Magmatism as a tracer of the cenozoic crustal evolution of the Northern Andes

dc.contributor.advisorCardona Molina, Agustín
dc.contributor.advisorZapata Henao, Sebastián
dc.contributor.authorJaramillo Ríos, Juan Sebastián
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001553908spa
dc.contributor.googlescholarhttps://scholar.google.com/citations?user=uMbRBRoAAAAJ&hl=esspa
dc.contributor.orcidhttps://orcid.org/0000-0003-1067-9259spa
dc.contributor.researchgatehttps://www.researchgate.net/profile/Juan-Jaramillo-Riosspa
dc.contributor.researchgroupGrupo de Estudios en Geología y Geofísica Egeospa
dc.date.accessioned2024-07-08T18:40:32Z
dc.date.available2024-07-08T18:40:32Z
dc.date.issued2024-10-31
dc.descriptionIlustracionesspa
dc.descriptionIlustraciones, mapas a colorspa
dc.description.abstractCrustal evolution in orogenic belts, such as the Northern Andes, has broadly been associated with subduction and mantle dynamics, the collision of allochthonous blocks, and the recycling of the lower crust into the asthenospheric mantle. All of these scenarios can produce magmatic rocks, which are sensitive enough to trace changes experienced by the continental crust. In this study, field relations, petrography, zircon U-Pb (LA-ICP-MS and CA-ID-TIMS) geochronology, geochemistry, and isotopes (Hf), as well as whole-rock geochemistry and isotopes (Nd-Sr-Pb) modeling, and 40Ar/39Ar geochronological data, were used to understand the magmatic evolution of the Paleocene-Eocene continental magmatic arc and the Pliocene-Pleistocene volcanic rocks recorded in the central segment of the modern Colombian magmatic arc. Therefore, these magmatic rocks were used as a tracer of the long-term modification of the continental crust in convergent margins. The Paleocene-Eocene (66 - 50 Ma) continental magmatic arc was formed after the collision of the Caribbean Plate with the Northern Andean continental margin at ~72 Ma. These rocks were highly exhumed and underwent high weathering and erosion rates, which resulted in the volcanic sources of this magmatism being transported to the sedimentary basins. In order to avoid sampling bias produced by the limited exposure of the plutonic facies of this magmatism, detrital zircons collected in sedimentary rocks were very important to understand the behavior of this magmatic arc. Siliciclastic rocks from the Bogotá Formation were analyzed by LA-ICP-MS and CA-ID-TIMS geochronology and zircon chemistry. The results show that this magmatism started at ~ 66 Ma, which is ~ 4 Myr earlier than previously proposed by other authors and ended at ~50 Ma. This magmatism was formed in a heterogeneously thick continental crust, strongly controlled by strike-slip tectonics. Finally, this study proposes lithospheric dripping into the mantle to explain the bi-modal continental crust thick between 62 and 55 Ma. After forming this arc, the continental margin was characterized by an oblique regime, which shut down the magmatic production between 50 and 35 Ma. The magmatic rocks restarted in the Western Cordillera as the Timbiquí arc and migrated toward the east up to where the modern magmatic arc is located. During the Pliocene-Pleistocene, the central segment of the modern Colombian magmatic arc is characterized by the production of contrasting magmatic rocks, including high-silica rhyolites, adakite-like andesites, and OIB-like alkaline basalts. The high-silica rhyolitic ignimbrites were formed during a high magmatic flux (magmatic flare-up) in this arc segment at 2.6 Ma. This study proposes that the high magma flux produces a significant volume of basaltic cumulates, which were ponded in the base of the crust, facilitating the formation of garnet-bearing pyroxenites known as arclogites. This magmatic flare-up could be related to an increased sediment input into the subducted slab, as suggested by the isotopic modeling. It is known that the arclogites in this arc segment are denser than the underlying mantle. It is proposed that Pleistocene olivine basalts and andesites associated with monogenetic volcanism found in this arc section are related to dripping rather than complete delamination of the lower crust into the asthenospheric mantle, originating from two distinct arclogites: one garnet-bearing and the other amphibole-garnet-bearing pyroxenite. The chapters developed in this thesis demonstrate how the continental margin of the Northernmost Andes has been dynamic throughout the Cenozoic era. Unlike the Central Andes, where orogeny is predominantly driven by subduction-dynamics shortening, the Colombian orogen is influenced by block collisions, strike-slip tectonics, and magmatic underplating. The magmatic underplating in this Andean section may have been the critical factor controlling the crustal thickness and subsequent removal of the lower, denser, and unstable portion of the lithosphere.eng
dc.description.abstractLa evolución de cinturones orogénicos como los Andes del Norte ha sido ampliamente asociado con la dinámica de la subducción y el mano, la colisión de bloques alóctonos y el reciclamiento de la corteza inferior dentro del manto astenosférico. Todos estos escenarios producen rocas magmáticas, las cuales son lo suficientemente sensibles para trazar los cambios experimentados por la corteza continental. En este estudio, relaciones de campo, petrografía, geocronología (LA-ICP-MS y CA-ID-TIMS), química e isotopía (Hf) en circón, así como modelamiento geoquímico e isotópico (Nd-Sr-Pb) en roca total, y geocronología Ar-Ar en masa fundamental, se usaron para entender la evolución magmática del arco Paleoceno-Eoceno y rocas volcánicas del Plioceno-Pleistoceno del orógeno Nor-Andino. Estas rocas, por lo tanto, fueron usadas como trazadoras de las modificaciones de la corteza continental en márgenes continentales. Posterior a la colusión de la Placa Caribe con la margen Nor-Andina a ~72 Ma, se formó un arco postcolisional del Paleoceno-Eoceno (66 – 50 Ma). Estas rocas junto con su basamento fueron rápidamente exhumadas y registran altas tasas de meteorización y erosión. Con el fin de evitar el sesgo de muestreo producido por la exposición limitada de las fases magmáticas proximales, circones detríticos fueron colectados en las rocas siliciclásticas de la Formación Bogotá. Estos circones fueron químicamente analizados y datados mediante geocronología LA-ICP-MS y CA-ID-TIMS. Los resultados muestras que este arco magmático comenzó a ~ 66 Ma, lo cual es ~ 4 Ma más temprano de lo que previamente se había propuesto por otros autores y termina a ~50 Ma. Este magmatismo se formó en una margen de espesor heterogéneo, fuertemente controlada por la tectónica de rumbo. Finalmente, este estudio propone que la litosfera fue removida “dripping” para explicar la bi-modalidad del espesor cortical entre 62 y 55 Ma. El segmento central del arco magmático reciente en Colombia durante el Plioceno-Pleistoceno fue caracterizado por la producción de rocas magmáticas contrastantes, incluidas riolitas altas en sílice, andesitas con señal tipo adaquita y basaltos alcalinos con firma tipo OIB. Las ignimbritas riolíticas ricas en sílice fueron formadas en un periodo de gran flujo magmático (flare-up) que ocurrió en este segmento del arco a 2.6 Ma. En este estudio se propone que este alto flujo magmático produjo un alto volumen de cumulatos basálticos fueron retenidos en la base de la corteza, facilitando la formación de piroxenitas granatíferas conocidas como arclogitas. Este alto flujo magmático, podría estar relacionado al aumento del ingreso de sedimentos dentro de la placa subducente, como se evidencia en el modelamiento isotópico. Por estudios anteriores se conoce que las arclogitas de este segmento del arco son más densas que el manto subyacente. En este estudio se propone que el vulcanismo monogenético con basaltos alcalinos del Pleistoceno en esta sección del arco, fueron formados por pequeños fragmentos delaminados “dripping” en vez de delaminación completa de la corteza inferior entre el manto astenosférico. Dos tipos de arclogitas se fundieron para generar este tipo de magmatismo, una piroxenita con granate y una piroxenita con granate y anfíbol. Los capítulos desarrollados en esta tesis muestran cómo la margen continental de la parte más norte de los Andes ha sido dinámica a través del Cenozoico. El orógeno colombiano, a diferencia de los Andes Centrales, donde el acortamiento tectónico controla el orógeno, está controlado principalmente por la acreción de bloques, tectónica de rumbo y el apilamiento magmático. El apilamiento magmático en esta sección del arco Andino fue quizás el factor más crítico en el control del espesor cortical y posterior remoción de su parte inferior más densa e inestable.spa
dc.description.curricularareaÁrea Curricular de Materiales y Nanotecnologíaspa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingenieríaspa
dc.description.researchareaGeologíaspa
dc.format.extent156 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86412
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.programMedellín - Minas - Doctorado en Ingeniería - Ciencia y Tecnología de Materialesspa
dc.relation.referencesAcosta, J. E., & Ulloa, C. E. (1998). Geología de la Plancha 246 Fusagasugá.spa
dc.relation.referencesAlberts, D., Gehrels, G. E., & Nelson, J. (2021). U-Pb and Hf Analyses of Detrital Zircons from Paleozoic and Cretaceous Strata on Vancouver Island, British Columbia: Constraints on the Paleozoic Tectonic Evolution of Southern Wrangellia. Lithosphere, 2021(1), 1-20. https://doi.org/10.2113/2021/7866944spa
dc.relation.referencesAlonso-Perez, R., Müntener, O., & Ulmer, P. (2009). Igneous garnet and amphibole fractionation in the roots of island arcs: experimental constraints on andesitic liquids. Contributions to Mineralogy and Petrology. 157(4), 541-558. https://doi.org/10.1007/s00410-008-0351-8spa
dc.relation.referencesAnderson, R. B., Long, S. P., Horton, B. K., Calle, A. Z., & Ramirez, V. (2017). Shortening and structural architecture of the Andean fold-thrust belt of southern Bolivia (21°S): Implications for kinematic development and crustal thickening of the central Andes. Geosphere, 13(2), 538-558. https://doi.org/10.1130/ges01433.1spa
dc.relation.referencesAnderson, V. J., Horton, B. K., Saylor, J. E., Mora, A., Tesón, E., Breecker, D. O., & Ketcham, R. A. (2016). Andean topographic growth and basement uplift in southern Colombia: Implications for the evolution of the Magdalena, Orinoco, and Amazon River systems. Geosphere, 12(4), 1235-1256. https://doi.org/10.1130/ges01294.1spa
dc.relation.referencesAnnen, C., Blundy, J.D., & Sparks, R.S.J. (2006). The genesis of intermediate and silicic magmas in deep crustal hot zones. Journal of Petrology, 47, 505-539. https://doi.org/10.1093/petrology/egi084spa
dc.relation.referencesAttia, S., Paterson, S. R., Jiang, D., & Miller, R. B. (2022). Spatiotemporally heterogeneous deformation, indirect tectonomagmatic links, and lithospheric evolution during orogenic activity coeval with an arc flare-up. Geosphere, 18(6), 1752-1782. https://doi.org/10.1130/GES02478.1spa
dc.relation.referencesAvellaneda-Jiménez, D. S., & Monsalve, G. (2022). Arclogite nature of the Colombian Andes magmatic arc root: A receiver-function approach. Tectonophysics, 836(229417), 229417. https://doi.org/10.1016/j.tecto.2022.229417spa
dc.relation.referencesBachmann, O., & Bergantz, G. W. (2008). Rhyolites and their source mushes across tectonic settings. Journal of Petrology, 49(12), 2277-2285. https://doi.org/10.1093/petrology/egn068spa
dc.relation.referencesBachmann, O., Deering, C. D., Lipman, P. W., & Plummer, C. (2014). Building zoned ignimbrites by recycling silicic cumulates: insight from the 1,000 km3 Carpenter Ridge Tuff, CO. Contributions to Mineralogy and Petrology, 167(6). https://doi.org/10.1007/s00410-014-1025-3spa
dc.relation.referencesBalica, C., Ducea, M. N., Gehrels, G. E., Kirk, J., Roban, R. D., Luffi, P., Chapman, J. B., Triantafyllou, A., Guo, J., Stoica, A. M., Ruiz, J., Balintoni, I., Profeta, L., Hoffman, D., & Petrescu, L. (2020). A zircon petrochronologic view on granitoids and continental evolution. Earth and Planetary Science Letters, 531(116005). https://doi.org/10.1016/j.epsl.2019.116005spa
dc.relation.referencesBarbosa-Espitia, Á. A., Kamenov, G. D., Foster, D. A., Restrepo-Moreno, S. A., & Pardo-Trujillo, A. (2019). Contemporaneous Paleogene arc-magmatism within continental and accreted oceanic arc complexes in the northwestern Andes and Panama. Lithos, 348-349. https://doi.org/10.1016/j.lithos.2019.105185spa
dc.relation.referencesBarth, A. P., Wooden, J. L., Jacobson, C. E., Economos, R. C. (2013). Detrital zircon as a proxy for tracking the magmatic arc system: The California arc example. Geology, 41(2), 223-226. https://doi.org/10.1130/G33619.1spa
dc.relation.referencesBayona, G., Baquero, M., Ramírez, C., Tabares, M., Salazar, A. M., Nova, G., Duarte, E., Pardo, A., Plata, A., Jaramillo, C., Rodríguez, G., Caballero, V., Cardona, A., Montes, C., Gómez Marulanda, S., & Cárdenas-Rozo, A. L. (2021). Unravelling the widening of the earliest Andean northern orogen: Maastrichtian to early Eocene intra‐basinal deformation in the northern Eastern Cordillera of Colombia. Basin Research, 33(1), 809-845. https://doi.org/10.1111/bre.12496spa
dc.relation.referencesBayona, G., Bustamante, C., Nova, G. & Salazar-Franco, A. M. (2020). Jurassic evolution of the northwestern corner of Gondwana: Present knowledge and future challenges in studying Colombian Jurassic rocks. In: Gómez, J. & Pinilla-Pachon, A. O. (editors), The Geology of Colombia, Volume 2 Mesozoic. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 36, 171-207. https://doi.org/10.32685/pub.esp.36.2019.05spa
dc.relation.referencesBayona, G., Cardona, A., Jaramillo, C., Mora, A., Montes, C., Valencia, V., Ayala, C., Montenegro, O., & Ibañez-Mejia, M. (2012). Early Paleogene magmatism in the northern Andes: Insights on the effects of Oceanic Plateau-continent convergence. Earth and Planetary Science Letters, 331-332, 97-111. https://doi.org/10.1016/j.epsl.2012.03.015spa
dc.relation.referencesBayona, G., Montenegro, O., Cardona, A., Jaramillo, C., & Lamus, F. (2010). Estratigrafía, procedencia, subsidencia y exhumación de las unidades paleógenas en el Sinclinal de Usme, sur de la zona axial de la Cordillera Oriental. Geología Colombiana, 35(0), 5-35. https://revistas.unal.edu.co/index.php/geocol/article/view/21100spa
dc.relation.referencesBayona, G., Montes, C., Cardona, A., Jaramillo, C., Ojeda, G., Valencia, V., & Ayala-Calvo, C. (2011). Intraplate subsidence and basin filling adjacent to an oceanic arc-continent collision: A case from the southern Caribbean-South America plate margin. Basin Research, 23(4), 403-422. https://doi.org/10.1111/j.1365-2117.2010.00495.xspa
dc.relation.referencesBeall, A. P., Moresi, L., & Stern, T. (2017). Dripping or delamination? A range of mechanisms for removing the lower crust or lithosphere. Geophysical Journal International, 210(2), 671-692. https://doi.org/10.1093/gji/ggx202spa
dc.relation.referencesBelousova, E., Griffin, W., O’Reilly, S. Y., & Fisher, N. (2002). Igneous zircon: trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology, 143(5), 602-622. https://doi.org/10.1007/s00410-002-0364-7spa
dc.relation.referencesBest, M. G., Christiansen, E. H., de Silva, S., & Lipman, P. W. (2016). Slab-rollback ignimbrite flare-ups in the southern Great Basin and other Cenozoic American arcs: A distinct style of arc volcanism. Geosphere, 12(4), 1097-1135. https://doi.org/10.1130/ges01285.1spa
dc.relation.referencesBest, M. G., Christiansen, E. H., Deino, A. L., Gromme, S., Hart, G. L., & Tingey, D. G. (2013). The 36-18 Ma Indian Peak-Caliente ignimbrite field and calderas, southeastern Great Basin, USA: multicyclic super-eruptions. Geosphere, 9(4), 864-950. https://doi.org/10.1130/GES00902.1spa
dc.relation.referencesBlack, L. P., Kamo, S. L., Allen, C. M., Davis, D. W., Aleinikoff, J. N., Valley, J. W., Mundil, R., Campbell, I. H., Korsch, R. J., Williams, I. S., & Foudoulis, C. (2004). Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards. Chemical Geology, 205(1-2), 115-140. https://doi.org/10.1016/j.chemgeo.2004.01.003spa
dc.relation.referencesBloch, E., Ibañez-Mejia, M., Murray, K., Vervoort, J., & Müntener, O. (2017). Recent crustal foundering in the Northern Volcanic Zone of the Andean arc: Petrological insights from the roots of a modern subduction zone. Earth and Planetary Science Letters, 476, 47-58. https://doi.org/10.1016/j.epsl.2017.07.041spa
dc.relation.referencesBorrero, C. A., & Castillo, H. (2006). Vulcanitas del S-SE de Colombia: retro-arco alcalino y su posible relación con una ventana astenosférica. Boletín de Geología, 28(2).spa
dc.relation.referencesBottinga, Y., & Weill, D. F. (1970). Densities of liquid silicate systems calculated from partial molar volumes of oxide components. American Journal of Science, 269(2), 169-182. https://doi.org/10.2475/ajs.269.2.169spa
dc.relation.referencesBouvier, A., Vervoort, J. D., & Patchett, P. J. (2008). The Lu-Hf and Sm-Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth and Planetary Science Letters, 273, 48-57. doi:10.1016/j.epsl.2008.06.010spa
dc.relation.referencesBowman, E. E., & Ducea, M. N. (2023). Pyroxenite melting at subduction zones. Geology, 51(4), 383-386. https://doi.org/10.1130/g50929.1spa
dc.relation.referencesBowman, E. E., Ducea, M. N., & Triantafyllou, A. (2021). Arclogites in the subarc lower crust: Effects of crystallization, partial melting, and retained melt on the foundering ability of residual roots. Journal of Petrology, 62(12). https://doi.org/10.1093/petrology/egab094spa
dc.relation.referencesBrown, D., & Ryan, P. D. (2011). Arc-continent collision. Frontiers in Earth Sciences, 4. https://doi.org/10.1007/978-3-540-88558-0spa
dc.relation.referencesBucheli, C., Pardo, N., Larrea, P., de Ignacio, C., Correa-Tamayo, A. M., Arnosio, M., & Pulgarín, B. A. (2024). What can we learn from geothermobarometry at the dacitic Doña Juana Volcanic Complex (Colombia)? Implications for understanding Pleistocene crystal mushes and pre-eruptive storage conditions in the Northern Andes. Contributions to Mineralogy and Petrology, 179(3). https://doi.org/10.1007/s00410-024-02103-6spa
dc.relation.referencesBustamante, C., Archanjo, C. J., Cardona, A., & Restrepo, M. (2021). Magnetic fabric of the Parashi stock and related dyke swarm, Alta Guajira (Colombia): The Caribbean-South American plates oblique convergence. Andean Geology, 48(2), 219-236. https://doi.org/10.5027/andgeov48n2-3332spa
dc.relation.referencesBustamante, C., Archanjo, C. J., Cardona, A., & Vervoort, J. D. (2016). Late Jurassic to Early Cretaceous plutonism in the Colombian Andes: A record of long-term arc maturity. Bulletin of the Geological Society of America, 128(11-12), 1762-1779. https://doi.org/10.1130/B31307.1spa
dc.relation.referencesBustamante, C., Cardona, A., Archanjo, C. J., Bayona, G., Lara, M., & Valencia, V. (2017). Geochemistry and isotopic signatures of Paleogene plutonic and detrital rocks of the Northern Andes of Colombia: A record of post-collisional arc magmatism. Lithos, 277, 199-209. https://doi.org/10.1016/j.lithos.2016.11.025spa
dc.relation.referencesCaballero, V. M., Rodríguez, G., Naranjo, J. F., Mora, A. & De La Parra, F. (2020). From facies analysis, stratigraphic surfaces, and depositional sequences to stratigraphic traps in the Eocene - Oligocene record of the southern Llanos Basin and northern Magdalena Basin. In: Gómez, J. & Mateus-Zabala, D. (editors), The Geology of Colombia, Volume 3 Paleogene - Neogene. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 37, 283-330. Bogotá. https://doi.org/10.32685/pub.esp.37.2019.1spa
dc.relation.referencesCaffe, P. J., Trumbull, R. B., & Siebel, W. (2012). Petrology of the Coyaguayma ignimbrite, northern Puna of Argentina: Origin and evolution of a peraluminous high-SiO2 rhyolite magma. Lithos, 134-135, 179-200. https://doi.org/10.1016/j.lithos.2011.12.013spa
dc.relation.referencesCai, R., Liu, J., Sun, Y., & Gao, R. (2023). Phosphorus deficit in continental crust induced by recycling of apatite-bearing cumulates. Geology, 51(5), 500-504. https://doi.org/10.1130/g51027.1spa
dc.relation.referencesCalderon-Diaz, L., Zapata, S., Cardona, A., Parra, M., Sobel, E. R., Patiño, A. M., Valencia, V., Jaramillo-Rios, J. S., & Glodny, J. (2024). Cretaceous extensional and contractional stages in the Colombian Andes unraveled by a source-to-sink geochronological and thermochronological study in the Upper Magdalena Basin. Tectonophysics, 878, 230303. https://doi.org/10.1016/j.tecto.2024.230303spa
dc.relation.referencesCapaldi, T. N., McKenzie, N. R., Horton, B. K., Mackaman-Lofland, C., Colleps, C. L., & Stockli, D. F. (2021). Detrital zircon record of Phanerozoic magmatism in the southern Central Andes. Geosphere, 17(3), 876-897. https://doi.org/10.1130/ges02346.1spa
dc.relation.referencesCardona, A., León, S., Jaramillo, J. S., Montes, C., Valencia, V., Vanegas, J., Bustamante, C., & Echeverri, S. (2018). The Paleogene arcs of the northern Andes of Colombia and Panama: Insights on plate kinematic implications from new and existing geochemical, geochronological and isotopic data. Tectonophysics, 749, 88-103. https://doi.org/10.1016/j.tecto.2018.10.032spa
dc.relation.referencesCardona, A., Valencia, V. A., Bayona, G., Duque, J., Ducea, M., Gehrels, G., Jaramillo, C., Montes, C., Ojeda, G., & Ruiz, J. (2011). Early-subduction-related orogeny in the northern Andes: Turonian to Eocene magmatic and provenance record in the Santa Marta Massif and Rancheria Basin, northern Colombia. Terra Nova, 23(1), 26-34. https://doi.org/10.1111/j.1365-3121.2010.00979.xspa
dc.relation.referencesCarrapa, B., DeCelles, P. G., Ducea, M. N., Jepson, G., Osakwe, A., Balgord, E., Stevens Goddard, A. L., & Giambiagi, L. A. (2022). Estimates of paleo-crustal thickness at Cerro Aconcagua (Southern Central Andes) from detrital proxy-records: Implications for models of continental arc evolution. Earth and Planetary Science Letters, 585, 117526. https://doi.org/10.1016/j.epsl.2022.117526spa
dc.relation.referencesCavosie, A. J., Valley, J. W., & Wilde, S. A. (2005). Magmatic δ18O in 4400-3900 Ma detrital zircons: A record of the alteration and recycling of crust in the Early Archean. Earth and Planetary Science Letters, 235(3-4), 663-681. https://doi.org/10.1016/j.epsl.2005.04.028spa
dc.relation.referencesCavosie, A. J., Valley, J. W., & Wilde, S. A. (2006). Correlated microanalysis of zircon: Trace element, δ18O, and U-Th-Pb isotopic constraints on the igneous origin of complex >3900 Ma detrital grains. Geochimica et Cosmochimica Acta, 70(22), 5601-5616. https://doi.org/10.1016/j.gca.2006.08.011spa
dc.relation.referencesCawood, P. A., Hawkesworth, C. J., & Dhuime, B. (2013). The continental record and the generation of continental crust. Bulletin of the Geological Society of America, 125(1-2), 14-32. https://doi.org/10.1130/B30722.1spa
dc.relation.referencesCawood, P. A., Kröner, A., Collins, W. J., Kusky, T. M., Mooney, W. D., & Windley, B. F. (2009). Accretionary orogens through Earth history. Geological Society Special Publication, 318(1), 1-36. https://doi.org/10.1144/sp318.1spa
dc.relation.referencesChang, Z., Vervoort, J. D., McClelland, W. C., & Knaack, C. (2006). U‐Pb dating of zircon by LA‐ICP‐MS. Geochemistry, Geophysics, Geosystems: G(3), 7(5). https://doi.org/10.1029/2005gc001100spa
dc.relation.referencesChapman, J. B., Ducea, M. N., DeCelles, P. G., & Profeta, L. (2015). Tracking changes in crustal thickness during orogenic evolution with Sr/Y: An example from the North American Cordillera. Geology, 43(10), 919-922. https://doi.org/10.1130/G36996.1spa
dc.relation.referencesChapman, J. B., Shields, J. E., Ducea, M. N., Paterson, S. R., Attia, S., & Ardill, K. E. (2021). The causes of continental arc flare ups and drivers of episodic magmatic activity in Cordilleran orogenic systems. Lithos, 398-399, 106307. https://doi.org/10.1016/j.lithos.2021.106307spa
dc.relation.referencesChase, C. G., Sussman, A. J., & Coblentz, D. D. (2009). Curved Andes: Geoid, forebulge, and flexure. Lithosphere, 1(6), 358-363. https://doi.org/10.1130/l67.1spa
dc.relation.referencesChen, J., Kufner, S.-K., Yuan, X., Heit, B., Wu, H., Yang, D., Schurr, B., & Kay, S. (2020). Lithospheric delamination beneath the southern Puna plateau resolved by local earthquake tomography. Journal of Geophysical Research. Solid Earth, 125(10). https://doi.org/10.1029/2019jb019040spa
dc.relation.referencesChiarabba, C., De Gori, P., Faccenna, C., Speranza, F., Seccia, D., Dionicio, V., & Prieto, G. A. (2015). Subduction system and flat slab beneath the Eastern Cordillera of Colombia. Geochemistry, Geophysics, Geosystems: G(3), 17(1), 16-27. https://doi.org/10.1002/2015gc006048spa
dc.relation.referencesChiaradia, M., Müntener, O., Beate, B., & Fontignie, D. (2009). Adakite-like volcanism of Ecuador: Lower crust magmatic evolution and recycling. Contributions to Mineralogy and Petrology, 158(5), 563-588. https://doi.org/10.1007/s00410-009-0397-2spa
dc.relation.referencesCilliers, C. D., Tucker, R. T., Crowley, J. L., & Zanno, L. E. (2021). Age constraint for the Moreno Hill Formation (Zuni Basin) by CA-TIMS and LA-ICP-MS detrital zircon geochronology. PeerJ, 9, 1-39. https://doi.org/10.7717/peerj.10948spa
dc.relation.referencesClaiborne, L. L., Miller, C. F., & Wooden, J. L. (2010). Trace element composition of igneous zircon: A thermal and compositional record of the accumulation and evolution of a large silicic batholith, Spirit Mountain, Nevada. Contributions to Mineralogy and Petrology, 160(4), 511-531. https://doi.org/10.1007/s00410-010-0491-5spa
dc.relation.referencesClaiborne, L. L, Miller, C. F., Walker, B. A., Wooden, J. L., Mazdab, F. K., & Bea, F. (2006). Tracking magmatic processes through Zr/Hf ratios in rocks and Hf and Ti zoning in zircons: An example from the Spirit Mountain batholith, Nevada. Mineralogical Magazine, 70(5), 517-543. https://doi.org/10.1180/0026461067050348spa
dc.relation.referencesCochrane, R., Spikings, R., Gerdes, A., Ulianov, A., Mora, A., Villagómez, D., Putlitz, B., & Chiaradia, M. (2014). Permo-Triassic anatexis, continental rifting and the disassembly of western Pangaea. Lithos, 190-191, 383-402. https://doi.org/10.1016/j.lithos.2013.12.020spa
dc.relation.referencesCondie, K. C. (2007). Accretionary orogens in space and time. In Geological Society of America Memoirs, 145-158. Geological Society of America. https://doi.org/10.1130/2007.1200(09)spa
dc.relation.referencesCondon D. J., Schoene B., McLean N. M., Bowring S. A., Parrish R, 2015, Metrology and traceability of U-Pb isotope dilution geochronology (EARTHTIME Tracer Calibration Part I). Geochimica et Cosmochimica Acta, 164, 464-480. https://doi.org/10.1016/j.gca.2015.05.026spa
dc.relation.referencesCorfu, F. (2003). Atlas of zircon textures. Reviews in Mineralogy and Geochemistry, 53(1), 469-500. https://doi.org/10.2113/0530469spa
dc.relation.referencesCorrea-Tamayo, A. M., 2009. Estudio petrologico, geoquímico y vulcanológico para establecer la evolución magmática del complejo volcánico Nevado del Huila, Colombia. Universidad Complutense de Madrid, 545 p.spa
dc.relation.referencesCorrea-Tamayo, A. M., Pulgarín-Alzate, B. A. & Ancochea-Soto, E. (2020). The Nevado del Huila Volcanic Complex. In: Gómez, J. & Pinilla-Pachon, A. O. (editors), The Geology of Colombia, Volume 4 Quaternary. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 38, 227-265. Bogotá. doi.org/10.32685/pub.esp.38.2019.06spa
dc.relation.referencesCrowley, J. L., Schoene, B., & Bowring, S. A. (2007). U-Pb dating of zircon in the Bishop Tuff at the millennial scale. Geology, 35(12), 1123-1126. https://doi.org/10.1130/G24017A.1spa
dc.relation.referencesCurrie, C. A., Ducea, M. N., DeCelles, P. G., & Beaumont, C. (2015). Geodynamic models of Cordilleran orogens: Gravitational instability of magmatic arc roots. In DeCelles, P. G., Ducea, M. N., Carrapa, B., & Kapp, P. A. (Eds.), Geodynamics of a Cordilleran Orogenic System: The Central Andes of Argentina and Northern Chile (pp. 1-22). Geological Society of America Memoir 212. https://doi.org/10.1130/2015.1212(01)spa
dc.relation.referencesDasgupta, R., Hirschmann, M. M., & Smith, N. D. (2007). Partial melting experiments of peridotite + CO2 at 3 GPa and genesis of alkalic ocean island basalts. Journal of Petrology, 48(11), 2093-2124. https://doi.org/10.1093/petrology/egm053spa
dc.relation.referencesde Silva, S. L., & Kay, S. M. (2018). Turning up the heat: High-flux magmatism in the central Andes. Elements, 14(4), 245-250. https://doi.org/10.2138/gselements.14.4.245spa
dc.relation.referencesde Silva, S.L., Riggs, N.R., & Barth, A.P. (2015). Quickening the pulse: Fractal tempos in continental arc magmatism. Elements, 11(2), 113-118. https://doi.org/10.2113/gselements.11.2.113spa
dc.relation.referencesDeCelles, P. G., Ducea, M. N., Kapp, P., & Zandt, G. (2009). Cyclicity in Cordilleran orogenic systems. Nature Geoscience, 2(4), 251-257. https://doi.org/10.1038/ngeo469spa
dc.relation.referencesDeering, C. D., Bachmann, O., Dufek, J., & Gravley, D. M. (2011). Rift-related transition from andesite to rhyolite volcanism in the Taupo Volcanic Zone (New Zealand) controlled by crystal-melt dynamics in mush zones with variable mineral assemblages. Journal of Petrology, 52(11), 2243-2263. https://doi.org/10.1093/petrology/egr046spa
dc.relation.referencesDePaolo, D. J., & Wasserburg, G. J. (1976). Nd isotopic variations and petrogenetic models. Geophysical Research Letters, 3(5), 249-252. https://doi.org/10.1029/gl003i005p00249spa
dc.relation.referencesDePaolo, D. J., Harrison, T. M., Wielicki, M., Zhao, Z., Zhu, D.-C., Zhang, H., & Mo, X. (2019). Geochemical evidence for thin syn-collision crust and major crustal thickening between 45 and 32 Ma at the southern margin of Tibet. Gondwana Research: International Geoscience Journal, 73, 123-135. https://doi.org/10.1016/j.gr.2019.03.011spa
dc.relation.referencesDiederix, H., Bohórquez, O. P., Mora-Páez, H., Peláez, J. R., Cardona, L., Corchuelo, Y., Ramírez, J. & Díaz-Mila, F. (2020). The Algeciras Fault System of the Upper Magdalena Valley, Huila Department. In: Gómez, J. & Pinilla-Pachon, A. O. (editors), The Geology of Colombia, Volume 4 Quaternary. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 38, 423-452. Bogotá. https://doi.org/10.32685/pub.esp.38.2019.12spa
dc.relation.referencesDraut, A. E., & Clift, P. D. (2001). Geochemical evolution of arc magmatism during arc-continent collision, South Mayo, Ireland. Geology, 29(6), 543-546. https://doi.org/10.1130/0091-7613(2001)029<0543:GEOAMD>2.0.CO;2spa
dc.relation.referencesDroux, A., & Delaloye, M. (1996). Petrography and geochemistry of Plio-Quaternary calc-alkaline volcanoes of Southwestern Colombia. Journal of South American Earth Sciences, 9(1-2), 27-41. https://doi.org/10.1016/0895-9811(96)00025-9spa
dc.relation.referencesDucea, M. N., Bergantz, G. W., Crowley, J. L., & Otamendi, J. (2017). Ultrafast magmatic buildup and diversification to produce continental crust during subduction. Geology, 45(3), 235-238. https://doi.org/10.1130/g38726.1spa
dc.relation.referencesDucea, M. N., Chapman, A. D., Bowman, E., & Balica, C. (2021b). Arclogites and their role in continental evolution; part 2: Relationship to batholiths and volcanoes, density and foundering, remelting and long-term storage in the mantle. Earth-Science Reviews, 214, 103476. https://doi.org/10.1016/j.earscirev.2020.103476spa
dc.relation.referencesDucea, M. N., Chapman, A. D., Bowman, E., & Triantafyllou, A. (2021a). Arclogites and their role in continental evolution; part 1: Background, locations, petrography, geochemistry, chronology and thermobarometry. Earth-Science Reviews, 214, 103375. https://doi.org/10.1016/j.earscirev.2020.103375spa
dc.relation.referencesDucea, M. N., Paterson, S. R., & DeCelles, P. G. (2015b). High-volume magmatic events in subduction systems. Elements, 11(2), 99-104. https://doi.org/10.2113/gselements.11.2.99spa
dc.relation.referencesDucea, M. N., Seclaman, A. C., Murray, K. E., Jianu, D., & Schoenbohm, L. M. (2013). Mantle-drip magmatism beneath the Altiplano-Puna plateau, central Andes. Geology, 41(8), 915-918. https://doi.org/10.1130/g34509.1spa
dc.relation.referencesDuque-Trujillo, J. F., Bustamante, C., Solari, L., Gómez-Mafla, Á., Toro-Villegas, G., & Hoyos, S. (2019b). Reviewing the Antioquia batholith and satellite bodies : a record of Late Cretaceous to Eocene syn- to post-collisional arc magmatism in the Central Cordillera of Colombia. Andean Geology, 46(1), 82-101. https://doi.org/10.5027/andgeoV46n1-3124spa
dc.relation.referencesDuque-Trujillo, J. F., Orozco-Esquivel, T., Sánchez, C. J., & Cárdenas-Rozo, A. L. (2019a). Paleogene magmatism of the Maracaibo Block and its tectonic significance. In Geology and Tectonics of Northwestern South America, Frontiers in Earth Sciences, (pp. 551-601). https://doi.org/10.1007/978-3-319-76132-9_7spa
dc.relation.referencesEcheverri, S., Cardona, A., Pardo, A., Monsalve, G., Valencia, V. A., Borrero, C., Rosero, S., & López, S. (2015). Regional provenance from southwestern Colombia fore-arc and intra-arc basins: implications for Middle to Late Miocene orogeny in the Northern Andes. Terra Nova, 27(5), 356-363. https://doi.org/10.1111/ter.12167spa
dc.relation.referencesErrázuriz-Henao, C., Gómez-Tuena, A., Duque-Trujillo, J., & Weber, M. (2019). The role of subducted sediments in the formation of intermediate mantle-derived magmas from the Northern Colombian Andes. Lithos, 336-337, 151-168. https://doi.org/10.1016/j.lithos.2019.04.007spa
dc.relation.referencesFaccenna, C., & Becker, T. W. (2020). Topographic expressions of mantle dynamics in the Mediterranean. Earth-Science Reviews, 209, 103327. https://doi.org/10.1016/j.earscirev.2020.103327spa
dc.relation.referencesFaccenna, C., Becker, T. W., Auer, L., Billi, A., Boschi, L., Brun, J. P., Capitanio, F. A., Funiciello, F., Horvàth, F., Jolivet, L., Piromallo, C., Royden, L., Rossetti, F., & Serpelloni, E. (2014). Mantle dynamics in the Mediterranean: Mediterranean dynamic. Reviews of Geophysics, 52(3), 283-332. https://doi.org/10.1002/2013rg000444spa
dc.relation.referencesFerrari, L., Petrone, C. M., & Francalanci, L. (2001). Generation of oceanic-island basalt-type volcanism in the western Trans-Mexican volcanic belt by slab rollback, asthenosphere infiltration, and variable flux melting. Geology, 29(6), 507. https://doi.org/10.1130/0091-7613(2001)029<0507:gooibt>2.0.co;2spa
dc.relation.referencesFerry, J. M., & Watson, E. B. (2007). New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contributions to Mineralogy and Petrology, 154(4), 429-437. https://doi.org/10.1007/s00410-007-0201-0spa
dc.relation.referencesFisher, C. M., Vervoort, J. D., & DuFrane, S. A. (2014). Accurate Hf isotope determinations of complex zircons using the “laser ablation split stream” method. Geochemistry, Geophysics, Geosystems: G(3), 15(1), 121-139. https://doi.org/10.1002/2013gc004962spa
dc.relation.referencesFoley, M. L., Putlitz, B., Baumgartner, L. P., Bégué, F., Siron, G., & Kosmal, A. (2023). Generating large volumes of crust-derived high δ18O rhyolites in the Chon Aike Silicic Large Igneous Province, Patagonia. Geosphere, 19(4), 975-1005. https://doi.org/10.1130/ges02551.1spa
dc.relation.referencesGale, A., Dalton, C. A., Langmuir, C. H., Su, Y., & Schilling, J.-G. (2013). The mean composition of ocean ridge basalts: MEAN MORB. Geochemistry, Geophysics, Geosystems: G(3), 14(3), 489-518. https://doi.org/10.1029/2012gc004334spa
dc.relation.referencesGaler, S. J. G. & Abouchami, W. (1998). Practical application of lead triple spiking for correction of instrumental mass discrimination. Mineralogical Magazine, 62A(1), 491-492. https://doi.org/10.1180/minmag.1998.62a.1.260spa
dc.relation.referencesGall, H., Furman, T., Hanan, B., Kürkcüoğlu, B., Sayıt, K., Yürür, T., Sjoblom, M.P., Şen, E., Şen, P.A. (2021). Post-delamination magmatism in south-central Anatolia. Lithos 398-399. https://doi.org/10.1016/j.lithos.2021.106299spa
dc.relation.referencesGanade, C. E., Lanari, P., Rubatto, D., Hermann, J., Weinberg, R. F., Basei, M. A. S., Tesser, L. R., Caby, R., Agbossoumondé, Y., & Ribeiro, C. M. (2021). Magmatic flare-up causes crustal thickening at the transition from subduction to continental collision. Communications Earth & Environment, 2(1), 1-10. https://doi.org/10.1038/s43247-021-00103-zspa
dc.relation.referencesGarrison, J. M., Sims, K. W. W., Yogodzinski, G. M., Escobar, R. D., Scott, S., Mothes, P., Hall, M. L., & Ramon, P. (2018). Shallow-level differentiation of phonolitic lavas from Sumaco Volcano, Ecuador. Contributions to Mineralogy and Petrology, 173(1). https://doi.org/10.1007/s00410-017-1431-4spa
dc.relation.referencesGaschnig, R. M., Vervoort, J. D., Lewis, R. S., & Tikoff, B. (2011). Isotopic evolution of the Idaho batholith and Challis intrusive province, northern US Cordillera. Journal of Petrology, 52(12), 2397-2429. doi.org/10.1093/petrology/egr050spa
dc.relation.referencesGaschnig, R. M., Vervoort, J. D., Tikoff, B., & Lewis, R. S. (2017). Construction and preservation of batholiths in the northern U.S. Cordillera. Lithosphere, 9(2), 315-324. https://doi.org/10.1130/L497.1spa
dc.relation.referencesGehrels, G. (2014). Detrital zircon U-Pb geochronology applied to tectonics. Annual Review of Earth and Planetary Sciences, 42, 127-149. https://doi.org/10.1146/annurev-earth-050212-124012spa
dc.relation.referencesGehrels, G., Valencia, V. A., & Ruiz, J. (2008). Enhanced precision, accuracy, efficiency, and spatial resolution of U-Pb ages by laser ablation-multicollector-inductively coupled plasma-mass spectrometry. Geochemistry, Geophysics, Geosystems: G(3), 9(3), 1-13. https://doi.org/10.1029/2007GC001805spa
dc.relation.referencesGeorge, S. W. M., Horton, B. K., Vallejo, C., Jackson, L. J., & Gutierrez, E. G. (2021). Did accretion of the Caribbean oceanic plateau drive rapid crustal thickening in the northern Andes? Geology, 49(8), 936-940. https://doi.org/10.1130/g48509.1spa
dc.relation.referencesGerstenberger, H., & Haase, G. (1997). A highly effective emitter substance for mass spectrometric Pb isotope ratio determinations. Chemical Geology, 136(3-4), 309-312. https://doi.org/10.1016/s0009-2541(96)00033-2spa
dc.relation.referencesGerya, T. V., & Meilick, F. I. (2011). Geodynamic regimes of subduction under an active margin: Effects of rheological weakening by fluids and melts. Journal of Metamorphic Geology, 29(1), 7-31. https://doi.org/10.1111/j.1525-1314.2010.00904.xspa
dc.relation.referencesGiambiagi, L., Tassara, A., Echaurren, A., Julve, J., Quiroga, R., Barrionuevo, M., Liu, S., Echeverría, I., Mardónez, D., Suriano, J., Mescua, J., Lossada, A. C., Spagnotto, S., Bertoa, M., & Lothari, L. (2022). Crustal anatomy and evolution of a subduction-related orogenic system: Insights from the Southern Central Andes (22-35°S). Earth-Science Reviews, 232(104138), 104138. https://doi.org/10.1016/j.earscirev.2022.104138spa
dc.relation.referencesGianola, O., Costa, B., Ferri, F., Gilio, M., Petrelli, M., Murri, M., Barbaro, A., Alvaro, M., Rodríguez-Vargas, A., Poli, S., & Cesare, B. (2023). Melt inclusions in arclogitic xenoliths constrain the genesis of the lower continental arc crust beneath the northern volcanic zone, Colombia. Journal of Petrology, 64(6). https://doi.org/10.1093/petrology/egad038spa
dc.relation.referencesGil-Rodriguez, J. (2014). Petrology of the betulia igneous complex, Cauca, Colombia. Journal of South American Earth Sciences, 56, 339-356. https://doi.org/10.1016/j.jsames.2014.09.016spa
dc.relation.referencesGlazner, A. F., Coleman, D. S., & Mills, R. D. (2015). The volcanic-plutonic connection. In Physical Geology of Shallow Magmatic Systems (pp. 61–82). Springer International Publishing. https://doi.org/10.1007/978-3-319-14084-1spa
dc.relation.referencesGlobal Volcanism Program. (2023). Volcanoes of the World, 5.1.5. compiled by Venzke, E, Distributed by Smithsonian Institution. https://doi.org/10.5479/si.GVP.VOTW5-2023.5.1spa
dc.relation.referencesGöğüş, O. H., & Pysklywec, R. N. (2008). Mantle lithosphere delamination driving plateau uplift and synconvergent extension in eastern Anatolia. Geology, 36(9), 723. https://doi.org/10.1130/g24982a.1spa
dc.relation.referencesGómez, J., & Montes, N. E. (2020). Mapa Geológico de Colombia en Relieve (Vol. 1). https://www2.sgc.gov.co/MGC/Paginas/mgc_1M2020.aspxspa
dc.relation.referencesGómez, J., Nivia, Á., Montes, N. E., Almanza, M. F., Alcárcel, F. A., & Madrid, C. A. (2015). Compilando la geología de Colombia: Una visión a 2015. Bogotá. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales, 33.spa
dc.relation.referencesGómez-Tuena, A., Díaz-Bravo, B., Vázquez-Duarte, A.V., Pérez-Arvizu, O., & Mori, L. (2014). Andesite petrogenesis by slab-derived plume pollution of a continental rift. Geological Society Special Publications 385, 65-101. https://doi.org/10.1144/SP385.4spa
dc.relation.referencesGonzález, P. D., Sato, A. M., Naipauer, M., Varela, R., Basei, M., Sato, K., Llambías, E. J., Chemale, F., & Dorado, A. C. (2018). Patagonia-Antarctica Early Paleozoic conjugate margins: Cambrian synsedimentary silicic magmatism, U-Pb dating of K-bentonites, and related volcanogenic rocks. Gondwana Research, 63, 186-225. https://doi.org/10.1016/j.gr.2018.05.015spa
dc.relation.referencesGravley, D. M., Deering, C. D., Leonard, G. S., & Rowland, J. V. (2016). Ignimbrite flare-ups and their drivers: A New Zealand perspective. Earth-Science Reviews, 162, 65-82. https://doi.org/10.1016/j.earscirev.2016.09.007spa
dc.relation.referencesGrimes, C. B., John, B. E., Cheadle, M. J., Mazdab, F. K., Wooden, J. L., Swapp, S., & Schwartz, J. J. (2009). On the occurrence, trace element geochemistry, and crystallization history of zircon from in situ ocean lithosphere. Contributions to Mineralogy and Petrology, 158(6), 757-783. https://doi.org/10.1007/s00410-009-0409-2spa
dc.relation.referencesGrimes, C. B., Wooden, J. L., Cheadle, M. J., & John, B. E. (2015). “Fingerprinting” tectono-magmatic provenance using trace elements in igneous zircon. Contributions to Mineralogy and Petrology, 170(5-6), 1-26. https://doi.org/10.1007/s00410-015-1199-3spa
dc.relation.referencesGrove, T. L., Till, C. B., & Krawczynski, M. J. (2012). The role of H2O in subduction zone magmatism. Annual Review of Earth and Planetary Sciences, 40(1), 413-439. https://doi.org/10.1146/annurev-earth-042711-105310spa
dc.relation.referencesGrove, T. L., Till, C. B., Lev, E., Chatterjee, N., & Médard, E. (2009). Kinematic variables and water transport control the formation and location of arc volcanoes. Nature, 459(7247), 694-697. https://doi.org/10.1038/nature08044spa
dc.relation.referencesHammersley, L., DePaolo, D. J., Beate, B., Deino, A. L. (2022). Rhyolite ignimbrite generation in the northern andes: The chalupas caldera, Ecuador, In: Sims, K. W. W., Maher, K., Schrag, D. P. (Eds.), Isotopic Constraints on Earth System Processes. American Geophysical Union, pp. 87-132. https://doi.org/10.1002/9781119595007.ch05spa
dc.relation.referencesHaschke, M., Günther, A. (2003). Balancing crustal thickening in arcs by tectonic vs. magmatic means. Geology 31, 933-936. https://doi.org/10.1130/G19945.1spa
dc.relation.referencesHayden, L. A., & Watson, E. B. (2007). Rutile saturation in hydrous siliceous melts and its bearing on Ti-thermometry of quartz and zircon. Earth and Planetary Science Letters, 258(3-4), 561-568. https://doi.org/10.1016/j.epsl.2007.04.020spa
dc.relation.referencesHayes, G. P., Moore, G. L., Portner, D. E., Hearne, M., Flamme, H., Furtney, M., & Smoczyk, G. M. (2018). Slab2, a comprehensive subduction zone geometry model. Science, 362(6410), 58-61. https://doi.org/10.1126/science.aat4723spa
dc.relation.referencesHerriott, T. M., Crowley, J. L., Schmitz, M. D., Wartes, M. A., & Gillis, R. J. (2019). Exploring the law of detrital zircon: LA-ICP-MS and CA-TIMS geochronology of Jurassic forearc strata, Cook Inlet, Alaska, USA. Geology, 47(11), 1044-1048. https://doi.org/10.1130/G46312.1spa
dc.relation.referencesHiess, J., Condon, D. J., McLean, N., & Noble, S. R. (2012). 238U/ 235U systematics in terrestrial uranium-bearing minerals. Science, 335(6076), 1610-1614. https://doi.org/10.1126/science.1215507spa
dc.relation.referencesHildreth, W., & Moorbath, S. (1988). Crustal contributions to arc magmatism in the Andes of Central Chile. Contributions to Mineralogy and Petrology, 98(4), 455-489. https://doi.org/10.1007/bf00372365spa
dc.relation.referencesHildreth, W., Fierstein, J., Siems, D. F., Budahn, J. R., & Ruíz, J. (2004). Rear-arc vs. arc-front volcanoes in the Katmai reach of the Alaska Peninsula: a critical appraisal of across-arc compositional variation. Contributions to Mineralogy and Petrology, 147(3), 243-275. https://doi.org/10.1007/s00410-004-0558-2spa
dc.relation.referencesHirschmann, M. M., Kogiso, T., Baker, M. B., & Stolper, E. M. (2003). Alkalic magmas generated by partial melting of garnet pyroxenite. Geology, 31(6), 481. https://doi.org/10.1130/0091-7613(2003)031<0481:amgbpm>2.0.co;2spa
dc.relation.referencesHolder, R. M., Yakymchuk, C., & Viete, D. R. (2020). Accessory Mineral Eu Anomalies in Suprasolidus Rocks: Beyond Feldspar. Geochemistry, Geophysics, Geosystems: G(3), 21(8), 1-16. https://doi.org/10.1029/2020GC009052spa
dc.relation.referencesHoltz, F., & Johannes, W. (1994). Maximum and minimum water contents of granitic melts: implications for chemical and physical properties of ascending magmas. Lithos, 32(1-2), 149-159. https://doi.org/10.1016/0024-4937(94)90027-2spa
dc.relation.referencesHorton, B. K. (2018). Sedimentary record of Andean mountain building. Earth-Science Reviews, 178, 279-309. https://doi.org/10.1016/j.earscirev.2017.11.025spa
dc.relation.referencesHorton, B. K., Anderson, V. J., Caballero, V., Saylor, J. E., Nie, J., Parra, M., & Mora, A. (2015). Application of detrital zircon U-Pb geochronology to surface and subsurface correlations of provenance, paleodrainage, and tectonics of the Middle Magdalena Valley Basin of Colombia. Geosphere, 11(6), 1790-1811. https://doi.org/10.1130/GES01251.1spa
dc.relation.referencesHorton, B. K., Saylor, J. E., Nie, J., Mora, A., Parra, M., Reyes-Harker, A., & Stockli, D. F. (2010). Linking sedimentation in the northern Andes to basement configuration, Mesozoic extension, and Cenozoic shortening: Evidence from detrital zircon U-Pb ages, Eastern Cordillera, Colombia. Bulletin of the Geological Society of America, 122(9-10), 1423-1442. https://doi.org/10.1130/B30118.1spa
dc.relation.referencesHouseman, G. A., McKenzie, D. P., & Molnar, P. (1981). Convective instability of a thickened boundary layer and its relevance for the thermal evolution of continental convergent belts. Journal of Geophysical Research, 86, 6115-6132. https://doi.org/10.1029/jb086ib07p06115spa
dc.relation.referencesIizuka, T., Yamaguchi, T., Itano, K., Hibiya, Y., & Suzuki, K. (2018). What Hf isotopes in zircon tell us about crust-mantle evolution. Lithos, 274-275, 304-327. http://dx.doi.org/10.1016/j.lithos.2017.01.006spa
dc.relation.referencesJaffey, A. H., Flynn, K. F., Glendenin, L. E., Bentley, W. C., and Essling, A. M. (1971). Precision measurements of half-lives and specific activities of 235U and 238U, Physical Review C, 4:1889-1906. https://doi.org/10.1103/PhysRevC.4.1889spa
dc.relation.referencesJagoutz, O. (2014). Arc crustal differentiation mechanisms. Earth and Planetary Science Letters, 396, 267-277. https://doi.org/10.1016/j.epsl.2014.03.060spa
dc.relation.referencesJagoutz, O., & Behn, M. D. (2013). Foundering of lower island-arc crust as an explanation for the origin of the continental Moho. Nature, 504(7478), 131–134. https://doi.org/10.1038/nature12758spa
dc.relation.referencesJagoutz, O., & Kelemen, P. B. (2015). Role of arc processes in the formation of continental crust. Annual Review of Earth and Planetary Sciences, 43(1), 363-404. https://doi.org/10.1146/annurev-earth-040809-152345spa
dc.relation.referencesJagoutz, O., & Klein, B. (2018). On the importance of crystallization‐differentiation for the generation of SiO2‐rich melts and the compositional build‐up of arc (and continental) crust. American Journal of Science, 318(1), 29-63. https://doi.org/10.2475/01.2018.03spa
dc.relation.referencesJagoutz, O., & Schmidt, M. W. (2013). The composition of the foundered complement to the continental crust and a re-evaluation of fluxes in arcs. Earth and Planetary Science Letters, 371-372, 177-190. https://doi.org/10.1016/j.epsl.2013.03.051spa
dc.relation.referencesJaramillo, C., & Cárdenas, A. (2013). Global warming and neotropical rainforests: A historical perspective. Annual Review of Earth and Planetary Sciences, 41(1), 741-766. https://doi.org/10.1146/annurev-earth-042711-105403spa
dc.relation.referencesJaramillo, J. S., Cardona, A., León, S., Valencia, V., & Vinasco, C. (2017). Geochemistry and geochronology from Cretaceous magmatic and sedimentary rocks at 6°35′ N, western flank of the Central cordillera (Colombian Andes): Magmatic record of arc growth and collision. Journal of South American Earth Sciences, 76, 460-481. https://doi.org/10.1016/j.jsames.2017.04.012spa
dc.relation.referencesJaramillo, J. S., Cardona, A., Monsalve, G., Valencia, V., & León, S. (2019). Petrogenesis of the late Miocene Combia volcanic complex, northwestern Colombian Andes: Tectonic implication of short term and compositionally heterogeneous arc magmatism. Lithos, 330-331, 194-210. https://doi.org/10.1016/j.lithos.2019.02.017spa
dc.relation.referencesJaramillo, J. S., Zapata, S., Carvalho, M., Cardona, A., Jaramillo, C., Crowley, J. L., Bayona, G., & Caballero-Rodriguez, D. (2022). Diverse magmatic evolutionary trends of the northern Andes unraveled by Paleocene to early Eocene detrital zircon geochemistry. Geochemistry, Geophysics, Geosystems: G(3), 23(9). https://doi.org/10.1029/2021gc010113spa
dc.relation.referencesJaramillo, J.S., Cardona, A., Zapata, S., Jaramillo, C., & Valencia, V. (2020). Neogene magmatic record of the southern Colombian Andes: tectonic and mountain building implications. GSA meeting. doi: 10.1130/abs/2020AM-358191.spa
dc.relation.referencesJaramillo-Ríos, J. S., Cardona, A., Zapata, S., Valencia, V., Monsalve, G., & Vervoort, J. (2024). A mantle origin for Pliocene SiO2-rich ignimbrites in the modern Colombian magmatic arc. Lithos, 480-481, 107666. https://doi.org/10.1016/j.lithos.2024.107666spa
dc.relation.referencesJaramillo-Ríos, J. S., Cardona, A., Zapata, S., & Valencia, V. (2023). High-volume ignimbrites and alkaline basalts triggered by slab-retreating and incipient delamination in the Central Volcanic zone of the Colombian Andes. XVI Congreso Geológico Chileno.spa
dc.relation.referencesJohnson, D.M., Hooper, P.R., & Conrey, R.M., (1999). XRF analysis of rocks and minerals for major and trace elements on a single low dilution Li-tetraborate fused bead. Adv. X-ray Anal, v. 41, p. 843-867.spa
dc.relation.referencesJordan, T. E., Reynolds, J. H., III, & Erikson, J. P. (1997). Variability in age of initial shortening and uplift in the central Andes, 16-33°30′S. In Tectonic Uplift and Climate Change (pp. 41-61). Springer.spa
dc.relation.referencesJuggins, S. (2020). rioja: Analysis of quaternary science data, R package version (0.9-26). Retrieved from https://cran.r-project.org/package=riojaspa
dc.relation.referencesKaoungku, N., Suksut, K., Chanklan, R., Kerdprasop, K., & Kerdprasop, N. (2018). The silhouette width criterion for clustering and association mining to select image features. International Journal of Machine Learning and Computing, 8(1), 69-73. https://doi.org/10.18178/ijmlc.2018.8.1.665spa
dc.relation.referencesKarlstrom, L., Lee, C.-T. A., & Manga, M. (2014). The role of magmatically driven lithospheric thickening on arc front migration. Geochemistry, Geophysics, Geosystems: G(3), 15(6), 2655-2675. https://doi.org/10.1002/2014gc005355spa
dc.relation.referencesKay, R. W., & Kay, S. M. (1993). Delamination and delamination magmatism. Tectonophysics, 219(1-3), 177-189. https://doi.org/10.1016/0040-1951(93)90295-uspa
dc.relation.referencesKay, S. M., Coira, B. L., Caffe, P. J., & Chen, C. H. (2010). Regional chemical diversity, crustal and mantle sources and evolution of central Andean Puna plateau ignimbrites. Journal of Volcanology and Geothermal Research, 198(1-2), 81-111. https://doi.org/10.1016/j.jvolgeores.2010.08.013spa
dc.relation.referencesKay, S. M., Coira, B., Wörner, G., Kay, R. W., & Singer, B. S. (2011). Geochemical, isotopic and single crystal 40Ar/39Ar age constraints on the evolution of the Cerro Galán ignimbrites. Bulletin of Volcanology, 73(10), 1487-1511. https://doi.org/10.1007/s00445-010-0410-7spa
dc.relation.referencesKay, S. M., Mpodozis, C., & Gardeweg, M. (2014). Magma sources and tectonic setting of Central Andean andesites (25.5-288S) related to crustal thickening, forearc subduction erosion and delamination. Geological Society Special Publication, 385(1), 303-334. https://doi.org/10.1144/SP385.11spa
dc.relation.referencesKay, S. M., Mpodozis, C., Ramos, V. A., & Munizaga, F. (1991). Magma source variations for mid-late Tertiary magmatic rocks associated with a shallowing subduction zone and a thickening crust in the central Andes (28 to 33°S). Geological Society of America Special Publication, 265, 113-137. https://doi.org/10.1130/SPE265-p113spa
dc.relation.referencesKennan, L., & Pindell, J. L. (2009). Dextral shear, terrane accretion and basin formation in the Northern Andes: Best explained by interaction with a Pacific-derived Caribbean plate? Geological Society Special Publication, 328, 487-531. https://doi.org/10.1144/SP328.20spa
dc.relation.referencesKennedy, A. K., Wotzlaw, J. F., Schaltegger, U., Crowley, J. L., Schmitz, M., 2014, Eocene zircon reference material for microanalysis of U-Th-Pb isotopes and trace elements. The Canadian Mineralogist, 52, 409-421.spa
dc.relation.referencesKerr, A. C., Marriner, G. F., Tarney, J., Nivia, A., Saunders, A. D., Thirlwall, M. F., & Sinton, C. W. (1997). Cretaceous basaltic terranes in Western Colombia: Elemental, chronological and Sr-Nd isotopic constraints on petrogenesis. Journal of Petrology, 38(6), 677-702. https://doi.org/10.1093/petroj/38.6.677spa
dc.relation.referencesKerr, A. C., Tarney, J., Marriner, G. F., Nivia, A., Klaver, G. T., & Saunders, A. D. (1996). The geochemistry and tectonic setting of late Cretaceous Caribbean and Colombian volcanism. Journal of South American Earth Sciences, 9(1-2), 111-120. https://doi.org/10.1016/0895-9811(96)00031-4spa
dc.relation.referencesKirkland, C. L., Smithies, R. H., Taylor, R. J. M., Evans, N., & McDonald, B. (2015). Zircon Th/U ratios in magmatic environs. Lithos, 212-215, 397-414. https://doi.org/10.1016/j.lithos.2014.11.021spa
dc.relation.referencesKlein, B. Z., Jagoutz, O., Schmidt, M. W., & Kueter, N. (2023). A global assessment of the controls on the fractionation of arc magmas. Geochemistry, Geophysics, Geosystems: G(3), 24, e2023GC010888. https://doi.org/10.1029/2023GC010888spa
dc.relation.referencesKogiso, T., Hirshcmann, M. M., & Petermann, M. (2004). High-pressure partial melting of mafic lithologies in the mantle. Journal of Petrology, 45(12), 2407-2422. https://doi.org/10.1093/petrology/egh057spa
dc.relation.referencesKohut, E. J., Stern, R. J., Kent, A. J. R., Nielsen, R. L., Bloomer, S. H., & Leybourne, M. (2006). Evidence for adiabatic decompression melting in the Southern Mariana Arc from high-Mg lavas and melt inclusions. Contributions to Mineralogy and Petrology, 152(2), 201-221. https://doi.org/10.1007/s00410-006-0102-7spa
dc.relation.referencesKoppers, A. A. P., Becker, T. W., Jackson, M. G., Konrad, K., Müller, R. D., Romanowicz, B., Steinberger, B., & Whittaker, J. M. (2021). Mantle plumes and their role in Earth processes. Nature Reviews. Earth & Environment, 2(6), 382-401. https://doi.org/10.1038/s43017-021-00168-6spa
dc.relation.referencesKrogh, T. E. (1973). A low contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determination. Geochimica et Cosmochimica Acta, 37(3), 485-494. https://doi.org/10.1016/0016-7037(73)90213-5spa
dc.relation.referencesKroonenberg, S. B., León-Silvestre, L. A., Pastana, J. M. do N., & Pessoa, M. R. (1981). Ignimbritas Pliopleistocenicas en el Suroeste del Huila, Colombia y su Influencia en el Desarrollo Morfológico. CIAF, 6(1-3), 293-3214.spa
dc.relation.referencesKroonenberg, S. B., Pichler, H., & Diederix, H. (1982). Cenozoic alkalibasaltic to ultrabasic volcanism in the upermost Magdalena Valley, Southern Huila Department, Colombia. Geología Norandina, (5), 19-26.spa
dc.relation.referencesKroonenberg, S. B., Pichler, H., & Schmitt-Riegraf, C. (1987). Young alkalibasaltic to nephelinitic volcanism in the Southern Colombian Andes - Origin by subduction of a spreading rift? Zentralblatt für Geologie und Paläontologie, Teil I, 919-936.spa
dc.relation.referencesKuiper, K. F., Deino, A., Hilgen, F. J., Krijgsman, W., Renne, P. R., & Wijbrans, J. R., (2008). Synchronizing Rock Clocks of Earth History. Science, 320(5875), 500-504. doi:10.1126/science.1154339spa
dc.relation.referencesLambart, S., Laporte, D., Provost, A., & Schiano, P. (2012). Fate of pyroxenite-derived melts in the peridotitic mantle: Thermodynamic and experimental constraints. Journal of Petrology, 53(3), 451-476. https://doi.org/10.1093/petrology/egr068spa
dc.relation.referencesLambart, S., Laporte, D., & Schiano, P. (2013). Markers of the pyroxenite contribution in the major-element compositions of oceanic basalts: Review of the experimental constraints. Lithos, 160-161, 14-36. https://doi.org/10.1016/j.lithos.2012.11.018spa
dc.relation.referencesLanphere, M. A., & Baadsgaard, H. (2001). Precise K-Ar, 40Ar/39Ar, Rb-Sr and U/Pb mineral ages from the 27.5 Ma Fish Canyon Tuff reference standard. Chemical Geology, 175(3-4), 653-671. https://doi.org/10.1016/s0009-2541(00)00291-6spa
dc.relation.referencesLe Bas, M. J., Maitre, R. W. L., Streckeisen, A., Zanettin, B., & IUGS Subcommission on the Systematics of Igneous Rocks. (1986). A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology, 27(3), 745-750. https://doi.org/10.1093/petrology/27.3.745spa
dc.relation.referencesLe Roux, V., Lee, C.-T. A., & Turner, S. J. (2010). Zn/Fe systematics in mafic and ultramafic systems: Implications for detecting major element heterogeneities in the Earth’s mantle. Geochimica et Cosmochimica Acta, 74(9), 2779-2796. https://doi.org/10.1016/j.gca.2010.02.004spa
dc.relation.referencesLeal-Mejía, H. (2011). Phanerozoic gold metallogeny in the Colombian Andes: A tectono-magmatic approach, PhD. Thesis. University of Barcelona, 1-1000p.spa
dc.relation.referencesLeal-Mejía, H., Shaw, R. P., & Melgarejo-i Draper, J. C. (2019). Spatial-Temporal Migration of Granitoid Magmatism and the Phanerozoic Tectono- Magmatic Evolution of the Colombian Andes. In Cediel, C. & Shaw, R. P. (Eds.), Geology and Tectonics of Northwestern South (pp. 253-410).spa
dc.relation.referencesLee, C. -T. A. (2014). Physics and chemistry of deep continental crust recycling. Treatise on Geochemistry, 423-456. https://doi.org/10.1016/B978-0-08-095975-7.00314-4spa
dc.relation.referencesLee, C. -T. A., & Bachmann, O. (2014). How important is the role of crystal fractionation in making intermediate magmas? Insights from Zr and P systematics. Earth and Planetary Science Letters, 393, 266-274. https://doi.org/10.1016/j.epsl.2014.02.044spa
dc.relation.referencesLee, C.-T. A, Cheng, X., & Horodyskyj, U. (2006). The development and refinement of continental arcs by primary basaltic magmatism, garnet pyroxenite accumulation, basaltic recharge and delamination: insights from the Sierra Nevada, California. Contributions to Mineralogy and Petrology, 151(2), 222-242. https://doi.org/10.1007/s00410-005-0056-1spa
dc.relation.referencesLee, C.-T. A., & Anderson, D. L. (2015). Continental crust formation at arcs, the arclogite “delamination” cycle, and one origin for fertile melting anomalies in the mantle. Science Bulletin, 60(13), 1141-1156. https://doi.org/10.1007/s11434-015-0828-6spa
dc.relation.referencesLee, C.-T. A., Luffi, P., Plank, T., Dalton, H., & Leeman, W. P. (2009). Constraints on the depths and temperatures of basaltic magma generation on Earth and other terrestrial planets using new thermobarometers for mafic magmas. Earth and Planetary Science Letters, 279(1-2), 20-33. https://doi.org/10.1016/j.epsl.2008.12.020spa
dc.relation.referencesLee, J. Y., Marti, K., Severinghaus, J. P., Kawamura, K., Yoo, H. S., Lee, J. B., & Kim, J. S. (2006). A redetermination of the isotopic abundances of atmospheric Ar. Geochimica et Cosmochimica Acta, v. 70(17), p. 4507-4512. doi.org/10.1016/j.gca.2006.06.1563spa
dc.relation.referencesLemiszki, P. J., & Brown, L. D. (1988). Variable crustal structure of strike-slip fault zones as observed on deep seismic reflection profiles. Geological Society of America Bulletin, 100(5), 665-676. https://doi.org/10.1130/0016-7606(1988)100<0665:vcsoss>2.3.co;2spa
dc.relation.referencesLeón, S., Monsalve, G., & Bustamante, C. (2021). How Much Did the Colombian Andes Rise by the Collision of the Caribbean Oceanic Plateau? Geophysical Research Letters, 48(7), 1-11. https://doi.org/10.1029/2021GL093362spa
dc.relation.referencesLevene, H. (1960). "Robust Tests for Equality of Variances." Contributions to Probability and Statistics. (Edited by I. Olkin, et al.) Stanford: Stanford University Press. Chapter 25. pp. 278-292.spa
dc.relation.referencesLinnen, R. L., & Keppler, H. (2002). Melt composition control of Zr/Hf fractionation in magmatic processes. Geochimica et Cosmochimica Acta, 66(18), 3293-3301. https://doi.org/10.1016/S0016-7037(02)00924-9spa
dc.relation.referencesLonsdale, P. (2005). Creation of the Cocos and Nazca plates by fission of the Farallon plate. Tectonophysics, 404(3-4), 237-264. https://doi.org/10.1016/j.tecto.2005.05.011spa
dc.relation.referencesLudwig, K. R., (2003). User’s Manual for Isoplot 3.00. Berkeley Geochronology Center: Berkeley, CA, 70 p.spa
dc.relation.referencesLudwig, K. R., 2012. Isoplot 3.75: A geochronological toolkit for Microsoft Excel: Spec. Publ., no. 5, Berkeley Geochronological Center, Berkeley, California, 75 p.spa
dc.relation.referencesLuffi, P., & Ducea, M. N. (2022). Chemical mohometry: Assessing crustal thickness of ancient orogens using geochemical and isotopic data. Reviews of Geophysics, 60(2), e2021RG000753. https://doi.org/10.1029/2021RG000753spa
dc.relation.referencesLustrino, M. (2005). How the delamination and detachment of lower crust can influence basaltic magmatism. Earth-Science Reviews, 72(1-2), 21-38. https://doi.org/10.1016/j.earscirev.2005.03.004spa
dc.relation.referencesMacDonald, W. D., Estrada, J. J., Sierra, G. M., & Gonzalez, H. (1996). Late Cenozoic tectonics and paleomagnetism of North Cauca Basin intrusions, Colombian Andes: Dual rotation modes. Tectonophysics, 261(4), 277-289. https://doi.org/10.1016/0040-1951(95)00184-0spa
dc.relation.referencesMalusà, M. G., Villa, I. M., Vezzoli, G., & Garzanti, E. (2011). Detrital geochronology of unroofing magmatic complexes and the slow erosion of Oligocene volcanoes in the Alps. Earth and Planetary Science Letters, 301(1-2), 324-336. https://doi.org/10.1016/j.epsl.2010.11.019spa
dc.relation.referencesMann, H. B., & Whitney, D. R. (1947). On a Test of Whether one of Two Random Variables is Stochastically Larger than the Other. The annals of mathematical statistics, 18(1), 50-60. https://doi.org/10.1214/aoms/1177730491spa
dc.relation.referencesMarín-Cerón, M. I., Moriguti, T., Makishima, A., & Nakamura, E. (2010). Slab decarbonation and CO2 recycling in the Southwestern Colombian volcanic arc. Geochimica et Cosmochimica Acta, 74(3), 1104-1121. https://doi.org/10.1016/j.gca.2009.10.031spa
dc.relation.referencesMarriner, G. F., & Millward, D. (1984). The petrology and geochemistry of Cretaceous to Recent volcanism in Colombia: the magmatic history of an accretionary plate margin. Journal of the Geological Society, 141(3), 473-486. https://doi.org/10.1144/gsjgs.141.3.0473spa
dc.relation.referencesMattinson, J. M. (2005). Zircon U-Pb chemical abrasion (“CA-TIMS”) method: Combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages. Chemical Geology, 220(1-2), 47-66. https://doi.org/10.1016/j.chemgeo.2005.03.011spa
dc.relation.referencesMcCourt, W., Muñoz, U., & Villegas, V. (1990). Regional Geology and Gold Potential of the GuapieNapi Drainage Basin and Upper Timbiqui River. In: British Geological Survey, Overseas Geology Series. Technical Report WC/90/34. Cauca Department, SW Colombia.spa
dc.relation.referencesMcDonough, W. F., & Sun, S.-S. (1995). The composition of the earth. Chemical Geology, 120(3-4), 223-253. https://doi.org/10.1016/0009-2541(94)00140-4spa
dc.relation.referencesMcKay, M. P., Jackson, W. T., & Hessler, A. M. (2018). Tectonic stress regime recorded by zircon Th/U. Gondwana Research, 57, 1-9. https://doi.org/10.1016/j.gr.2018.01.004spa
dc.relation.referencesMcKenzie, N. R., Smye, A. J., Hegde, V. S., & Stockli, D. F. (2018). Continental growth histories revealed by detrital zircon trace elements: A case study from India. Geology, 46(3), 275-278. https://doi.org/10.1130/G39973.1spa
dc.relation.referencesMédard, E., Schmidt, M. W., Schiano, P., & Ottolini, L. (2006). Melting of amphibole-bearing wehrlites: An experimental study on the origin of ultra-calcic nepheline-normative melts. Journal of Petrology, 47(3), 481-504. https://doi.org/10.1093/petrology/egi083spa
dc.relation.referencesMiller, C. F., McDowell, S. M., & Mapes, R. W. (2003). Hot and cold granites: Implications of zircon saturation temperatures and preservation of inheritance. Geology, 31(6), 529-532. https://doi.org/10.1130/0091-7613(2003)031<0529:HACGIO>2.0.CO;2spa
dc.relation.referencesMiller, K. G., Sugarman, P. J., Browning, J. V., Kominz, M. A., Hernández, J. C., Olsson, R. K., Wright, J. D., Feigenson, M. D., & Van Sickel, W. (2003). Late Cretaceous chronology of large, rapid sea-level changes: Glacioeustasy during the greenhouse world. Geology, 31(7), 585. https://doi.org/10.1130/0091-7613(2003)031<0585:lccolr>2.0.co;2spa
dc.relation.referencesMin K., Mundil R., Renne P. R., and Ludwig K. R. (2000) A test for systematic errors in 40Ar-39Ar geochronology through comparison with U-Pb analysis of a 1.1 Ga rhyolite. Geochimica et Cosmochimica Acta, 64, 73-98. doi.org/10.1016/S0016-7037(99)00204-5spa
dc.relation.referencesMonsalve, M. L., & Pulgarín, B. (1999). Cadena volcánica de Los Coconucos (Colombia): Centros eruptivos y productos recientes. Boletín Geológico, 37(1-3), 16-51.spa
dc.relation.referencesMonsalve-Bustamante, M. L. (2020). The volcanic front in Colombia: Segmentation and recent and historical activity. In: Gómez, J. & Pinilla-Pachon, A. O. (editors), The Geology of Colombia, Volume 4 Quaternary. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 38, 97-159. Bogotá. https://doi.org/10.32685/pub.esp.38.2019.0spa
dc.relation.referencesMonsalve-Bustamante, M. L., Gómez, J. & Núñez-Tello, A. (2020). Rear-arc small-volume basaltic volcanism in Colombia: Monogenetic volcanic fields. In: Gómez, J. & Pinilla-Pachon, A. O. (editors), The Geology of Colombia, Volume 4 Quaternary. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 38, 353-396. Bogotá. https://doi.org/10.32685/pub.esp.38.2019.10spa
dc.relation.referencesMontes, C., Cardona, A., Jaramillo, C., Pardo, A., Silva, J. C., Valencia, V., Ayala, C., Pérez-Angel, L. C., Rodriguez-Parra, L. A., Ramirez, V., & Niño, H. (2015). Middle Miocene closure of the Central American Seaway. Science, 348(6231), 226-229. https://doi.org/10.1126/science.aaa2815spa
dc.relation.referencesMontes, C., Cardona, A., McFadden, R., Moron, S. E., Silva, C. A., Restrepo-Moreno, S., Ramirez, D. A., Hoyos, N., Wilson, J., Farris, D., Bayona, G. A., Jaramillo, C. A., Valencia, V., Bryan, J., & Flores, J. A. (2012). Evidence for middle Eocene and younger land emergence in central Panama: Implications for Isthmus closure. Geological Society of America Bulletin, 124(5-6), 780-799. https://doi.org/10.1130/b30528.1spa
dc.relation.referencesMontes, C., Guzman, G., Bayona, G., Cardona, A., Valencia, V., & Jaramillo, C. (2010). Clockwise rotation of the Santa Marta massif and simultaneous Paleogene to Neogene deformation of the Plato-San Jorge and Cesar-Ranchería basins. Journal of South American Earth Sciences, 29(4), 832-848. https://doi.org/10.1016/j.jsames.2009.07.010spa
dc.relation.referencesMontes, C., Rodriguez-Corcho, A. F., Bayona, G., Hoyos, N., Zapata, S., & Cardona, A. (2019). Continental margin response to multiple arc-continent collisions: The Northern Andes-Caribbean margin. Earth-Science Reviews, 198, 102903. https://doi.org/10.1016/j.earscirev.2019.102903spa
dc.relation.referencesMora-Páez, H., Kellogg, J. N., Freymueller, J. T., Mencin, D., Fernandes, R. M. S., Diederix, H., LaFemina, P., Cardona-Piedrahita, L., Lizarazo, S., Peláez-Gaviria, J.-R., Díaz-Mila, F., Bohórquez-Orozco, O., Giraldo-Londoño, L., & Corchuelo-Cuervo, Y. (2019). Crustal deformation in the northern Andes - A new GPS velocity field. Journal of South American Earth Sciences, 89, 76-91. https://doi.org/10.1016/j.jsames.2018.11.002spa
dc.relation.referencesMorency, C., & Doin, M.-P. (2004). Numerical simulations of the mantle lithosphere delamination. Journal of Geophysical Research, 109(B03410), 1-17. https://doi.org/10.1029/2003jb002414spa
dc.relation.referencesMorón, S., Fox, D. L., Feinberg, J. M., Jaramillo, C., Bayona, G., Montes, C., & Bloch, J. I. (2013). Climate change during the Early Paleogene in the Bogotá Basin (Colombia) inferred from paleosol carbon isotope stratigraphy, major oxides, and environmental magnetism. Palaeogeography, Palaeoclimatology, Palaeoecology, 388, 115-127. https://doi.org/10.1016/j.palaeo.2013.08.010spa
dc.relation.referencesMorton, A. C., & Hallsworth, C. (2007). Stability of detrital heavy minerals during burial diagenesis. In Developments in Sedimentology, 58, 215-245. https://doi.org/10.1016/S0070-4571(07)58007-6spa
dc.relation.referencesMurray, K. E., Ducea, M. N., & Schoennbohm, L. (2015). Foundering-driven lithospheric melting: The source of central Andean mafic lavas on the Puna Plateau (22 S-27 S). In: DeCelles, P. G., Ducea, M. N., Carrapa, B., & Kapp, P. A. (Eds.), Geodynamics of a Cordilleran Orogenic System: The Central Andes of Argentina and Northern Chile (pp. 139-166). Geological Society of America Memoir 212. https://doi.org/10.1130/2015.1212(08)spa
dc.relation.referencesNakakuki, T., & Mura, E. (2013). Dynamics of slab rollback and induced back-arc basin formation. Earth and Planetary Science Letters, 361, 287-297. https://doi.org/10.1016/j.epsl.2012.10.031spa
dc.relation.referencesNesbitt, H. W., & Young, G. M. (1982). Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299(5885), 715-717. https://doi.org/10.1038/299715a0spa
dc.relation.referencesNotini, L., Scambelluri, M., Tommasi, A., Zanetti, A., Ferri, F., Rodríguez-Vargas, A., & Rampone, E. (2024). Probing the deep mantle wedge in an active subduction zone: Xenoliths from the Mercaderes Volcanic District, Southern Colombia. Lithos, 464-465, 107401. https://doi.org/10.1016/j.lithos.2023.107401spa
dc.relation.referencesO’Hara, M. J. (1968). The bearing of phase equilibria studies in synthetic and natural systems on the origin and evolution of basic and ultrabasic rocks. Earth-Science Reviews 4, 69-133.spa
dc.relation.referencesOrdoñez, O., Pimentel, M., Armstrong, R., Gioias, S., & Junges, S. (2001). U-Pb SHRIMP and Rb-Sr ages of the Sonsón Batholith. Symposium A Quarterly Journal in Modern Foreign Literatures.spa
dc.relation.referencesOrt, M. H., Coira, B. L., & Mazzoni, M. M. (1996). Generation of a crust-mantle magma mixture: magma sources and contamination at Cerro Panizos, central Andes. Contributions to Mineralogy and Petrology, 123(3), 308-322. https://doi.org/10.1007/s004100050158spa
dc.relation.referencesPardo-Trujillo, A., Cardona, A., Giraldo, A. S., León, S., Vallejo, D. F., Trejos-Tamayo, R., Plata, A., Ceballos, J., Echeverri, S., Barbosa-Espitia, A., Slattery, J., Salazar-Ríos, A., Botello, G. E., Celis, S. A., Osorio-Granada, E., & Giraldo-Villegas, C. A. (2020). Sedimentary record of the Cretaceous-Paleocene arc-continent collision in the northwestern Colombian Andes: Insights from stratigraphic and provenance constraints. Sedimentary Geology, 401, 105627. https://doi.org/10.1016/j.sedgeo.2020.105627spa
dc.relation.referencesParra, M., Echeverri, S., Patiño, A. M., Ramírez, J.C., Mora, A., Sobel, E. R., Almendral, A. & Pardo-Trujillo, A. (2020). Cenozoic evolution of the Sierra Nevada de Santa Marta, Colombia. In: Gómez, J. & Mateus-Zabala, D. (editors), The Geology of Colombia, Volume 3 Paleogene - Neogene. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 37, 185-213. Bogotá. https://doi.org/10.32685/pub.esp.37.2019.07spa
dc.relation.referencesPaterson, B. A., & Stephens, W. E. (1992). Kinetically induced compositional zoning in titanite: implications for accessory-phase/melt partitioning of trace elements. Contributions to Mineralogy and Petrology, 109(3), 373-385. https://doi.org/10.1007/BF00283325spa
dc.relation.referencesPaterson, S. R., & Ducea, M. N. (2015). Arc magmatic tempos: Gathering the evidence. Elements, 11(2), 91-98. https://doi.org/10.2113/gselements.11.2.91spa
dc.relation.referencesPaterson, S. R., Okaya, D., Memeti, V., Economos, R., & Miller, R. B. (2011). Magma addition and flux calculations of incrementally constructed magma chambers in continental margin arcs: Combined field, geochronologic, and thermal modeling studies. Geosphere, 7(6), 1439-1468. https://doi.org/10.1130/ges00696.1spa
dc.relation.referencesPaton, C., Hellstrom, J., Paul, B., Woodhead, J., & Hergt, J. (2011). Iolite: Freeware for the visualisation and processing of mass spectrometric data. Journal of Analytical Atomic Spectrometry, 26(12), 2508. https://doi.org/10.1039/c1ja10172bspa
dc.relation.referencesPeccerillo, A., & Taylor, S. R. (1976). Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1), 63-81. https://doi.org/10.1007/bf00384745spa
dc.relation.referencesPérez-Consuegra, N., Hoke, G. D., Mora, A., Fitzgerald, P., Sobel, E. R., Sandoval, J. R., Glodny, J., Valencia, V., Parra, M., & Zapata, S. (2021). The case for tectonic control on erosional exhumation on the tropical northern Andes based on thermochronology data. Tectonics, 40(4). https://doi.org/10.1029/2020tc006652spa
dc.relation.referencesPiedrahita, V. A., Bernet, M., Chadima, M., Sierra, G. M., Marín-Cerón, M. I., & Toro, G. E. (2017). Detrital zircon fission-track thermochronology and magnetic fabric of the Amagá Formation (Colombia): Intracontinental deformation and exhumation events in the northwestern Andes. Sedimentary Geology, 356, 26-42. https://doi.org/10.1016/j.sedgeo.2017.05.003spa
dc.relation.referencesPindell, J. L., & Kennan, L. (2009). Tectonic evolution of the Gulf of Mexico, Caribbean and northern South America in the mantle reference frame: An update. Geological Society Special Publication, 328(1982), 1-55. https://doi.org/10.1144/SP328.1spa
dc.relation.referencesPinilla-Ocampo, A., Ríos-Blandon, P. A., Rodríguez-Ramos, B. P., Sánchez-Aguilar, J. J., Pulgarín-Alzate, B., Borrero-Peña, C. A., & Roa-Vargas, H. J. (2008). El Neogeno Volcánico en el Altiplano Nariñense, suroccidente Colombiano. Geología Colombiana, 33, 69-78.spa
dc.relation.referencesPlank, T. (2005). Constraints from thorium/lanthanum on sediment recycling at subduction zones and the evolution of the continents. Journal of Petrology, 46(5), 921-944. https://doi.org/10.1093/petrology/egi005spa
dc.relation.referencesPoveda, E., Monsalve, G., & Vargas, C. A. (2015). Receiver functions and crustal structure of the northwestern Andean region, Colombia: Receiver functions in Colombia. Journal of Geophysical Research. Solid Earth, 120(4), 2408-2425. https://doi.org/10.1002/2014jb011304spa
dc.relation.referencesPriestley, K., Ho, T., & Mitra, S. (2019). The crustal structure of the Himalaya: A synthesis. Geological Society, London, Special Publications, 483(1), 483-516. https://doi.org/10.1144/sp483-2018-127spa
dc.relation.referencesProfeta, L., Ducea, M. N., Chapman, J. B., Paterson, S. R., Gonzales, S. M. H., Kirsch, M., Petrescu, L., & DeCelles, P. G. (2015). Quantifying crustal thickness over time in magmatic arcs. Scientific Reports, 5(1), 17786. https://doi.org/10.1038/srep17786spa
dc.relation.referencesPyle, D. M. (2015). Sizes of volcanic eruptions. In The Encyclopedia of Volcanoes (pp. 257-264). Elsevier.spa
dc.relation.referencesQuiroga, D. E., Currie, C. A., & Pearse, J. (2024). Lithosphere removal in the Sierra Nevada de Santa Marta, Colombia. Journal of Geophysical Research. Solid Earth, 129, e2023JB027646. https://doi.org/10.1029/2023JB027646spa
dc.relation.referencesRamos, V. A. (2009). Anatomy and global context of the Andes: Main geologic features and the Andean orogenic cycle. En S. M. Kay, V. A. Ramos, & W. R. Dickinson (Eds.), Backbone of the Americas: Shallow Subduction, Plateau Uplift, and Ridge and Terrane Collision (pp. 31-65). Geological Society of America, Memoir 204. https://doi.org/10.1130/2009.1204(02)spa
dc.relation.referencesRamos, V. A., & Folguera, A. (2009). Andean flat-slab subduction through time. En J. B. Murphy, J. D. Keppie, & A. J. Hynes (Eds.), Ancient Orogens and Modern Analogues (pp. 31-54). Geological Society, London, Special Publications, 327. https://doi.org/10.1144/sp327.3spa
dc.relation.referencesRestrepo, J. J., & Toussaint, J. F. (1988). Terranes and continental accretion in the Colombian Andes. Episodes. https://doi.org/10.18814/epiiugs/1988/v11i3/006spa
dc.relation.referencesRestrepo, M., Bustamante, C., Cardona, A., Beltrán-Triviño, A., & Valencia, V. A. (2023). Geochemistry and geochronology of Permian plutonic rocks at the north‐western margin of Gondwana. Geological Journal, 58(7), 2818-2840. https://doi.org/10.1002/gj.4743spa
dc.relation.referencesRodríguez, E. E., Beck, S. L., Ruiz, M., Meltzer, A., Portner, D. E., Hernández, S., Segovia, M., Agurto-Detzel, H., & Charvis, P. (2023). Seismic imaging of the Northern Andean subduction zone from teleseismic tomography: a torn and fragmented Nazca slab. Geophysical Journal International, 236(1), 593-606. https://doi.org/10.1093/gji/ggad421spa
dc.relation.referencesRodríguez, G., & González, H. (2004). Caracteristicas geoquimicas y marco tectonico de los basaltos alcalinos del sur de Colombia. Boletín de Ciencias de la Tierra, 16, 9-22.spa
dc.relation.referencesRodríguez, L. M., & Sánchez, J. J. (2018). Morfometría, estratigrafía, petrografía y geoquímica del cono de escoria El Morro, municipio La Argentina (Huila, Colombia). Boletín de Geología, 40(3), 49-65. dx.doi.org/10.18273/revbol.v40n3-2018003spa
dc.relation.referencesRodríguez-Alonso, M. D., Peinado, M., López-Plaza, M., Franco, P., Carnicero, A., & Gonzalo, J. C. (2004). Neoproterozoic-Cambrian synsedimentary magmatism in the Central Iberian Zone (Spain): Geology, petrology and geodynamic significance. International Journal of Earth Sciences, 93(5), 897-920. https://doi.org/10.1007/s00531-004-0425-4spa
dc.relation.referencesRodriguez-Vargas, A., Koester, E., Mallmann, G., Conceição, R. V., Kawashita, K., & Weber, M. B. I. (2005). Mantle diversity beneath the Colombian Andes, Northern Volcanic Zone: Constraints from Sr and Nd isotopes. Lithos, 82(3-4), 471-484. https://doi.org/10.1016/j.lithos.2004.09.027spa
dc.relation.referencesRosenbaum, G., Caulfield, J. T., Ubide, T., Ward, J. F., Sandiford, D., & Sandiford, M. (2021). Spatially and geochemically anomalous arc magmatism: Insights from the Andean arc. Geochemistry, Geophysics, Geosystems: G(3), 22(6). https://doi.org/10.1029/2021gc009688spa
dc.relation.referencesRosenbaum, G., Sandiford, M., Caulfield, J., & Garrison, J. M. (2019). A trapdoor mechanism for slab tearing and melt generation in the northern Andes. Geology, 47(1), 23-26. https://doi.org/10.1130/g45429.1spa
dc.relation.referencesRoss, J., 2019, NMGRL/pychron v. 18.2: Zenodo, https://doi.org/10.5281/zenodo.3237834.spa
dc.relation.referencesRubatto, D. (2002). Zircon trace element geochemistry: partitioning with garnet and the link between U-Pb ages and metamorphism. Chemical Geology, 184(1-2), 123-138. https://doi.org/10.1016/s0009-2541(01)00355-2spa
dc.relation.referencesRubatto, D. (2017). Zircon: The Metamorphic Mineral. Reviews in Mineralogy and Geochemistry, 83(1), 261-295.. https://doi.org/10.2138/rmg.2017.83.09spa
dc.relation.referencesRudnick, R. L. (1992). Restites, Eu anomalies and the lower continental crust. Geochimica et Cosmochimica Acta, 56(3), 963-970. https://doi.org/10.1016/0016-7037(92)90040-pspa
dc.relation.referencesRueda-Gutiérrez, J. B. (2019). Contributions to the Magmatism knowledge of the Central Cordillera of Colombia in its Eastern Flank: Geothermal Area of San Diego, Samaná, Caldas. Boletin de Geologia, 41(2), 45-70. https://doi.org/10.18273/revbol.v41n2-2019003spa
dc.relation.referencesSakata, S., Hirakawa, S., Iwano, H., Danhara, T., Guillong, M., & Hirata, T. (2017). A new approach for constraining the magnitude of initial disequilibrium in Quaternary zircons by coupled uranium and thorium decay series dating. Quaternary Geochronology, 38, 1-12. https://doi.org/10.1016/j.quageo.2016.11.002spa
dc.relation.referencesSalazar, C. A., Bustamante, C., & Archanjo, C. J. (2016). Magnetic fabric (AMS, AAR) of the Santa Marta batholith (northern Colombia) and the shear deformation along the Caribbean Plate margin. Journal of South American Earth Sciences, 70, 55-68. https://doi.org/10.1016/j.jsames.2016.04.011spa
dc.relation.referencesSalazar-Naranjo, A. F., & Vlach, S. R. F. (2023). New experimental constraints for the evolution and thermobarometry of alkali ultrabasic to intermediate igneous rocks. Journal of Petrology, 64(11). https://doi.org/10.1093/petrology/egad078spa
dc.relation.referencesSamacá-Torres, W. (2016). Análisis morfométrico y Geomorfológico de la Caldera de Paletará (Cauca), Colombia. Universidad Nacional de Colombia.spa
dc.relation.referencesSánchez-Torres, L., Murcia, H., & Schonwalder-Ángel, D. (2022). The northernmost volcanoes in South America (Colombia, 5-6°N): The potentially active Samaná monogenetic volcanic field. Frontiers in earth science, 10. https://doi.org/10.3389/feart.2022.880003spa
dc.relation.referencesSanín, M. J., & Galeano, G. (2011). A revision of the Andean wax palms, Ceroxylon (Arecaceae). Phytotaxa, 34(1), 1. https://doi.org/10.11646/phytotaxa.34.1.1spa
dc.relation.referencesSanín, M. J., Cardona, A., Valencia-Montoya, W. A., Jiménez-Torres, M. F., Carvalho-Madrigal, S., Gómez, A. C., Bacon, C. D., Roquemen-Tangarife, T., Jaramillo, J. S., Zapata, S., Valencia, V., Arboleda-Valencia, J. W., Vargas, V., & Paris, M. (2022). Volcanic events coincide with plant dispersal across the Northern Andes. Global and Planetary Change, 210, 103757. https://doi.org/10.1016/j.gloplacha.2022.103757spa
dc.relation.referencesSchaen, A. J., Jicha, B. R., Hodges, K. V., Vermeesch, P., Stelten, M. E., Mercer, C. M., Phillips, D., Rivera, T. A., Jourdan, F., Matchan, E. L., Hemming, S. R., Morgan, L. E., Kelley, S. P., Cassata, W. S., Heizler, M. T., Vasconcelos, P. M., Benowitz, J. A., Koppers, A. A. P., Mark, D. F., … Singer, B. S. (2021). Interpreting and reporting 40Ar/39Ar geochronologic data. Geological Society of America Bulletin, 133(3-4), 461-487. https://doi.org/10.1130/b35560.1spa
dc.relation.referencesSchaltegger, U., Schmitt, A. K., & Horstwood, M. S. A. (2015). U-Th-Pb zircon geochronology by ID-TIMS, SIMS, and laser ablation ICP-MS: Recipes, interpretations, and opportunities. Chemical Geology, 402, 89-110. https://doi.org/10.1016/j.chemgeo.2015.02.028spa
dc.relation.referencesSchärer, U. (1984). The effect of initial230Th disequilibrium on young UPb ages: the Makalu case, Himalaya. Earth and Planetary Science Letters, 67(2), 191-204. https://doi.org/10.1016/0012-821x(84)90114-6spa
dc.relation.referencesSchiano, P., Eiler, J. M., Hutcheon, I. D., & Stolper, E. M. (2000). Primitive CaO‐rich, silica‐undersaturated melts in island arcs: Evidence for the involvement of clinopyroxene‐rich lithologies in the petrogenesis of arc magmas. Geochemistry, Geophysics, Geosystems: G3, 1(1). https://doi.org/10.1029/1999gc000032spa
dc.relation.referencesSchiano, P., Monzier, M., Eissen, J.-P., Martin, H., & Koga, K. T. (2010). Simple mixing as the major control of the evolution of volcanic suites in the Ecuadorian Andes. Contributions to Mineralogy and Petrology, 160(2), 297-312. https://doi.org/10.1007/s00410-009-0478-2spa
dc.relation.referencesSchmitz, M. D., & Schoene, B. (2007). Derivation of isotope ratios, errors and error correlations for U-Pb geochronology using 205Pb-235U-(233U)-spiked isotope dilution thermal ionization mass spectrometric data. Geochemistry, Geophysics, Geosystems: G(3), 8(8), Q08006. https://doi.org/10.1029/2006GC001492spa
dc.relation.referencesSchmitz, M., Ramírez, K., Mazuera, F., Ávila, J., Yegres, L., Bezada, M., & Levander, A. (2021). Moho depth map of northern Venezuela based on wide-angle seismic studies. Journal of South American Earth Sciences, 107, 103088. https://doi.org/10.1016/j.jsames.2020.103088spa
dc.relation.referencesSchulte-Pelkum, V., & Ben-Zion, Y. (2012). Apparent vertical Moho offsets under continental strike-slip faults from lithology contrasts in the seismogenic crust. Bulletin of the Seismological Society of America, 102(6), 2757-2763. https://doi.org/10.1785/0120120139spa
dc.relation.referencesSchwartz, T. M., Surpless, K. D., Colgan, J. P., Johnstone, S. A., & Holm-Denoma, C. S. (2021). Detrital zircon record of magmatism and sediment dispersal across the North American Cordilleran arc system (28-48°N). Earth-Science Reviews, 220, 103734. https://doi.org/10.1016/j.earscirev.2021.103734spa
dc.relation.referencesSheldrake, T., Caricchi, L., & Scutari, M. (2020). Tectonic Controls on Global Variations of Large-Magnitude Explosive Eruptions in Volcanic Arcs. Frontiers in Earth Science, 8, 1-14. https://doi.org/10.3389/feart.2020.00127spa
dc.relation.referencesSláma, J., Košler, J, Condon, D.J., Crowley, J.L., Gerdes, A., Hanchar, J.M., Horstwood, M.S.A., Morris, G.A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B. Tubrett, M.N, Whitehouse, M.J., 2008, Plešovice zircon — A new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology, 249: 1-35.spa
dc.relation.referencesSorbadere, F., Médard, E., Laporte, D., & Schiano, P. (2013). Experimental melting of hydrous peridotite-pyroxenite mixed sources: Constraints on the genesis of silica-undersaturated magmas beneath volcanic arcs. Earth and Planetary Science Letters, 384, 42-56. https://doi.org/10.1016/j.epsl.2013.09.026spa
dc.relation.referencesStern, C. R. (2020). The role of subduction erosion in the generation of Andean and other convergent plate boundary arc magmas, the continental crust and mantle. Gondwana Research. 88, 220-249. https://doi.org/10.1016/j.gr.2020.08.006spa
dc.relation.referencesStern, T., Houseman, G., Salmon, M., & Evans, L. (2013). Instability of a lithospheric step beneath western North Island, New Zealand. Geology, 41(4), 423-426. https://doi.org/10.1130/g34028.1spa
dc.relation.referencesSundell, K. E., George, S. W. M., Carrapa, B., Gehrels, G. E., Ducea, M. N., Saylor, J. E., & Pepper, M. (2022). Crustal thickening of the northern central Andean plateau inferred from trace elements in zircon. Geophysical Research Letters, 49(3). https://doi.org/10.1029/2021gl096443spa
dc.relation.referencesSundell, K., Laskowski, A., Kapp, P., Ducea, M., & Chapman, J. (2021). Jurassic to Neogene quantitative crustal thickness estimates in southern Tibet. GSA today, 31(6), 4-10. https://doi.org/10.1130/gsatg461a.1spa
dc.relation.referencesSundell, K., Laskowski, A., Kapp, P., Ducea, M., & Chapman, J. (2021). Jurassic to Neogene quantitative crustal thickness estimates in southern Tibet. GSA today: a publication of the Geological Society of America, 31(6), 4-10. https://doi.org/10.1130/gsatg461a.1spa
dc.relation.referencesSyracuse, E. M., & Abers, G. A. (2006). Global compilation of variations in slab depth beneath arc volcanoes and implications. Geochemistry, Geophysics, Geosystems: G(3), 7(5). https://doi.org/10.1029/2005GC001045spa
dc.relation.referencesSyracuse, E. M., Maceira, M., Prieto, G. A., Zhang, H., & Ammon, C. J. (2016). Multiple plates subducting beneath Colombia, as illuminated by seismicity and velocity from the joint inversion of seismic and gravity data. Earth and Planetary Science Letters, 444, 139-149. https://doi.org/10.1016/j.epsl.2016.03.050spa
dc.relation.referencesSyracuse, E. M., van Keken, P. E., & Abers, G. A. (2010). The global range of subduction zone thermal models. Physics of the Earth and Planetary Interiors, 183(1–2), 73–90. https://doi.org/10.1016/j.pepi.2010.02.004spa
dc.relation.referencesTang, M., Erdman, M., Eldridge, G., & Lee, C.-T.A. (2018). The redox “filter” beneath magmatic orogens and the formation of continental crust: Science Advances, 4(5), eaar4444, https://doi .org/10.1126/sciadv.aar4444.spa
dc.relation.referencesTang, M., Ji, W. Q., Chu, X., Wu, A., & Chen, C. (2021). Reconstructing crustal thickness evolution from europium anomalies in detrital zircons. Geology, 49(1), 76-80. https://doi.org/10.1130/G47745.1spa
dc.relation.referencesTang, M., Lee, C.-T. A., Chen, K., Erdman, M., Costin, G., & Jiang, H. (2019b). Nb/Ta systematics in arc magma differentiation and the role of arclogites in continent formation. Nature Communications, 10(1), 235. https://doi.org/10.1038/s41467-018-08198-3spa
dc.relation.referencesTang, M., Lee, C.-T.A., Costin, G., & Höfer, H.E. (2019a). Recycling reduced iron at the base of magmatic orogens: Earth and Planetary Science Letters, 528, 115827. https://doi.org/10.1016/ j.epsl.2019.115827spa
dc.relation.referencesThorkelson, D. J., Madsen, J. K., & Sluggett, C. L. (2011). Mantle flow through the Northern Cordilleran slab window revealed by volcanic geochemistry. Geology, 39(3), 267-270. https://doi.org/10.1130/g31522.1spa
dc.relation.referencesTorres-Hernández, M. P. (2010). Petrografía, geocronología y geoquímica de las ignimbritas de la Formación Popayán, en el contexto del vulcanismo del Suroccidente de Colombia. MsC. Thesis. Universidad EAFIT. 1-132p.spa
dc.relation.referencesVan Avendonk, H. J. A., Kuo-Chen, H., McIntosh, K. D., Lavier, L. L., Okaya, D. A., Wu, F. T., Wang, C. Y., Lee, C. S., & Liu, C. S. (2014). Deep crustal structure of an arc-continent collision: Constraints from seismic traveltimes in central Taiwan and the Philippine Sea: Central Taiwan crustal structure. Journal of Geophysical Research. Solid Earth, 119(11), 8397-8416. https://doi.org/10.1002/2014jb011327spa
dc.relation.referencesvan der Wiel, A.M. (1991). Uplift and Volcanism of the SE Colombian Andes in relation to Neogene sedimentation in the Upper Magdalena Valley. PhD. Thesis. University of Wageningen, 1-208 p.spa
dc.relation.referencesVermeesch, P. (2018). IsoplotR: A free and open toolbox for geochronology. Geoscience Frontiers, 9(5), 1479-1493. https://doi.org/10.1016/j.gsf.2018.04.001spa
dc.relation.referencesVermeesch, P. (2021). Maximum depositional age estimation revisited. Geoscience Frontiers, 12(2), 843-850. https://doi.org/10.1016/j.gsf.2020.08.008spa
dc.relation.referencesVervoort, J. D., & Blichert-Toft, J. (1999). Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time. Geochimica et Cosmochimica Acta, 63(3-4), 533-556. doi.org/10.1016/S0016-7037(98)00274-9.spa
dc.relation.referencesVervoort, J. D., Patehett, P. J., Söderlund, U., & Baker, M. (2004). Isotopie composition of Yb and the determination of Lu concentrations and Lu/Hf ratios by isotope dilution using MC-ICPMS. Geochemistry, Geophysics, Geosystems: G(3), 5(11). https://doi.org/10.1029/2004GC000721spa
dc.relation.referencesVervoort, J. D., & Patchett, P. J., (1996). Behavior of hafnium and neodymium isotopes in the crust: Constraints from Precambrian crustally derived granites. Geochimica et Cosmochimica Acta 60, 3717-3733. https://doi.org/10.1016/0016-7037(96)00201-3spa
dc.relation.referencesVillagómez, D., & Spikings, R. (2013). Thermochronology and tectonics of the Central and Western Cordilleras of Colombia: Early Cretaceous-Tertiary evolution of the Northern Andes. Lithos, 160-161, 228-249. https://doi.org/10.1016/j.lithos.2012.12.008spa
dc.relation.referencesVillagómez, D., Spikings, R., Magna, T., Kammer, A., Winkler, W., & Beltrán, A. (2011). Geochronology, geochemistry and tectonic evolution of the Western and Central cordilleras of Colombia. Lithos, 125(3-4), 875-896. https://doi.org/10.1016/j.lithos.2011.05.003spa
dc.relation.referencesVinasco, C. J., Cordani, U. G., González, H., Weber, M., & Pelaez, C. (2006). Geochronological, isotopic, and geochemical data from Permo-Triassic granitic gneisses and granitoids of the Colombian Central Andes. Journal of South American Earth Sciences, 21(4), 355-371. https://doi.org/10.1016/j.jsames.2006.07.007spa
dc.relation.referencesWagner, L. S., Jaramillo, J. S., Ramírez-Hoyos, L. F., Monsalve, G., Cardona, A., & Becker, T. W. (2017). Transient slab flattening beneath Colombia. Geophysical Research Letters, 44(13), 6616-6623. https://doi.org/10.1002/2017gl073981spa
dc.relation.referencesWaldbaum, D. R. (1971). Temperature changes associated with adiabatic decompression in geological processes. Nature, 232(5312), 545-547. https://doi.org/10.1038/232545a0spa
dc.relation.referencesWang, X., Griffin, W. L., & Chen, J. (2010). Hf contents and Zr/Hf ratios in granitic zircons. Geochemical Journal, 44(1), 65-72. https://doi.org/10.2343/geochemj.1.0043spa
dc.relation.referencesWeber, M. B. I., 1998. The Mercaderes-Rio Mayo xenoliths, Colombia: their bearing on mantle and crustal processes in the Northern Andes. PhD. Thesis. University of Leicester (United Kingdom), 1-295 p.spa
dc.relation.referencesWeber, M. B. I., Tarney, J., Kempton, P. D., & Kent, R. W. (2002). Crustal make-up of the northern Andes: evidence based on deep crustal xenolith suites, Mercaderes, SW Colombia. Tectonophysics, 345(1-4), 49-82. https://doi.org/10.1016/s0040-1951(01)00206-2spa
dc.relation.referencesWeber, M., Cardona, A., Valencia, V., García-Casco, A., Tobón, M., & Zapata, S. (2010). U/Pb detrital zircon provenance from late cretaceous metamorphic units of the Guajira Peninsula, Colombia: Tectonic implications on the collision between the Caribbean arc and the South American margin. Journal of South American Earth Sciences, 29(4), 805-816. https://doi.org/10.1016/j.jsames.2009.10.004spa
dc.relation.referencesWhite, W. M., Albarède, F., & Télouk, P. (2000). High-precision analysis of Pb isotope ratios by multi-collector ICP-MS. Chemical Geology, 167(3-4), 257-270. https://doi.org/10.1016/s0009-2541(99)00182-5spa
dc.relation.referencesWiedenbeck, M., Allé, P., Corfu, F., Griffin, W. L., Meier, M., Oberli, F., Quadt, A. V. O. N., Roddick, J. C., & Spiegel, W. (1995). Three natural zircon standards for u‐Th‐Pb, Lu‐Hf, trace element and Ree analyses. Geostandards Newsletter, 19(1), 1-23. https://doi.org/10.1111/j.1751-908x.1995.tb00147.xspa
dc.relation.referencesWilliams, I.S. (1998). U-Th-Pb geochronology by ion microprobe: M.A. McKibben, W.C. Shanks III, W.I. Ridley (Eds.), Applications of Microanalytical Techniques to Understanding Mineralizing Processes: Reviews in Economic Geology, 7, 1-35. https://doi.org/10.5382/Rev.07.01spa
dc.relation.referencesWoodhead, J. D., & Hergt, J. M. (2005). A preliminary appraisal of seven natural zircon reference materials for in situ Hf isotope determination. Geostandards and Geoanalytical Research, 29(2), 183-195. https://doi.org/10.1111/j.1751-908x.2005.tb00891.xspa
dc.relation.referencesYang, J., Cawood, P. A., Du, Y., Huang, H., Huang, H., & Tao, P. (2012). Large Igneous Province and magmatic arc sourced Permian-Triassic volcanogenic sediments in China. Sedimentary Geology, 261-262, 120-131. https://doi.org/10.1016/j.sedgeo.2012.03.018spa
dc.relation.referencesZapata, S., Calderon-Diaz, L., Jaramillo, C., Oboh-Ikuenobe, F., Piedrahita, J. C., Rodríguez-Cuevas, M., Cardona, A., Sobel, E. R., Parra, M., Valencia, V., Patiño, A., Jaramillo-Rios, J. S., Flores, M., & Glodny, J. (2023a). Drainage and sedimentary response of the Northern Andes and the Pebas system to Miocene strike‐slip tectonics: A source to sink study of the Magdalena Basin. Basin Research, 35(5), 1674-1717. https://doi.org/10.1111/bre.12769spa
dc.relation.referencesZapata, S., Cardona, A., Jaramillo, J. S., Patiño, A., Valencia, V., León, S., Mejía, D., Pardo-Trujillo, A., & Castañeda, J. P. (2019). Cretaceous extensional and compressional tectonics in the Northwestern Andes, prior to the collision with the Caribbean oceanic plateau. Gondwana Research: International Geoscience Journal, 66, 207-226. https://doi.org/10.1016/j.gr.2018.10.008spa
dc.relation.referencesZapata, S., Jaramillo-Ríos, J. S., Botello, G.E., Siachoque, A., Calderon-Día, L. C., Cardona, A., Till, C., & Valencia, V. (2023b). Miocene Paleogeography of NW Colombia: A review of the sedimentary and magmatic evolution of the Amagá Basin a century after Grosse’s work. Revista de la Academia Colombiana de Ciencias Exactas, Fisicas y Naturales. https://doi.org/10.18257/raccefyn.1871spa
dc.relation.referencesZapata, S., Zapata-Henao, M., Cardona, A., Jaramillo, C., Silvestro, D., & Oboh-Ikuenobe, F. (2021). Long-term topographic growth and decay constrained by 3D thermo-kinematic modeling: Tectonic evolution of the Antioquia Altiplano, Northern Andes. Global and Planetary Change, 203. https://doi.org/10.1016/j.gloplacha.2021.103553spa
dc.relation.referencesZapata-García, G. & Rodríguez-García, G. (2020). New contributions to the knowledge about the Chocó-Panamá Arc in Colombia, including a new segment south of Colombia. In: Gómez, J. & Mateus-Zabala, D. (editors), The Geology of Colombia, Volume 3 Paleogene - Neogene. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 37, 417-450. Bogotá. https://doi.org/10.32685/pub.esp.37.2019.14spa
dc.relation.referencesZapata-Villada, J. P., Cardona, A., Serna, S., & Rodríguez, G. (2021). Late Cretaceous to Paleocene magmatic record of the transition between collision and subduction in the Western and Central Cordillera of northern Colombia. Journal of South American Earth Sciences, 112, 103557. https://doi.org/10.1016/j.jsames.2021.103557spa
dc.relation.referencesZhao, L., Guo, F., Fan, W., & Huang, M. (2019). Roles of Subducted Pelagic and Terrigenous Sediments in Early Jurassic Mafic Magmatism in NE China: Constraints on the Architecture of Paleo-Pacific Subduction Zone. Journal of Geophysical Research: Solid Earth 124, 2525-2550. https://doi.org/10.1029/2018JB016487spa
dc.relation.referencesZieman, L., Ibañez-Mejia, M., Rooney, A. D., Bloch, E., Pardo, N., Schoene, B., & Szymanowski, D. (2023). To sink, or not to sink: The thermal and density structure of the modern northern Andean arc constrained by xenolith petrology. Geology, 51(6), 586-590. https://doi.org/10.1130/g50973.1spa
dc.relation.referencesZimmerer, M. J., & McIntosh, W. C. (2012). The geochronology of volcanic and plutonic rocks at the Questa caldera: Constraints on the origin of caldera-related silicic magmas. Bulletin of the Geological Society of America, 124(7-8), 1394-1408. https://doi.org/10.1130/B30544.1.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc550 - Ciencias de la tierra::551 - Geología, hidrología, meteorologíaspa
dc.subject.lembMagnetismo
dc.subject.lembIsotopos
dc.subject.lembCronología geológica
dc.subject.lembGeoquímica
dc.subject.proposalMagmatismeng
dc.subject.proposalU-Pb and Ar-Ar Geochronologyeng
dc.subject.proposalGeochemistryeng
dc.subject.proposalIsotopeseng
dc.subject.proposalDripping,eng
dc.subject.proposalNorthern Andeseng
dc.subject.proposalMagmatismospa
dc.subject.proposalGeocronología U-Pb y Ar-Arspa
dc.subject.proposalGeoquímicaspa
dc.subject.proposalIsotoposspa
dc.titleMagmatism as a tracer of the cenozoic crustal evolution of the Northern Andeseng
dc.title.translatedMagmatismo como un trazador de la evolución cortical cenozoica de los Andes del Nortespa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1037324442.2024.pdf
Tamaño:
8.36 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería - Ciencia y Tecnología de Materiales

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: