abierta), o PFC (capas de desgaste permeables); son propensas a desarrollar deformación permanente debido a las altas cargas de tráfico vehicular y a un esqueleto mineral débil causado por su alto contenido de vacíos de aire. En consecuencia, la capacidad de drenaje de las PAM disminuye, lo que hace que las superficies de rodadura asfálticas sean inseguras, especialmente en condiciones de humedad. Por esta razón, el mecanismo de ahuellamiento en PAM es evaluado a través de tres pruebas de laboratorio: módulo dinámico, número de flujo y el ensayo en la rueda de Hamburgo (HWTT). Los especímenes fueron preparados y compactados considerando cuatro contenidos de vacíos de aire (AV): 18%, 20%, 22% y 25%. Se realizó un análisis comparativo empleando imágenes de tomografía computarizada de rayos X, obtenidas antes y después de realizar las pruebas en HWTT para determinar el perfil de distribución de AV debido al ahuellamiento. Los resultados indicaron que un aumento en el contenido AV redujo la resistencia al ahuellamiento de las PAM, así como un mayor contenido de vacíos condujo a una mayor densificación de la mezcla y por lo tanto se logró una huella más profunda. Resultados similares se obtuvieron del análisis de imágenes de CT de rayos X, sin embargo, se observó una mayor densificación AV en la parte superior de las muestras debajo de la huella desarrollada, lo que puede conducir a un mayor debilitamiento del esqueleto mineral y al progreso de otros tipos de deterioro típicos en este tipo de mezclas.spa
dc.description.additionalLínea de investigación : Pavements – Asphalt Mixesspa
dc.description.degreelevelDoctoradospa
dc.description.sponsorshipColcienciasspa
dc.format.extent124spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationSenior-Arrieta V. 2020spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78415
dc.language.isoengspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de Ingeniería Civilspa
dc.publisher.programMedellín - Minas - Doctorado en Ingeniería - Ingeniería Civilspa
dc.relation.references[1] A. Alvarez, O. Reyes, R. Miró, A review of the characterization and evaluation of permeable friction course mixtures, Ingeniare 22 (4) (2014) 469–482.spa
dc.relation.references[2] H. Smith, Performance Characteristics of Open-Graded Friction Courses. Synthesis No. 180. National Coop. Highway Research Project (NHCRP), Federal Highway Administration (FHWA), Washington, D.C., USA, 1992.spa
dc.relation.references[3] G. Huber, Performance Survey on Open-Graded Friction Course Mixes. Synthesis No. 284. National Coop. Highway Research Project (NHCRP), Federal Highway Administration (FHWA), Washington, D.C., USA, 2000.spa
dc.relation.references[4] L. Cooley, J. Brumfield, R. Mallick, W. Mogawer, M. Partl, L. Poulikakos, G. Hicks, Construction and Maintenance Practices for Permeable Friction Courses. National Coop. Report 640. Highway Research Project (NHCRP). Washington, D.C., USA, 2009.spa
dc.relation.references[5] P.S. Kandhal, Design, Construction and Maintenance of Open-Graded Asphalt Friction Courses, NAPA, Information series 115, Lanham, Maryland, USA, 2002.spa
dc.relation.references[6] E. Arámbula, C. Estakhri, A. Martin, M. Trevino, A. Smit, J. Prozzi, Performance and Cost Effectiveness of Permeable Friction Course (PFC) Pavements. Report No. FHWA/TX-12/0-5836-2. Texas Transportation Institute. Austin, Texas, USA, 2013.spa
dc.relation.references[7] P. Weiss, M. Kayhanian, J. Gulliver, L. Khazanovich, Permeable pavement in northern North American urban areas: research review and knowledge gaps, Inter. J. Pavement Eng. 20 (2) (2019) 143–162.spa
dc.relation.references[8] J. Van Der Zwan, T. Goeman, H. Gruis, J. Swart, R. Oldenburger, Porous asphalt wearing courses in the Netherlands: State of the Art Review, Transp. Res. Rec. 1265 (1990) 95–110.spa
dc.relation.references[9] G. Van Heystraeten, C. Moraux, Ten Years’ Experience of Porous Asphalt in Belgium, Transp. Res. Rec. 1265 (1990) 34–40.spa
dc.relation.references[10] A. Ruiz, R. Alberola, F. Pérez, B. Sánchez, Porous asphalt mixtures in Spain, Transp. Res. Rec. 1265 (1990) 87–94.spa
dc.relation.references[11] T. Isenring, H. Köster, I. Scazziga, Experiences with Porous Asphalt in Switzerland, Transp. Res. Rec. 1265 (1990) 41–53.spa
dc.relation.references[12] G. Di Mino, M. Giunta, The volumetric mix-design of porous asphalt: An Italian study of N design determination, Adv. Characterisation Pavement Soil Eng. Mater, Proc. Inter. Conf. Adv. Characterisation Pavement Soil Eng. Mater. 2 (2007) 1055–1062.spa
dc.relation.references[13] M. Hamzah, M. Hasan, C. Che, N. Abdullah, A Comparative Study on Performance of Malaysian Porous Asphalt Mixes incorporating Conventional and Modified binders, J. Appl. Sci. 10 (20) (2010) 2403–2410.spa
dc.relation.references[14] H. Nakanishi, M. Hamzah, M. Mohd, P. Karthigeyan, O. Shaur, Mix design and application of porous asphalt pavement using Japanese technology, Mater. Sci. Eng. 512 (1) (2019) 012026.spa
dc.relation.references[15] F. Gu, D. Watson, J. Moore, N. Tran, Evaluation of the benefits of open graded friction course: Case study, Constr. Build. Mater. 189 (2018) 131–143.spa
dc.relation.references[16] A. Alvarez, A. Martin, C. Estakhri, J. Button, C. Glover, S. Jung, Synthesis of Current Practice on the Design, Construction, and Maintenance of Porous Friction Courses. FHWA/TxDOT Report 0-5262-1. Texas Transportation Institute Austin, Texas, USA, 2006.spa
dc.relation.references[17] R. Smith, J. Rice, S. Spelma, Design of Open-graded Friction Courses. Interim Report FHWA-RD-74-2. Federal Highway Administration (FHWA), Washington, D.C., USA, 1974.spa
dc.relation.references[18] P.S. Kandhal, R. Mallick, Open-Graded Asphalt Friction Course: State of the Practice. Transportation Research Circular E-C005, National Research Council, Washington, D.C., USA, 1998.spa
dc.relation.references[19] M. Hernandez, S. Caro, E. Arámbula, A.E. Martin, Mix design, performance and maintenance of Permeable Friction Courses (PFC) in the United States: State of the Art, Constr. Build. Mater. 111 (2016) 358–367.spa
dc.relation.references[20] R.B. Mallick, P.S. Kandhal, L. Cooley, D. Watson, Design, Construction, and Performance of New-Generation Open-Graded Friction Courses. Report 00-01. NCAT, Auburn, Alabama, USA, 2000.spa
dc.relation.references[21] D. Watson, K. Moore, K. Williams, L. Cooley, Refinement of New-Generation Open-Graded Friction Course Mix Design, Transp. Res. Rec. 1832 (2003) 78–85.spa
dc.relation.references[22] E. Masad, A. Castelblanco, B. Birgisson, Effects of air void size distribution, pore pressure, and bond energy on moisture damage, J. Test. Eval. 34 (1) (2006) 15–23.spa
dc.relation.references[23] K. Jeong, S. Hwang, S. Lee, K. Kim, Investigation of rutting potential of Open Graded Friction Course (OGFC) mixes using asphalt pavement analyzer, KSCE J. Civ. Eng. 15 (7) (2011) 1259–1262.spa
dc.relation.references[24] E. Coleri, J.T. Harvey, K. Yang, J. M. Boone, Micromechanical investigation of open-graded asphalt friction courses’ rutting mechanisms, Constr. Build. Mater. 44 (2013) 25–34.spa
dc.relation.references[25] W. Song, X. Shu, B. Huang, M. Woods, Laboratory investigation of interlayer shear fatigue performance between open-graded friction course and underlying layer, Constr. Build. Mater. 115 (2016) 381–389.spa
dc.relation.references[26] W. Song, X. Shu, B. Huang, M. Woods, Factors affecting shear strength between open-graded friction course and underlying layer, Constr. Build. Mater. 101 (2015) 527–535.spa
dc.relation.references[27] W. Song, X. Shu, B. Huang, M. Woods, Influence of interface characteristics on the shear performance between open-graded friction course and underlying layer, J. Mater. Civ. Eng. 29 (8) (2017) 1–9.spa
dc.relation.references[28] L. Mo, M. Huurman, M. Woldekidan, S. Wu, A. Molenaar, Investigation into material optimization and development for improved ravelling resistant porous asphalt concrete, Mater. Des. 31 (7) (2010) 3194–3206.spa
dc.relation.references[29] E. Arámbula, R.A. Hill, S. Caro, L. Manrique, E.S. Park, E.G. Fernando, Understanding mechanisms of ravelling to extend open graded friction course (OGFC) service life. Final Report BDR74–977–04. Texas A&M University System, College Station, USA, 2016.spa
dc.relation.references[30] J. De Visscher, A. Vanelstraete, Ravelling by traffic: Performance testing and field validation, Inter. J. Pavement Res. Technol. 10 (2017) 54–61.spa
dc.relation.references[31] H. Wu, J. Yu, W. Song, J. Zou, Q. Song, L. Zhou, A critical state-of-the-art review of durability and functionality of open-graded friction course mixtures, Constr. Build. Mater. 237 (2020) 117759.spa
dc.relation.references[32] A.E. Alvarez, A.E. Martin, C. Estakhri, R. Izzo, Evaluation of durability tests for permeable friction course mixtures, Inter. J. Pavement Eng. 11 (1) (2010) 49–60.spa
dc.relation.references[33] A. Alvarez, A. Martin, C. Estakhri, Drainability of permeable friction course mixtures, J. Mater. Civ. Eng. 22 (6) (2010) 556–564.spa
dc.relation.references[34] J. Chen, Y. Zhang, H. Li, Y. Gao, Rutting-induced permeability loss of open graded friction course mixtures, J. Test. Eval. 44 (2) (2016) 719–724.spa
dc.relation.references[35] E. Coleri, M. Kayhanian, J.T. Harvey, K. Yang, J.M. Boone, Clogging evaluation of open graded friction course pavements tested under rainfall and heavy vehicle simulators, J. Environ. Manag. 129 (2013) 164–172.spa
dc.relation.references[36] S.N. Suresha, G. Varghese, A. U. Ravi, Effect of aggregate gradations on properties of porous friction course mixes, Mater. Struct. 43 (6) (2010) 789–801.spa
dc.relation.references[37] L.F. Walubita, J. Zhang, A.N. Faruk, A.E. Alvarez, T. Scullion, Laboratory hot-mix asphalt performance testing: asphalt mixture performance tester versus universal testing machine, Transp. Res. Rec. 2447 (1) (2014) 61–73.spa
dc.relation.references[38] L.F. Walubita, L. Fuentes, A. Prakoso, L.M. Rico, J.J. Komba, B. Naik, Correlating the HWTT laboratory test data to field rutting performance of in-service highway sections, Constr. Build. Mater. 236 (2020) 117552.spa
dc.relation.references[39] L.F. Walubita, L. Fuentes, S.I. Lee, I. Dawd, E. Mahmoud, Comparative evaluation of five HMA rutting-related laboratory test methods relative to field performance data: DM, FN, RLPD, SPST, and HWTT, Constr. Build. Mater. 215 (2019) 737–753.spa
dc.relation.references[40] J. Wang, F. Xiao, Z. Chen, X. Li, S. Amirkhanian, Application of tack coat in pavement engineering, Constr. Build. Mater. 152 (2017) 856–871.spa
dc.relation.references[41] M. Mazumder, M.S. Lee, S.J. Lee, Installation and implementation of proper tack coat application, J. Korean Asph. Inst. 9 (1) (2019) 14–39.spa
dc.relation.references[42] B. Danish, Investigation of bonding between open graded friction courses and underlying asphalt pavement layers. (PhD. Dissertation), Clemson University, South Carolina, USA, 2018.spa
dc.relation.references[43] W. Zhang, Effect of tack coat application on interlayer shear strength of asphalt pavement: A state-of-the-art review based on application in the United States, Inter. J. Pavement Res. Technol. 10 (2017) 434–445.spa
dc.relation.references[44] F.A. Reyes-Lizcano, C.M. Lizarazo, A.S. Figueroa, M.A. Candia, G.W. Flintsch, Dynamic characterization of hot-mix asphalt mixtures using modified and conventional asphalts in Colombia, Proc. of the 88th TRB Annual Meeting, Washington, D.C., USA, 2009.spa
dc.relation.references[45] S. Caro, L. Coral, B. Caicedo, Modelación del ahuellamiento en mezclas asfálticas de pavimentos [Rutting modeling in asphalt pavement mixtures], Rev. Ing. 18 (7) (2003) 41–47 [In Spanish].spa
dc.relation.references[46] J. Preciado, G. Martínez, M. Dugarte, A. Bonicelli, J. Cantero, D. Vega, Y. Barros, Improving Mechanical Properties of Hot Mix Asphalt using Fibres and Polymers in Developing Countries, IOP Conference Series Mater. Sci. Eng. 245 (2) (2017) 022013.spa
dc.relation.references[47] H. Rondón, F.A. Reyes, G. Flintsch, D.E. Mogrovejo, Environmental effects on hot mix asphalt dynamic mechanical properties: Case study in Bogota, Colombia, Transp. Res. Rec. 3637 (1) (2012) p.13.spa
dc.relation.references[48] H. Rondón, F.A. Reyes, A.S. Figueroa, E. Rodriguez, C.M. Real, T.A. Montealegre, Estado del conocimiento del estudio sobre mezclas asfálticas modificadas en Colombia [State-of-knowledge on modified asphalt mixtures in Colombia], Infraestruct. Vial, 19 (2008) 10–20 [In Spanish].spa
dc.relation.references[49] SECOP I, Colombian government entity website. (SECOP I). https://www.contratos.gov.co/consultas/inicioConsulta.do. Accessed: 07 September 2019.spa
dc.relation.references[50] American Society for Testing and Materials, Standard Practice for Open-Graded Friction Course (OGFC) Mix Design. ASTM D 7064, ASTM International, West Conshohocken, PA, USA, 2013.spa
dc.relation.references[51] Texas Department of Transportation, Standard specificaction for Permeable fiction Courses (PFC). Item 342. TxDOT, USA, 2014.spa
dc.relation.references[52] Instituto Nacional de Vías, Especificaciones Generales de Construcción de carreteras: Mezcla drenante [Colombian Specifications for Road Construction: Permeable Asphalt Mixes]. Artículo 453 (Item 453-13). Bogotá, Colombia, 2007 [In Spanish].spa
dc.relation.references[53] Austroads, Austroads. Guide to Pavement Technology Part 4B: asphalt, Sydney, Australia, 2014.spa
dc.relation.references[54] Y. Yildirim, Polymer modified asphalt binders, Constr. Build. Mater. 21 (1) (2007) 66–72.spa
dc.relation.references[55] C.K. Estakhri, A.E. Alvarez, A.E. Martin, Guidelines on construction and maintenance of porous friction in Texas. Report FHWA/TX-08/0-5262-2. Austin, Texas, USA, 2008.spa
dc.relation.references[56] Instituto Nacional de Vías, Normas de Ensayo para Materiales de Carreteras. Caracterización de las mezclas bituminosas abiertas por medio del ensayo Cantabro de pérdida por desgaste [Colombian Road Standards: Characterization of Permeable Asphalt Mixes by means of Cantabro Loss Test]. INV E-760. In correspondance to AASHTO T-96. Bogotá, Colombia, 2013 [In Spanish].spa
dc.relation.references[57] Instituto Nacional de Vías, Normas de Ensayo para Materiales de Carreteras. Resistencia de mezclas asfálticas en caliente empleando el aparato Marshall [Colombian Road Standards: Resistance of Hot Asphalt Mixes employing Marshall]. INV E-748. In correspondance to AASHTO T-245. Bogotá, Colombia, 2013 [In Spanish].spa
dc.relation.references[58] Instituto Nacional de Vías, Normas de Ensayo para Materiales de Carreteras. Porcentaje de vacios con aire en mezclas asfálticas compactadas densas y abiertas [Colombian Road Standards: Air Voids Percent in Compacted Dense- and Permeable Asphalt Mixes]. INV E-736. In correspondance to ASTM D 3203. Bogotá, Colombia, 2013 [In Spanish].spa
dc.relation.references[59] Instituto Nacional de Vías, Normas de Ensayo para Materiales de Carreteras. Determinación de la gravedad específica bulk y de la densidad de mezclas asfálticas compactadas mediante el método de sellado automático por vacío [Colombian Road Standards: Determination of Bulk Specific Gravity and Density of Compacted Asphalt Mixtures through the Automatic Vacuum Sealing Method]. INV E-802. In correspondance to ASTM D 6752. Bogotá, Colombia, 2013 [In Spanish].spa
dc.relation.references[60] Instituto Nacional de Vías, Normas de Ensayo para Materiales de Carreteras. Gravedad Específica Máxima Medida (Gmm) y Densidad de mezclas asfálticas para pavimentos [Colombian Road Standards: Theoretical Maximum Specific Gravity and Density of Asphalt Mixtures]. INV E-735. In correspondance to ASTM D 2041. Bogotá, Colombia, 2013 [In Spanish].spa
dc.relation.references[61] Instituto Nacional de Vías, Normas de Ensayo para Materiales de Carreteras. Determinación de la gravedad específica máxima y de la densidad máxima de las mezclas asfálticas para pavimentación mediante el método de sellado automático por vacío [Colombian Road Standards: Maximum Specific Gravity and Density of Asphalt Mixtures through the Automatic Vacuum Sealing Method]. INV E-803. In correspondance to ASTM D 6857. Bogotá, Colombia, 2013 [In Spanish].spa
dc.relation.references[62] A. Alvarez, A. Martin, C. Estakhri, R. Izzo, Determination of Volumetric Properties for Permeable Friction Course Mixtures, J. Test. Eval. 37 (1) (2008) 1–10.spa
dc.relation.references[63] The World Bank, Average precipitation in depth (mm per year). (The World Bank, 2014), https://data.worldbank.org/indicator/AG.LND.PRCP.MM?end=2014&most_recent_value_desc=true&start=2014&view=map. Accessed 11 November 2019.spa
dc.relation.references[64] IDEAM, Average precipitation in depth (mm per year) for Colombian states. (IDEAM), http://atlas.ideam.gov.co/visorAtlasClimatologico.html. Accessed 17 November 2019.spa
dc.relation.references[65] Federal Highway Administration, Open Graded Friction Courses. Technical Advisory T 5040.31, FHWA, Washington, D.C., USA, 1990.spa
dc.relation.references[66] Strategic Highway Research Program (SHRP), The Long-Term Pavement Performance (LTPP) program, United States, 1991. https://infopave.fhwa.dot.gov/Data/DataSelection. Accessed 07 September 2019.spa
dc.relation.references[67] F. Pérez, M. Calzada, Analysis and Evaluation of the Performance of Porous Asphalt: The Spanish Experience in Surface Characteristics of Roadways: International Research and Technologies, West Conshohocken, PA, USA, 1990.spa
dc.relation.references[68] G. Flintsch, E. De León, K. McGhee, I. Al-Qadi, Pavement Surface Macrotexture, Measurement and Applications, Transp. Res. Rec. 1860 (2003) 168–177.spa
dc.relation.references[69] P. Georgiou, A. Loizos, Quality assurance of HMA pavement surface macrotexture: empirical models vs experimental approach, Inter. J. Pavement Res. Technol. 12 (4) (2019) 356–363.spa
dc.relation.references[70] R. Justo-Silva, A. Ferreira, Pavement maintenance considering traffic accident costs, Inter. J. Pavement Res. Technol. 12 (6) (2019) 562–573.spa
dc.relation.references[71] S. Cafisoa, A. Di Graziano, D.G. Gouliasb, C. D’Agostino, Distress and profile data analysis for condition assessment in pavement management systems, Inter. J. Pavement Res. Technol. 12 (2019) 527–536.spa
dc.relation.references[72] L. Cooley, E. Brown, D. Watson, Evaluation of OGFC Mixtures containing Cellulose Fibers. NCAT Report 00-05. Auburn, Alabama, USA, 2000.spa
dc.relation.references[73] H. Nekkanti, B.J. Putman, B. Danish, Influence of Aggregate Gradation and Nominal Maximum Aggregate Size on the Performance Properties of OGFC, Transp. Res. Rec. 2673 (1) (2019) 240-245.spa
dc.relation.references[74] D.M. Kusumawardani, Y.D. Wong, Evaluation of aggregate gradation on aggregate packing in porous asphalt mixture (PAM) by 3D numerical modelling and laboratory measurements, Constr. Build. Mater. 246 (2020) 118414.spa
dc.relation.references[75] D.M. Kusumawardani, Y.D. Wong, The influence of aggregate shape properties on aggregate packing in porous asphalt mixture (PAM), Constr. Build. Mater. 255 (2020) 119379.spa
dc.relation.references[76] L. Bo, M.J. Kundwa, C.Y. Jiao, Z.X. Wei, Pavement performance evaluation and maintenance decision-making in Rwanda, Inter. J. Pavement Res. Technol. 12 (2019) 443–447.spa
dc.relation.references[77] Public Works Department, Standard Specification for Road Works, Section 4, Flexible Pavement, Kuala Lumpur, Malaysia, 2008.spa
dc.relation.references[78] R.S. Mc Daniel, W. Thornton, Field Evaluation of a Porous Friction Course for Noise Control, TRB Annual Meeting Transp. Res. Board. Washington, D.C., USA, 2005.spa
dc.relation.references[79] D. Gibbs, R. Iwasaki, R. Bernhard, J. Bledsoe, D. Carlson, C. Corbisier, K. Fults, T. Hearne, K. McMullen, D. Newcomb, J. Roberts, J. Rochat, L. Scofield, M. Swanlund, Quiet Pavement systems in Europe. Report No. FHWA-9L-05-011. Alexandria, VA, USA, 2005.spa
dc.relation.references[80] American Society for Testing and Materials, Standard Test Method for Bulk Density (Unit Weight) and Voids in Aggregate. ASTM C 29. ASTM International, West Conshohocken, PA, USA, 2017.spa
dc.relation.references[81] A. Alvarez, E. Mahmoud, A. Martin, E. Masad, C. Estakhri, Stone-on-Stone Contact of Permeable Friction Course Mixtures, J. Mater. Civ. Eng. 22 (11) (2010) 1129–1138.spa
dc.relation.references[82] Instituto Nacional de Vías, Normas de Ensayo para Materiales de Carreteras. Textura superficial de un pavimento mediante el método del círculo de arena [Colombian Road Standards: Measuring Pavement Macrotexture Depth Using a Volumetric Technique]. INV E-791. In correspondance to ASTM E 965. Bogotá, Colombia, 2013 [In Spanish].spa
dc.relation.references[83] F. Praticò, R. Vaiana, A study on the relationship between mean texture depth and mean profile depth of asphalt pavements, Constr. Build. Mater. 101 (2015) 72–79.spa
dc.relation.references[84] V. Senior, C. Graciano, C. Vega-Posada, S. Álvarez, N. Ramírez, Permeability flow measurement for open-graded friction courses, in Pavement and Asset Management – Proc. World Conference on Pavement and Asset Management, WCPAM 2017, M. Crispino, Ed. London, Taylor & Francis Group, UK, 2019, pp. 585–592.spa
dc.relation.references[85] S.N. Suresha, G. Varghese, U. Ravi, Laboratory and Theoretical Evaluation of Clogging behaviour of Porous Friction Course Mixes, Inter. J. Pavement Eng. 11 (1) (2010) 61–70.spa
dc.relation.references[86] D. Savio, M.R. Nivitha, J.M. Krishnan, Influence of climate and traffic on the HMA rut-depth for India, Inter. J. Pavement Res. Technol. 12 (2019) 595–603.spa
dc.relation.references[87] CALTRANS, Tack Coat Guidelines, State of California Department of Transportation Division of Construction, Sacramento, USA, 2009.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::624 - Ingeniería civilspa
dc.subject.proposalpermeable asphalt mixeseng
dc.subject.proposalmezclas asfálticas permeablesspa
dc.subject.proposalrutting resistanceeng
dc.subject.proposalresistencia al ahuellamientospa
dc.subject.proposalmoisture damageeng
dc.subject.proposalcontenido de vacíos de airespa
dc.subject.proposalflow numbereng
dc.subject.proposaldaño por humedadspa
dc.subject.proposaldynamic moduluseng
dc.subject.proposalnúmero de flujospa
dc.subject.proposalX-ray CTeng
dc.subject.proposalmódulo dinámicospa
dc.subject.proposalAV contenteng
dc.subject.proposaltomografía computarizada de rayos Xspa
dc.titleExperimental assessment of rutting in permeable asphalt mixturesspa
dc.title.alternativeEvaluación experimental de ahuellamiento en mezclas asfálticas permeablesspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
55312753.2020.pdf
Tamaño:
3.02 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis Doctorado en Ingeniería - Ingeniería Civil

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.8 KB
Formato:
Item-specific license agreed upon to submission
Descripción: