Magmatism as a tracer of the cenozoic crustal evolution of the Northern Andes
dc.contributor.advisor | Cardona Molina, Agustín | |
dc.contributor.advisor | Zapata Henao, Sebastián | |
dc.contributor.author | Jaramillo Ríos, Juan Sebastián | |
dc.contributor.cvlac | https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001553908 | spa |
dc.contributor.googlescholar | https://scholar.google.com/citations?user=uMbRBRoAAAAJ&hl=es | spa |
dc.contributor.orcid | https://orcid.org/0000-0003-1067-9259 | spa |
dc.contributor.researchgate | https://www.researchgate.net/profile/Juan-Jaramillo-Rios | spa |
dc.contributor.researchgroup | Grupo de Estudios en Geología y Geofísica Egeo | spa |
dc.date.accessioned | 2024-07-08T18:40:32Z | |
dc.date.available | 2024-07-08T18:40:32Z | |
dc.date.issued | 2024-10-31 | |
dc.description | Ilustraciones | spa |
dc.description | Ilustraciones, mapas a color | spa |
dc.description.abstract | Crustal evolution in orogenic belts, such as the Northern Andes, has broadly been associated with subduction and mantle dynamics, the collision of allochthonous blocks, and the recycling of the lower crust into the asthenospheric mantle. All of these scenarios can produce magmatic rocks, which are sensitive enough to trace changes experienced by the continental crust. In this study, field relations, petrography, zircon U-Pb (LA-ICP-MS and CA-ID-TIMS) geochronology, geochemistry, and isotopes (Hf), as well as whole-rock geochemistry and isotopes (Nd-Sr-Pb) modeling, and 40Ar/39Ar geochronological data, were used to understand the magmatic evolution of the Paleocene-Eocene continental magmatic arc and the Pliocene-Pleistocene volcanic rocks recorded in the central segment of the modern Colombian magmatic arc. Therefore, these magmatic rocks were used as a tracer of the long-term modification of the continental crust in convergent margins. The Paleocene-Eocene (66 - 50 Ma) continental magmatic arc was formed after the collision of the Caribbean Plate with the Northern Andean continental margin at ~72 Ma. These rocks were highly exhumed and underwent high weathering and erosion rates, which resulted in the volcanic sources of this magmatism being transported to the sedimentary basins. In order to avoid sampling bias produced by the limited exposure of the plutonic facies of this magmatism, detrital zircons collected in sedimentary rocks were very important to understand the behavior of this magmatic arc. Siliciclastic rocks from the Bogotá Formation were analyzed by LA-ICP-MS and CA-ID-TIMS geochronology and zircon chemistry. The results show that this magmatism started at ~ 66 Ma, which is ~ 4 Myr earlier than previously proposed by other authors and ended at ~50 Ma. This magmatism was formed in a heterogeneously thick continental crust, strongly controlled by strike-slip tectonics. Finally, this study proposes lithospheric dripping into the mantle to explain the bi-modal continental crust thick between 62 and 55 Ma. After forming this arc, the continental margin was characterized by an oblique regime, which shut down the magmatic production between 50 and 35 Ma. The magmatic rocks restarted in the Western Cordillera as the Timbiquí arc and migrated toward the east up to where the modern magmatic arc is located. During the Pliocene-Pleistocene, the central segment of the modern Colombian magmatic arc is characterized by the production of contrasting magmatic rocks, including high-silica rhyolites, adakite-like andesites, and OIB-like alkaline basalts. The high-silica rhyolitic ignimbrites were formed during a high magmatic flux (magmatic flare-up) in this arc segment at 2.6 Ma. This study proposes that the high magma flux produces a significant volume of basaltic cumulates, which were ponded in the base of the crust, facilitating the formation of garnet-bearing pyroxenites known as arclogites. This magmatic flare-up could be related to an increased sediment input into the subducted slab, as suggested by the isotopic modeling. It is known that the arclogites in this arc segment are denser than the underlying mantle. It is proposed that Pleistocene olivine basalts and andesites associated with monogenetic volcanism found in this arc section are related to dripping rather than complete delamination of the lower crust into the asthenospheric mantle, originating from two distinct arclogites: one garnet-bearing and the other amphibole-garnet-bearing pyroxenite. The chapters developed in this thesis demonstrate how the continental margin of the Northernmost Andes has been dynamic throughout the Cenozoic era. Unlike the Central Andes, where orogeny is predominantly driven by subduction-dynamics shortening, the Colombian orogen is influenced by block collisions, strike-slip tectonics, and magmatic underplating. The magmatic underplating in this Andean section may have been the critical factor controlling the crustal thickness and subsequent removal of the lower, denser, and unstable portion of the lithosphere. | eng |
dc.description.abstract | La evolución de cinturones orogénicos como los Andes del Norte ha sido ampliamente asociado con la dinámica de la subducción y el mano, la colisión de bloques alóctonos y el reciclamiento de la corteza inferior dentro del manto astenosférico. Todos estos escenarios producen rocas magmáticas, las cuales son lo suficientemente sensibles para trazar los cambios experimentados por la corteza continental. En este estudio, relaciones de campo, petrografía, geocronología (LA-ICP-MS y CA-ID-TIMS), química e isotopía (Hf) en circón, así como modelamiento geoquímico e isotópico (Nd-Sr-Pb) en roca total, y geocronología Ar-Ar en masa fundamental, se usaron para entender la evolución magmática del arco Paleoceno-Eoceno y rocas volcánicas del Plioceno-Pleistoceno del orógeno Nor-Andino. Estas rocas, por lo tanto, fueron usadas como trazadoras de las modificaciones de la corteza continental en márgenes continentales. Posterior a la colusión de la Placa Caribe con la margen Nor-Andina a ~72 Ma, se formó un arco postcolisional del Paleoceno-Eoceno (66 – 50 Ma). Estas rocas junto con su basamento fueron rápidamente exhumadas y registran altas tasas de meteorización y erosión. Con el fin de evitar el sesgo de muestreo producido por la exposición limitada de las fases magmáticas proximales, circones detríticos fueron colectados en las rocas siliciclásticas de la Formación Bogotá. Estos circones fueron químicamente analizados y datados mediante geocronología LA-ICP-MS y CA-ID-TIMS. Los resultados muestras que este arco magmático comenzó a ~ 66 Ma, lo cual es ~ 4 Ma más temprano de lo que previamente se había propuesto por otros autores y termina a ~50 Ma. Este magmatismo se formó en una margen de espesor heterogéneo, fuertemente controlada por la tectónica de rumbo. Finalmente, este estudio propone que la litosfera fue removida “dripping” para explicar la bi-modalidad del espesor cortical entre 62 y 55 Ma. El segmento central del arco magmático reciente en Colombia durante el Plioceno-Pleistoceno fue caracterizado por la producción de rocas magmáticas contrastantes, incluidas riolitas altas en sílice, andesitas con señal tipo adaquita y basaltos alcalinos con firma tipo OIB. Las ignimbritas riolíticas ricas en sílice fueron formadas en un periodo de gran flujo magmático (flare-up) que ocurrió en este segmento del arco a 2.6 Ma. En este estudio se propone que este alto flujo magmático produjo un alto volumen de cumulatos basálticos fueron retenidos en la base de la corteza, facilitando la formación de piroxenitas granatíferas conocidas como arclogitas. Este alto flujo magmático, podría estar relacionado al aumento del ingreso de sedimentos dentro de la placa subducente, como se evidencia en el modelamiento isotópico. Por estudios anteriores se conoce que las arclogitas de este segmento del arco son más densas que el manto subyacente. En este estudio se propone que el vulcanismo monogenético con basaltos alcalinos del Pleistoceno en esta sección del arco, fueron formados por pequeños fragmentos delaminados “dripping” en vez de delaminación completa de la corteza inferior entre el manto astenosférico. Dos tipos de arclogitas se fundieron para generar este tipo de magmatismo, una piroxenita con granate y una piroxenita con granate y anfíbol. Los capítulos desarrollados en esta tesis muestran cómo la margen continental de la parte más norte de los Andes ha sido dinámica a través del Cenozoico. El orógeno colombiano, a diferencia de los Andes Centrales, donde el acortamiento tectónico controla el orógeno, está controlado principalmente por la acreción de bloques, tectónica de rumbo y el apilamiento magmático. El apilamiento magmático en esta sección del arco Andino fue quizás el factor más crítico en el control del espesor cortical y posterior remoción de su parte inferior más densa e inestable. | spa |
dc.description.curriculararea | Área Curricular de Materiales y Nanotecnología | spa |
dc.description.degreelevel | Doctorado | spa |
dc.description.degreename | Doctor en Ingeniería | spa |
dc.description.researcharea | Geología | spa |
dc.format.extent | 156 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/86412 | |
dc.language.iso | eng | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | spa |
dc.publisher.faculty | Facultad de Minas | spa |
dc.publisher.program | Medellín - Minas - Doctorado en Ingeniería - Ciencia y Tecnología de Materiales | spa |
dc.relation.references | Acosta, J. E., & Ulloa, C. E. (1998). Geología de la Plancha 246 Fusagasugá. | spa |
dc.relation.references | Alberts, D., Gehrels, G. E., & Nelson, J. (2021). U-Pb and Hf Analyses of Detrital Zircons from Paleozoic and Cretaceous Strata on Vancouver Island, British Columbia: Constraints on the Paleozoic Tectonic Evolution of Southern Wrangellia. Lithosphere, 2021(1), 1-20. https://doi.org/10.2113/2021/7866944 | spa |
dc.relation.references | Alonso-Perez, R., Müntener, O., & Ulmer, P. (2009). Igneous garnet and amphibole fractionation in the roots of island arcs: experimental constraints on andesitic liquids. Contributions to Mineralogy and Petrology. 157(4), 541-558. https://doi.org/10.1007/s00410-008-0351-8 | spa |
dc.relation.references | Anderson, R. B., Long, S. P., Horton, B. K., Calle, A. Z., & Ramirez, V. (2017). Shortening and structural architecture of the Andean fold-thrust belt of southern Bolivia (21°S): Implications for kinematic development and crustal thickening of the central Andes. Geosphere, 13(2), 538-558. https://doi.org/10.1130/ges01433.1 | spa |
dc.relation.references | Anderson, V. J., Horton, B. K., Saylor, J. E., Mora, A., Tesón, E., Breecker, D. O., & Ketcham, R. A. (2016). Andean topographic growth and basement uplift in southern Colombia: Implications for the evolution of the Magdalena, Orinoco, and Amazon River systems. Geosphere, 12(4), 1235-1256. https://doi.org/10.1130/ges01294.1 | spa |
dc.relation.references | Annen, C., Blundy, J.D., & Sparks, R.S.J. (2006). The genesis of intermediate and silicic magmas in deep crustal hot zones. Journal of Petrology, 47, 505-539. https://doi.org/10.1093/petrology/egi084 | spa |
dc.relation.references | Attia, S., Paterson, S. R., Jiang, D., & Miller, R. B. (2022). Spatiotemporally heterogeneous deformation, indirect tectonomagmatic links, and lithospheric evolution during orogenic activity coeval with an arc flare-up. Geosphere, 18(6), 1752-1782. https://doi.org/10.1130/GES02478.1 | spa |
dc.relation.references | Avellaneda-Jiménez, D. S., & Monsalve, G. (2022). Arclogite nature of the Colombian Andes magmatic arc root: A receiver-function approach. Tectonophysics, 836(229417), 229417. https://doi.org/10.1016/j.tecto.2022.229417 | spa |
dc.relation.references | Bachmann, O., & Bergantz, G. W. (2008). Rhyolites and their source mushes across tectonic settings. Journal of Petrology, 49(12), 2277-2285. https://doi.org/10.1093/petrology/egn068 | spa |
dc.relation.references | Bachmann, O., Deering, C. D., Lipman, P. W., & Plummer, C. (2014). Building zoned ignimbrites by recycling silicic cumulates: insight from the 1,000 km3 Carpenter Ridge Tuff, CO. Contributions to Mineralogy and Petrology, 167(6). https://doi.org/10.1007/s00410-014-1025-3 | spa |
dc.relation.references | Balica, C., Ducea, M. N., Gehrels, G. E., Kirk, J., Roban, R. D., Luffi, P., Chapman, J. B., Triantafyllou, A., Guo, J., Stoica, A. M., Ruiz, J., Balintoni, I., Profeta, L., Hoffman, D., & Petrescu, L. (2020). A zircon petrochronologic view on granitoids and continental evolution. Earth and Planetary Science Letters, 531(116005). https://doi.org/10.1016/j.epsl.2019.116005 | spa |
dc.relation.references | Barbosa-Espitia, Á. A., Kamenov, G. D., Foster, D. A., Restrepo-Moreno, S. A., & Pardo-Trujillo, A. (2019). Contemporaneous Paleogene arc-magmatism within continental and accreted oceanic arc complexes in the northwestern Andes and Panama. Lithos, 348-349. https://doi.org/10.1016/j.lithos.2019.105185 | spa |
dc.relation.references | Barth, A. P., Wooden, J. L., Jacobson, C. E., Economos, R. C. (2013). Detrital zircon as a proxy for tracking the magmatic arc system: The California arc example. Geology, 41(2), 223-226. https://doi.org/10.1130/G33619.1 | spa |
dc.relation.references | Bayona, G., Baquero, M., Ramírez, C., Tabares, M., Salazar, A. M., Nova, G., Duarte, E., Pardo, A., Plata, A., Jaramillo, C., Rodríguez, G., Caballero, V., Cardona, A., Montes, C., Gómez Marulanda, S., & Cárdenas-Rozo, A. L. (2021). Unravelling the widening of the earliest Andean northern orogen: Maastrichtian to early Eocene intra‐basinal deformation in the northern Eastern Cordillera of Colombia. Basin Research, 33(1), 809-845. https://doi.org/10.1111/bre.12496 | spa |
dc.relation.references | Bayona, G., Bustamante, C., Nova, G. & Salazar-Franco, A. M. (2020). Jurassic evolution of the northwestern corner of Gondwana: Present knowledge and future challenges in studying Colombian Jurassic rocks. In: Gómez, J. & Pinilla-Pachon, A. O. (editors), The Geology of Colombia, Volume 2 Mesozoic. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 36, 171-207. https://doi.org/10.32685/pub.esp.36.2019.05 | spa |
dc.relation.references | Bayona, G., Cardona, A., Jaramillo, C., Mora, A., Montes, C., Valencia, V., Ayala, C., Montenegro, O., & Ibañez-Mejia, M. (2012). Early Paleogene magmatism in the northern Andes: Insights on the effects of Oceanic Plateau-continent convergence. Earth and Planetary Science Letters, 331-332, 97-111. https://doi.org/10.1016/j.epsl.2012.03.015 | spa |
dc.relation.references | Bayona, G., Montenegro, O., Cardona, A., Jaramillo, C., & Lamus, F. (2010). Estratigrafía, procedencia, subsidencia y exhumación de las unidades paleógenas en el Sinclinal de Usme, sur de la zona axial de la Cordillera Oriental. Geología Colombiana, 35(0), 5-35. https://revistas.unal.edu.co/index.php/geocol/article/view/21100 | spa |
dc.relation.references | Bayona, G., Montes, C., Cardona, A., Jaramillo, C., Ojeda, G., Valencia, V., & Ayala-Calvo, C. (2011). Intraplate subsidence and basin filling adjacent to an oceanic arc-continent collision: A case from the southern Caribbean-South America plate margin. Basin Research, 23(4), 403-422. https://doi.org/10.1111/j.1365-2117.2010.00495.x | spa |
dc.relation.references | Beall, A. P., Moresi, L., & Stern, T. (2017). Dripping or delamination? A range of mechanisms for removing the lower crust or lithosphere. Geophysical Journal International, 210(2), 671-692. https://doi.org/10.1093/gji/ggx202 | spa |
dc.relation.references | Belousova, E., Griffin, W., O’Reilly, S. Y., & Fisher, N. (2002). Igneous zircon: trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology, 143(5), 602-622. https://doi.org/10.1007/s00410-002-0364-7 | spa |
dc.relation.references | Best, M. G., Christiansen, E. H., de Silva, S., & Lipman, P. W. (2016). Slab-rollback ignimbrite flare-ups in the southern Great Basin and other Cenozoic American arcs: A distinct style of arc volcanism. Geosphere, 12(4), 1097-1135. https://doi.org/10.1130/ges01285.1 | spa |
dc.relation.references | Best, M. G., Christiansen, E. H., Deino, A. L., Gromme, S., Hart, G. L., & Tingey, D. G. (2013). The 36-18 Ma Indian Peak-Caliente ignimbrite field and calderas, southeastern Great Basin, USA: multicyclic super-eruptions. Geosphere, 9(4), 864-950. https://doi.org/10.1130/GES00902.1 | spa |
dc.relation.references | Black, L. P., Kamo, S. L., Allen, C. M., Davis, D. W., Aleinikoff, J. N., Valley, J. W., Mundil, R., Campbell, I. H., Korsch, R. J., Williams, I. S., & Foudoulis, C. (2004). Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards. Chemical Geology, 205(1-2), 115-140. https://doi.org/10.1016/j.chemgeo.2004.01.003 | spa |
dc.relation.references | Bloch, E., Ibañez-Mejia, M., Murray, K., Vervoort, J., & Müntener, O. (2017). Recent crustal foundering in the Northern Volcanic Zone of the Andean arc: Petrological insights from the roots of a modern subduction zone. Earth and Planetary Science Letters, 476, 47-58. https://doi.org/10.1016/j.epsl.2017.07.041 | spa |
dc.relation.references | Borrero, C. A., & Castillo, H. (2006). Vulcanitas del S-SE de Colombia: retro-arco alcalino y su posible relación con una ventana astenosférica. Boletín de Geología, 28(2). | spa |
dc.relation.references | Bottinga, Y., & Weill, D. F. (1970). Densities of liquid silicate systems calculated from partial molar volumes of oxide components. American Journal of Science, 269(2), 169-182. https://doi.org/10.2475/ajs.269.2.169 | spa |
dc.relation.references | Bouvier, A., Vervoort, J. D., & Patchett, P. J. (2008). The Lu-Hf and Sm-Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth and Planetary Science Letters, 273, 48-57. doi:10.1016/j.epsl.2008.06.010 | spa |
dc.relation.references | Bowman, E. E., & Ducea, M. N. (2023). Pyroxenite melting at subduction zones. Geology, 51(4), 383-386. https://doi.org/10.1130/g50929.1 | spa |
dc.relation.references | Bowman, E. E., Ducea, M. N., & Triantafyllou, A. (2021). Arclogites in the subarc lower crust: Effects of crystallization, partial melting, and retained melt on the foundering ability of residual roots. Journal of Petrology, 62(12). https://doi.org/10.1093/petrology/egab094 | spa |
dc.relation.references | Brown, D., & Ryan, P. D. (2011). Arc-continent collision. Frontiers in Earth Sciences, 4. https://doi.org/10.1007/978-3-540-88558-0 | spa |
dc.relation.references | Bucheli, C., Pardo, N., Larrea, P., de Ignacio, C., Correa-Tamayo, A. M., Arnosio, M., & Pulgarín, B. A. (2024). What can we learn from geothermobarometry at the dacitic Doña Juana Volcanic Complex (Colombia)? Implications for understanding Pleistocene crystal mushes and pre-eruptive storage conditions in the Northern Andes. Contributions to Mineralogy and Petrology, 179(3). https://doi.org/10.1007/s00410-024-02103-6 | spa |
dc.relation.references | Bustamante, C., Archanjo, C. J., Cardona, A., & Restrepo, M. (2021). Magnetic fabric of the Parashi stock and related dyke swarm, Alta Guajira (Colombia): The Caribbean-South American plates oblique convergence. Andean Geology, 48(2), 219-236. https://doi.org/10.5027/andgeov48n2-3332 | spa |
dc.relation.references | Bustamante, C., Archanjo, C. J., Cardona, A., & Vervoort, J. D. (2016). Late Jurassic to Early Cretaceous plutonism in the Colombian Andes: A record of long-term arc maturity. Bulletin of the Geological Society of America, 128(11-12), 1762-1779. https://doi.org/10.1130/B31307.1 | spa |
dc.relation.references | Bustamante, C., Cardona, A., Archanjo, C. J., Bayona, G., Lara, M., & Valencia, V. (2017). Geochemistry and isotopic signatures of Paleogene plutonic and detrital rocks of the Northern Andes of Colombia: A record of post-collisional arc magmatism. Lithos, 277, 199-209. https://doi.org/10.1016/j.lithos.2016.11.025 | spa |
dc.relation.references | Caballero, V. M., Rodríguez, G., Naranjo, J. F., Mora, A. & De La Parra, F. (2020). From facies analysis, stratigraphic surfaces, and depositional sequences to stratigraphic traps in the Eocene - Oligocene record of the southern Llanos Basin and northern Magdalena Basin. In: Gómez, J. & Mateus-Zabala, D. (editors), The Geology of Colombia, Volume 3 Paleogene - Neogene. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 37, 283-330. Bogotá. https://doi.org/10.32685/pub.esp.37.2019.1 | spa |
dc.relation.references | Caffe, P. J., Trumbull, R. B., & Siebel, W. (2012). Petrology of the Coyaguayma ignimbrite, northern Puna of Argentina: Origin and evolution of a peraluminous high-SiO2 rhyolite magma. Lithos, 134-135, 179-200. https://doi.org/10.1016/j.lithos.2011.12.013 | spa |
dc.relation.references | Cai, R., Liu, J., Sun, Y., & Gao, R. (2023). Phosphorus deficit in continental crust induced by recycling of apatite-bearing cumulates. Geology, 51(5), 500-504. https://doi.org/10.1130/g51027.1 | spa |
dc.relation.references | Calderon-Diaz, L., Zapata, S., Cardona, A., Parra, M., Sobel, E. R., Patiño, A. M., Valencia, V., Jaramillo-Rios, J. S., & Glodny, J. (2024). Cretaceous extensional and contractional stages in the Colombian Andes unraveled by a source-to-sink geochronological and thermochronological study in the Upper Magdalena Basin. Tectonophysics, 878, 230303. https://doi.org/10.1016/j.tecto.2024.230303 | spa |
dc.relation.references | Capaldi, T. N., McKenzie, N. R., Horton, B. K., Mackaman-Lofland, C., Colleps, C. L., & Stockli, D. F. (2021). Detrital zircon record of Phanerozoic magmatism in the southern Central Andes. Geosphere, 17(3), 876-897. https://doi.org/10.1130/ges02346.1 | spa |
dc.relation.references | Cardona, A., León, S., Jaramillo, J. S., Montes, C., Valencia, V., Vanegas, J., Bustamante, C., & Echeverri, S. (2018). The Paleogene arcs of the northern Andes of Colombia and Panama: Insights on plate kinematic implications from new and existing geochemical, geochronological and isotopic data. Tectonophysics, 749, 88-103. https://doi.org/10.1016/j.tecto.2018.10.032 | spa |
dc.relation.references | Cardona, A., Valencia, V. A., Bayona, G., Duque, J., Ducea, M., Gehrels, G., Jaramillo, C., Montes, C., Ojeda, G., & Ruiz, J. (2011). Early-subduction-related orogeny in the northern Andes: Turonian to Eocene magmatic and provenance record in the Santa Marta Massif and Rancheria Basin, northern Colombia. Terra Nova, 23(1), 26-34. https://doi.org/10.1111/j.1365-3121.2010.00979.x | spa |
dc.relation.references | Carrapa, B., DeCelles, P. G., Ducea, M. N., Jepson, G., Osakwe, A., Balgord, E., Stevens Goddard, A. L., & Giambiagi, L. A. (2022). Estimates of paleo-crustal thickness at Cerro Aconcagua (Southern Central Andes) from detrital proxy-records: Implications for models of continental arc evolution. Earth and Planetary Science Letters, 585, 117526. https://doi.org/10.1016/j.epsl.2022.117526 | spa |
dc.relation.references | Cavosie, A. J., Valley, J. W., & Wilde, S. A. (2005). Magmatic δ18O in 4400-3900 Ma detrital zircons: A record of the alteration and recycling of crust in the Early Archean. Earth and Planetary Science Letters, 235(3-4), 663-681. https://doi.org/10.1016/j.epsl.2005.04.028 | spa |
dc.relation.references | Cavosie, A. J., Valley, J. W., & Wilde, S. A. (2006). Correlated microanalysis of zircon: Trace element, δ18O, and U-Th-Pb isotopic constraints on the igneous origin of complex >3900 Ma detrital grains. Geochimica et Cosmochimica Acta, 70(22), 5601-5616. https://doi.org/10.1016/j.gca.2006.08.011 | spa |
dc.relation.references | Cawood, P. A., Hawkesworth, C. J., & Dhuime, B. (2013). The continental record and the generation of continental crust. Bulletin of the Geological Society of America, 125(1-2), 14-32. https://doi.org/10.1130/B30722.1 | spa |
dc.relation.references | Cawood, P. A., Kröner, A., Collins, W. J., Kusky, T. M., Mooney, W. D., & Windley, B. F. (2009). Accretionary orogens through Earth history. Geological Society Special Publication, 318(1), 1-36. https://doi.org/10.1144/sp318.1 | spa |
dc.relation.references | Chang, Z., Vervoort, J. D., McClelland, W. C., & Knaack, C. (2006). U‐Pb dating of zircon by LA‐ICP‐MS. Geochemistry, Geophysics, Geosystems: G(3), 7(5). https://doi.org/10.1029/2005gc001100 | spa |
dc.relation.references | Chapman, J. B., Ducea, M. N., DeCelles, P. G., & Profeta, L. (2015). Tracking changes in crustal thickness during orogenic evolution with Sr/Y: An example from the North American Cordillera. Geology, 43(10), 919-922. https://doi.org/10.1130/G36996.1 | spa |
dc.relation.references | Chapman, J. B., Shields, J. E., Ducea, M. N., Paterson, S. R., Attia, S., & Ardill, K. E. (2021). The causes of continental arc flare ups and drivers of episodic magmatic activity in Cordilleran orogenic systems. Lithos, 398-399, 106307. https://doi.org/10.1016/j.lithos.2021.106307 | spa |
dc.relation.references | Chase, C. G., Sussman, A. J., & Coblentz, D. D. (2009). Curved Andes: Geoid, forebulge, and flexure. Lithosphere, 1(6), 358-363. https://doi.org/10.1130/l67.1 | spa |
dc.relation.references | Chen, J., Kufner, S.-K., Yuan, X., Heit, B., Wu, H., Yang, D., Schurr, B., & Kay, S. (2020). Lithospheric delamination beneath the southern Puna plateau resolved by local earthquake tomography. Journal of Geophysical Research. Solid Earth, 125(10). https://doi.org/10.1029/2019jb019040 | spa |
dc.relation.references | Chiarabba, C., De Gori, P., Faccenna, C., Speranza, F., Seccia, D., Dionicio, V., & Prieto, G. A. (2015). Subduction system and flat slab beneath the Eastern Cordillera of Colombia. Geochemistry, Geophysics, Geosystems: G(3), 17(1), 16-27. https://doi.org/10.1002/2015gc006048 | spa |
dc.relation.references | Chiaradia, M., Müntener, O., Beate, B., & Fontignie, D. (2009). Adakite-like volcanism of Ecuador: Lower crust magmatic evolution and recycling. Contributions to Mineralogy and Petrology, 158(5), 563-588. https://doi.org/10.1007/s00410-009-0397-2 | spa |
dc.relation.references | Cilliers, C. D., Tucker, R. T., Crowley, J. L., & Zanno, L. E. (2021). Age constraint for the Moreno Hill Formation (Zuni Basin) by CA-TIMS and LA-ICP-MS detrital zircon geochronology. PeerJ, 9, 1-39. https://doi.org/10.7717/peerj.10948 | spa |
dc.relation.references | Claiborne, L. L., Miller, C. F., & Wooden, J. L. (2010). Trace element composition of igneous zircon: A thermal and compositional record of the accumulation and evolution of a large silicic batholith, Spirit Mountain, Nevada. Contributions to Mineralogy and Petrology, 160(4), 511-531. https://doi.org/10.1007/s00410-010-0491-5 | spa |
dc.relation.references | Claiborne, L. L, Miller, C. F., Walker, B. A., Wooden, J. L., Mazdab, F. K., & Bea, F. (2006). Tracking magmatic processes through Zr/Hf ratios in rocks and Hf and Ti zoning in zircons: An example from the Spirit Mountain batholith, Nevada. Mineralogical Magazine, 70(5), 517-543. https://doi.org/10.1180/0026461067050348 | spa |
dc.relation.references | Cochrane, R., Spikings, R., Gerdes, A., Ulianov, A., Mora, A., Villagómez, D., Putlitz, B., & Chiaradia, M. (2014). Permo-Triassic anatexis, continental rifting and the disassembly of western Pangaea. Lithos, 190-191, 383-402. https://doi.org/10.1016/j.lithos.2013.12.020 | spa |
dc.relation.references | Condie, K. C. (2007). Accretionary orogens in space and time. In Geological Society of America Memoirs, 145-158. Geological Society of America. https://doi.org/10.1130/2007.1200(09) | spa |
dc.relation.references | Condon D. J., Schoene B., McLean N. M., Bowring S. A., Parrish R, 2015, Metrology and traceability of U-Pb isotope dilution geochronology (EARTHTIME Tracer Calibration Part I). Geochimica et Cosmochimica Acta, 164, 464-480. https://doi.org/10.1016/j.gca.2015.05.026 | spa |
dc.relation.references | Corfu, F. (2003). Atlas of zircon textures. Reviews in Mineralogy and Geochemistry, 53(1), 469-500. https://doi.org/10.2113/0530469 | spa |
dc.relation.references | Correa-Tamayo, A. M., 2009. Estudio petrologico, geoquímico y vulcanológico para establecer la evolución magmática del complejo volcánico Nevado del Huila, Colombia. Universidad Complutense de Madrid, 545 p. | spa |
dc.relation.references | Correa-Tamayo, A. M., Pulgarín-Alzate, B. A. & Ancochea-Soto, E. (2020). The Nevado del Huila Volcanic Complex. In: Gómez, J. & Pinilla-Pachon, A. O. (editors), The Geology of Colombia, Volume 4 Quaternary. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 38, 227-265. Bogotá. doi.org/10.32685/pub.esp.38.2019.06 | spa |
dc.relation.references | Crowley, J. L., Schoene, B., & Bowring, S. A. (2007). U-Pb dating of zircon in the Bishop Tuff at the millennial scale. Geology, 35(12), 1123-1126. https://doi.org/10.1130/G24017A.1 | spa |
dc.relation.references | Currie, C. A., Ducea, M. N., DeCelles, P. G., & Beaumont, C. (2015). Geodynamic models of Cordilleran orogens: Gravitational instability of magmatic arc roots. In DeCelles, P. G., Ducea, M. N., Carrapa, B., & Kapp, P. A. (Eds.), Geodynamics of a Cordilleran Orogenic System: The Central Andes of Argentina and Northern Chile (pp. 1-22). Geological Society of America Memoir 212. https://doi.org/10.1130/2015.1212(01) | spa |
dc.relation.references | Dasgupta, R., Hirschmann, M. M., & Smith, N. D. (2007). Partial melting experiments of peridotite + CO2 at 3 GPa and genesis of alkalic ocean island basalts. Journal of Petrology, 48(11), 2093-2124. https://doi.org/10.1093/petrology/egm053 | spa |
dc.relation.references | de Silva, S. L., & Kay, S. M. (2018). Turning up the heat: High-flux magmatism in the central Andes. Elements, 14(4), 245-250. https://doi.org/10.2138/gselements.14.4.245 | spa |
dc.relation.references | de Silva, S.L., Riggs, N.R., & Barth, A.P. (2015). Quickening the pulse: Fractal tempos in continental arc magmatism. Elements, 11(2), 113-118. https://doi.org/10.2113/gselements.11.2.113 | spa |
dc.relation.references | DeCelles, P. G., Ducea, M. N., Kapp, P., & Zandt, G. (2009). Cyclicity in Cordilleran orogenic systems. Nature Geoscience, 2(4), 251-257. https://doi.org/10.1038/ngeo469 | spa |
dc.relation.references | Deering, C. D., Bachmann, O., Dufek, J., & Gravley, D. M. (2011). Rift-related transition from andesite to rhyolite volcanism in the Taupo Volcanic Zone (New Zealand) controlled by crystal-melt dynamics in mush zones with variable mineral assemblages. Journal of Petrology, 52(11), 2243-2263. https://doi.org/10.1093/petrology/egr046 | spa |
dc.relation.references | DePaolo, D. J., & Wasserburg, G. J. (1976). Nd isotopic variations and petrogenetic models. Geophysical Research Letters, 3(5), 249-252. https://doi.org/10.1029/gl003i005p00249 | spa |
dc.relation.references | DePaolo, D. J., Harrison, T. M., Wielicki, M., Zhao, Z., Zhu, D.-C., Zhang, H., & Mo, X. (2019). Geochemical evidence for thin syn-collision crust and major crustal thickening between 45 and 32 Ma at the southern margin of Tibet. Gondwana Research: International Geoscience Journal, 73, 123-135. https://doi.org/10.1016/j.gr.2019.03.011 | spa |
dc.relation.references | Diederix, H., Bohórquez, O. P., Mora-Páez, H., Peláez, J. R., Cardona, L., Corchuelo, Y., Ramírez, J. & Díaz-Mila, F. (2020). The Algeciras Fault System of the Upper Magdalena Valley, Huila Department. In: Gómez, J. & Pinilla-Pachon, A. O. (editors), The Geology of Colombia, Volume 4 Quaternary. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 38, 423-452. Bogotá. https://doi.org/10.32685/pub.esp.38.2019.12 | spa |
dc.relation.references | Draut, A. E., & Clift, P. D. (2001). Geochemical evolution of arc magmatism during arc-continent collision, South Mayo, Ireland. Geology, 29(6), 543-546. https://doi.org/10.1130/0091-7613(2001)029<0543:GEOAMD>2.0.CO;2 | spa |
dc.relation.references | Droux, A., & Delaloye, M. (1996). Petrography and geochemistry of Plio-Quaternary calc-alkaline volcanoes of Southwestern Colombia. Journal of South American Earth Sciences, 9(1-2), 27-41. https://doi.org/10.1016/0895-9811(96)00025-9 | spa |
dc.relation.references | Ducea, M. N., Bergantz, G. W., Crowley, J. L., & Otamendi, J. (2017). Ultrafast magmatic buildup and diversification to produce continental crust during subduction. Geology, 45(3), 235-238. https://doi.org/10.1130/g38726.1 | spa |
dc.relation.references | Ducea, M. N., Chapman, A. D., Bowman, E., & Balica, C. (2021b). Arclogites and their role in continental evolution; part 2: Relationship to batholiths and volcanoes, density and foundering, remelting and long-term storage in the mantle. Earth-Science Reviews, 214, 103476. https://doi.org/10.1016/j.earscirev.2020.103476 | spa |
dc.relation.references | Ducea, M. N., Chapman, A. D., Bowman, E., & Triantafyllou, A. (2021a). Arclogites and their role in continental evolution; part 1: Background, locations, petrography, geochemistry, chronology and thermobarometry. Earth-Science Reviews, 214, 103375. https://doi.org/10.1016/j.earscirev.2020.103375 | spa |
dc.relation.references | Ducea, M. N., Paterson, S. R., & DeCelles, P. G. (2015b). High-volume magmatic events in subduction systems. Elements, 11(2), 99-104. https://doi.org/10.2113/gselements.11.2.99 | spa |
dc.relation.references | Ducea, M. N., Seclaman, A. C., Murray, K. E., Jianu, D., & Schoenbohm, L. M. (2013). Mantle-drip magmatism beneath the Altiplano-Puna plateau, central Andes. Geology, 41(8), 915-918. https://doi.org/10.1130/g34509.1 | spa |
dc.relation.references | Duque-Trujillo, J. F., Bustamante, C., Solari, L., Gómez-Mafla, Á., Toro-Villegas, G., & Hoyos, S. (2019b). Reviewing the Antioquia batholith and satellite bodies : a record of Late Cretaceous to Eocene syn- to post-collisional arc magmatism in the Central Cordillera of Colombia. Andean Geology, 46(1), 82-101. https://doi.org/10.5027/andgeoV46n1-3124 | spa |
dc.relation.references | Duque-Trujillo, J. F., Orozco-Esquivel, T., Sánchez, C. J., & Cárdenas-Rozo, A. L. (2019a). Paleogene magmatism of the Maracaibo Block and its tectonic significance. In Geology and Tectonics of Northwestern South America, Frontiers in Earth Sciences, (pp. 551-601). https://doi.org/10.1007/978-3-319-76132-9_7 | spa |
dc.relation.references | Echeverri, S., Cardona, A., Pardo, A., Monsalve, G., Valencia, V. A., Borrero, C., Rosero, S., & López, S. (2015). Regional provenance from southwestern Colombia fore-arc and intra-arc basins: implications for Middle to Late Miocene orogeny in the Northern Andes. Terra Nova, 27(5), 356-363. https://doi.org/10.1111/ter.12167 | spa |
dc.relation.references | Errázuriz-Henao, C., Gómez-Tuena, A., Duque-Trujillo, J., & Weber, M. (2019). The role of subducted sediments in the formation of intermediate mantle-derived magmas from the Northern Colombian Andes. Lithos, 336-337, 151-168. https://doi.org/10.1016/j.lithos.2019.04.007 | spa |
dc.relation.references | Faccenna, C., & Becker, T. W. (2020). Topographic expressions of mantle dynamics in the Mediterranean. Earth-Science Reviews, 209, 103327. https://doi.org/10.1016/j.earscirev.2020.103327 | spa |
dc.relation.references | Faccenna, C., Becker, T. W., Auer, L., Billi, A., Boschi, L., Brun, J. P., Capitanio, F. A., Funiciello, F., Horvàth, F., Jolivet, L., Piromallo, C., Royden, L., Rossetti, F., & Serpelloni, E. (2014). Mantle dynamics in the Mediterranean: Mediterranean dynamic. Reviews of Geophysics, 52(3), 283-332. https://doi.org/10.1002/2013rg000444 | spa |
dc.relation.references | Ferrari, L., Petrone, C. M., & Francalanci, L. (2001). Generation of oceanic-island basalt-type volcanism in the western Trans-Mexican volcanic belt by slab rollback, asthenosphere infiltration, and variable flux melting. Geology, 29(6), 507. https://doi.org/10.1130/0091-7613(2001)029<0507:gooibt>2.0.co;2 | spa |
dc.relation.references | Ferry, J. M., & Watson, E. B. (2007). New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contributions to Mineralogy and Petrology, 154(4), 429-437. https://doi.org/10.1007/s00410-007-0201-0 | spa |
dc.relation.references | Fisher, C. M., Vervoort, J. D., & DuFrane, S. A. (2014). Accurate Hf isotope determinations of complex zircons using the “laser ablation split stream” method. Geochemistry, Geophysics, Geosystems: G(3), 15(1), 121-139. https://doi.org/10.1002/2013gc004962 | spa |
dc.relation.references | Foley, M. L., Putlitz, B., Baumgartner, L. P., Bégué, F., Siron, G., & Kosmal, A. (2023). Generating large volumes of crust-derived high δ18O rhyolites in the Chon Aike Silicic Large Igneous Province, Patagonia. Geosphere, 19(4), 975-1005. https://doi.org/10.1130/ges02551.1 | spa |
dc.relation.references | Gale, A., Dalton, C. A., Langmuir, C. H., Su, Y., & Schilling, J.-G. (2013). The mean composition of ocean ridge basalts: MEAN MORB. Geochemistry, Geophysics, Geosystems: G(3), 14(3), 489-518. https://doi.org/10.1029/2012gc004334 | spa |
dc.relation.references | Galer, S. J. G. & Abouchami, W. (1998). Practical application of lead triple spiking for correction of instrumental mass discrimination. Mineralogical Magazine, 62A(1), 491-492. https://doi.org/10.1180/minmag.1998.62a.1.260 | spa |
dc.relation.references | Gall, H., Furman, T., Hanan, B., Kürkcüoğlu, B., Sayıt, K., Yürür, T., Sjoblom, M.P., Şen, E., Şen, P.A. (2021). Post-delamination magmatism in south-central Anatolia. Lithos 398-399. https://doi.org/10.1016/j.lithos.2021.106299 | spa |
dc.relation.references | Ganade, C. E., Lanari, P., Rubatto, D., Hermann, J., Weinberg, R. F., Basei, M. A. S., Tesser, L. R., Caby, R., Agbossoumondé, Y., & Ribeiro, C. M. (2021). Magmatic flare-up causes crustal thickening at the transition from subduction to continental collision. Communications Earth & Environment, 2(1), 1-10. https://doi.org/10.1038/s43247-021-00103-z | spa |
dc.relation.references | Garrison, J. M., Sims, K. W. W., Yogodzinski, G. M., Escobar, R. D., Scott, S., Mothes, P., Hall, M. L., & Ramon, P. (2018). Shallow-level differentiation of phonolitic lavas from Sumaco Volcano, Ecuador. Contributions to Mineralogy and Petrology, 173(1). https://doi.org/10.1007/s00410-017-1431-4 | spa |
dc.relation.references | Gaschnig, R. M., Vervoort, J. D., Lewis, R. S., & Tikoff, B. (2011). Isotopic evolution of the Idaho batholith and Challis intrusive province, northern US Cordillera. Journal of Petrology, 52(12), 2397-2429. doi.org/10.1093/petrology/egr050 | spa |
dc.relation.references | Gaschnig, R. M., Vervoort, J. D., Tikoff, B., & Lewis, R. S. (2017). Construction and preservation of batholiths in the northern U.S. Cordillera. Lithosphere, 9(2), 315-324. https://doi.org/10.1130/L497.1 | spa |
dc.relation.references | Gehrels, G. (2014). Detrital zircon U-Pb geochronology applied to tectonics. Annual Review of Earth and Planetary Sciences, 42, 127-149. https://doi.org/10.1146/annurev-earth-050212-124012 | spa |
dc.relation.references | Gehrels, G., Valencia, V. A., & Ruiz, J. (2008). Enhanced precision, accuracy, efficiency, and spatial resolution of U-Pb ages by laser ablation-multicollector-inductively coupled plasma-mass spectrometry. Geochemistry, Geophysics, Geosystems: G(3), 9(3), 1-13. https://doi.org/10.1029/2007GC001805 | spa |
dc.relation.references | George, S. W. M., Horton, B. K., Vallejo, C., Jackson, L. J., & Gutierrez, E. G. (2021). Did accretion of the Caribbean oceanic plateau drive rapid crustal thickening in the northern Andes? Geology, 49(8), 936-940. https://doi.org/10.1130/g48509.1 | spa |
dc.relation.references | Gerstenberger, H., & Haase, G. (1997). A highly effective emitter substance for mass spectrometric Pb isotope ratio determinations. Chemical Geology, 136(3-4), 309-312. https://doi.org/10.1016/s0009-2541(96)00033-2 | spa |
dc.relation.references | Gerya, T. V., & Meilick, F. I. (2011). Geodynamic regimes of subduction under an active margin: Effects of rheological weakening by fluids and melts. Journal of Metamorphic Geology, 29(1), 7-31. https://doi.org/10.1111/j.1525-1314.2010.00904.x | spa |
dc.relation.references | Giambiagi, L., Tassara, A., Echaurren, A., Julve, J., Quiroga, R., Barrionuevo, M., Liu, S., Echeverría, I., Mardónez, D., Suriano, J., Mescua, J., Lossada, A. C., Spagnotto, S., Bertoa, M., & Lothari, L. (2022). Crustal anatomy and evolution of a subduction-related orogenic system: Insights from the Southern Central Andes (22-35°S). Earth-Science Reviews, 232(104138), 104138. https://doi.org/10.1016/j.earscirev.2022.104138 | spa |
dc.relation.references | Gianola, O., Costa, B., Ferri, F., Gilio, M., Petrelli, M., Murri, M., Barbaro, A., Alvaro, M., Rodríguez-Vargas, A., Poli, S., & Cesare, B. (2023). Melt inclusions in arclogitic xenoliths constrain the genesis of the lower continental arc crust beneath the northern volcanic zone, Colombia. Journal of Petrology, 64(6). https://doi.org/10.1093/petrology/egad038 | spa |
dc.relation.references | Gil-Rodriguez, J. (2014). Petrology of the betulia igneous complex, Cauca, Colombia. Journal of South American Earth Sciences, 56, 339-356. https://doi.org/10.1016/j.jsames.2014.09.016 | spa |
dc.relation.references | Glazner, A. F., Coleman, D. S., & Mills, R. D. (2015). The volcanic-plutonic connection. In Physical Geology of Shallow Magmatic Systems (pp. 61–82). Springer International Publishing. https://doi.org/10.1007/978-3-319-14084-1 | spa |
dc.relation.references | Global Volcanism Program. (2023). Volcanoes of the World, 5.1.5. compiled by Venzke, E, Distributed by Smithsonian Institution. https://doi.org/10.5479/si.GVP.VOTW5-2023.5.1 | spa |
dc.relation.references | Göğüş, O. H., & Pysklywec, R. N. (2008). Mantle lithosphere delamination driving plateau uplift and synconvergent extension in eastern Anatolia. Geology, 36(9), 723. https://doi.org/10.1130/g24982a.1 | spa |
dc.relation.references | Gómez, J., & Montes, N. E. (2020). Mapa Geológico de Colombia en Relieve (Vol. 1). https://www2.sgc.gov.co/MGC/Paginas/mgc_1M2020.aspx | spa |
dc.relation.references | Gómez, J., Nivia, Á., Montes, N. E., Almanza, M. F., Alcárcel, F. A., & Madrid, C. A. (2015). Compilando la geología de Colombia: Una visión a 2015. Bogotá. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales, 33. | spa |
dc.relation.references | Gómez-Tuena, A., Díaz-Bravo, B., Vázquez-Duarte, A.V., Pérez-Arvizu, O., & Mori, L. (2014). Andesite petrogenesis by slab-derived plume pollution of a continental rift. Geological Society Special Publications 385, 65-101. https://doi.org/10.1144/SP385.4 | spa |
dc.relation.references | González, P. D., Sato, A. M., Naipauer, M., Varela, R., Basei, M., Sato, K., Llambías, E. J., Chemale, F., & Dorado, A. C. (2018). Patagonia-Antarctica Early Paleozoic conjugate margins: Cambrian synsedimentary silicic magmatism, U-Pb dating of K-bentonites, and related volcanogenic rocks. Gondwana Research, 63, 186-225. https://doi.org/10.1016/j.gr.2018.05.015 | spa |
dc.relation.references | Gravley, D. M., Deering, C. D., Leonard, G. S., & Rowland, J. V. (2016). Ignimbrite flare-ups and their drivers: A New Zealand perspective. Earth-Science Reviews, 162, 65-82. https://doi.org/10.1016/j.earscirev.2016.09.007 | spa |
dc.relation.references | Grimes, C. B., John, B. E., Cheadle, M. J., Mazdab, F. K., Wooden, J. L., Swapp, S., & Schwartz, J. J. (2009). On the occurrence, trace element geochemistry, and crystallization history of zircon from in situ ocean lithosphere. Contributions to Mineralogy and Petrology, 158(6), 757-783. https://doi.org/10.1007/s00410-009-0409-2 | spa |
dc.relation.references | Grimes, C. B., Wooden, J. L., Cheadle, M. J., & John, B. E. (2015). “Fingerprinting” tectono-magmatic provenance using trace elements in igneous zircon. Contributions to Mineralogy and Petrology, 170(5-6), 1-26. https://doi.org/10.1007/s00410-015-1199-3 | spa |
dc.relation.references | Grove, T. L., Till, C. B., & Krawczynski, M. J. (2012). The role of H2O in subduction zone magmatism. Annual Review of Earth and Planetary Sciences, 40(1), 413-439. https://doi.org/10.1146/annurev-earth-042711-105310 | spa |
dc.relation.references | Grove, T. L., Till, C. B., Lev, E., Chatterjee, N., & Médard, E. (2009). Kinematic variables and water transport control the formation and location of arc volcanoes. Nature, 459(7247), 694-697. https://doi.org/10.1038/nature08044 | spa |
dc.relation.references | Hammersley, L., DePaolo, D. J., Beate, B., Deino, A. L. (2022). Rhyolite ignimbrite generation in the northern andes: The chalupas caldera, Ecuador, In: Sims, K. W. W., Maher, K., Schrag, D. P. (Eds.), Isotopic Constraints on Earth System Processes. American Geophysical Union, pp. 87-132. https://doi.org/10.1002/9781119595007.ch05 | spa |
dc.relation.references | Haschke, M., Günther, A. (2003). Balancing crustal thickening in arcs by tectonic vs. magmatic means. Geology 31, 933-936. https://doi.org/10.1130/G19945.1 | spa |
dc.relation.references | Hayden, L. A., & Watson, E. B. (2007). Rutile saturation in hydrous siliceous melts and its bearing on Ti-thermometry of quartz and zircon. Earth and Planetary Science Letters, 258(3-4), 561-568. https://doi.org/10.1016/j.epsl.2007.04.020 | spa |
dc.relation.references | Hayes, G. P., Moore, G. L., Portner, D. E., Hearne, M., Flamme, H., Furtney, M., & Smoczyk, G. M. (2018). Slab2, a comprehensive subduction zone geometry model. Science, 362(6410), 58-61. https://doi.org/10.1126/science.aat4723 | spa |
dc.relation.references | Herriott, T. M., Crowley, J. L., Schmitz, M. D., Wartes, M. A., & Gillis, R. J. (2019). Exploring the law of detrital zircon: LA-ICP-MS and CA-TIMS geochronology of Jurassic forearc strata, Cook Inlet, Alaska, USA. Geology, 47(11), 1044-1048. https://doi.org/10.1130/G46312.1 | spa |
dc.relation.references | Hiess, J., Condon, D. J., McLean, N., & Noble, S. R. (2012). 238U/ 235U systematics in terrestrial uranium-bearing minerals. Science, 335(6076), 1610-1614. https://doi.org/10.1126/science.1215507 | spa |
dc.relation.references | Hildreth, W., & Moorbath, S. (1988). Crustal contributions to arc magmatism in the Andes of Central Chile. Contributions to Mineralogy and Petrology, 98(4), 455-489. https://doi.org/10.1007/bf00372365 | spa |
dc.relation.references | Hildreth, W., Fierstein, J., Siems, D. F., Budahn, J. R., & Ruíz, J. (2004). Rear-arc vs. arc-front volcanoes in the Katmai reach of the Alaska Peninsula: a critical appraisal of across-arc compositional variation. Contributions to Mineralogy and Petrology, 147(3), 243-275. https://doi.org/10.1007/s00410-004-0558-2 | spa |
dc.relation.references | Hirschmann, M. M., Kogiso, T., Baker, M. B., & Stolper, E. M. (2003). Alkalic magmas generated by partial melting of garnet pyroxenite. Geology, 31(6), 481. https://doi.org/10.1130/0091-7613(2003)031<0481:amgbpm>2.0.co;2 | spa |
dc.relation.references | Holder, R. M., Yakymchuk, C., & Viete, D. R. (2020). Accessory Mineral Eu Anomalies in Suprasolidus Rocks: Beyond Feldspar. Geochemistry, Geophysics, Geosystems: G(3), 21(8), 1-16. https://doi.org/10.1029/2020GC009052 | spa |
dc.relation.references | Holtz, F., & Johannes, W. (1994). Maximum and minimum water contents of granitic melts: implications for chemical and physical properties of ascending magmas. Lithos, 32(1-2), 149-159. https://doi.org/10.1016/0024-4937(94)90027-2 | spa |
dc.relation.references | Horton, B. K. (2018). Sedimentary record of Andean mountain building. Earth-Science Reviews, 178, 279-309. https://doi.org/10.1016/j.earscirev.2017.11.025 | spa |
dc.relation.references | Horton, B. K., Anderson, V. J., Caballero, V., Saylor, J. E., Nie, J., Parra, M., & Mora, A. (2015). Application of detrital zircon U-Pb geochronology to surface and subsurface correlations of provenance, paleodrainage, and tectonics of the Middle Magdalena Valley Basin of Colombia. Geosphere, 11(6), 1790-1811. https://doi.org/10.1130/GES01251.1 | spa |
dc.relation.references | Horton, B. K., Saylor, J. E., Nie, J., Mora, A., Parra, M., Reyes-Harker, A., & Stockli, D. F. (2010). Linking sedimentation in the northern Andes to basement configuration, Mesozoic extension, and Cenozoic shortening: Evidence from detrital zircon U-Pb ages, Eastern Cordillera, Colombia. Bulletin of the Geological Society of America, 122(9-10), 1423-1442. https://doi.org/10.1130/B30118.1 | spa |
dc.relation.references | Houseman, G. A., McKenzie, D. P., & Molnar, P. (1981). Convective instability of a thickened boundary layer and its relevance for the thermal evolution of continental convergent belts. Journal of Geophysical Research, 86, 6115-6132. https://doi.org/10.1029/jb086ib07p06115 | spa |
dc.relation.references | Iizuka, T., Yamaguchi, T., Itano, K., Hibiya, Y., & Suzuki, K. (2018). What Hf isotopes in zircon tell us about crust-mantle evolution. Lithos, 274-275, 304-327. http://dx.doi.org/10.1016/j.lithos.2017.01.006 | spa |
dc.relation.references | Jaffey, A. H., Flynn, K. F., Glendenin, L. E., Bentley, W. C., and Essling, A. M. (1971). Precision measurements of half-lives and specific activities of 235U and 238U, Physical Review C, 4:1889-1906. https://doi.org/10.1103/PhysRevC.4.1889 | spa |
dc.relation.references | Jagoutz, O. (2014). Arc crustal differentiation mechanisms. Earth and Planetary Science Letters, 396, 267-277. https://doi.org/10.1016/j.epsl.2014.03.060 | spa |
dc.relation.references | Jagoutz, O., & Behn, M. D. (2013). Foundering of lower island-arc crust as an explanation for the origin of the continental Moho. Nature, 504(7478), 131–134. https://doi.org/10.1038/nature12758 | spa |
dc.relation.references | Jagoutz, O., & Kelemen, P. B. (2015). Role of arc processes in the formation of continental crust. Annual Review of Earth and Planetary Sciences, 43(1), 363-404. https://doi.org/10.1146/annurev-earth-040809-152345 | spa |
dc.relation.references | Jagoutz, O., & Klein, B. (2018). On the importance of crystallization‐differentiation for the generation of SiO2‐rich melts and the compositional build‐up of arc (and continental) crust. American Journal of Science, 318(1), 29-63. https://doi.org/10.2475/01.2018.03 | spa |
dc.relation.references | Jagoutz, O., & Schmidt, M. W. (2013). The composition of the foundered complement to the continental crust and a re-evaluation of fluxes in arcs. Earth and Planetary Science Letters, 371-372, 177-190. https://doi.org/10.1016/j.epsl.2013.03.051 | spa |
dc.relation.references | Jaramillo, C., & Cárdenas, A. (2013). Global warming and neotropical rainforests: A historical perspective. Annual Review of Earth and Planetary Sciences, 41(1), 741-766. https://doi.org/10.1146/annurev-earth-042711-105403 | spa |
dc.relation.references | Jaramillo, J. S., Cardona, A., León, S., Valencia, V., & Vinasco, C. (2017). Geochemistry and geochronology from Cretaceous magmatic and sedimentary rocks at 6°35′ N, western flank of the Central cordillera (Colombian Andes): Magmatic record of arc growth and collision. Journal of South American Earth Sciences, 76, 460-481. https://doi.org/10.1016/j.jsames.2017.04.012 | spa |
dc.relation.references | Jaramillo, J. S., Cardona, A., Monsalve, G., Valencia, V., & León, S. (2019). Petrogenesis of the late Miocene Combia volcanic complex, northwestern Colombian Andes: Tectonic implication of short term and compositionally heterogeneous arc magmatism. Lithos, 330-331, 194-210. https://doi.org/10.1016/j.lithos.2019.02.017 | spa |
dc.relation.references | Jaramillo, J. S., Zapata, S., Carvalho, M., Cardona, A., Jaramillo, C., Crowley, J. L., Bayona, G., & Caballero-Rodriguez, D. (2022). Diverse magmatic evolutionary trends of the northern Andes unraveled by Paleocene to early Eocene detrital zircon geochemistry. Geochemistry, Geophysics, Geosystems: G(3), 23(9). https://doi.org/10.1029/2021gc010113 | spa |
dc.relation.references | Jaramillo, J.S., Cardona, A., Zapata, S., Jaramillo, C., & Valencia, V. (2020). Neogene magmatic record of the southern Colombian Andes: tectonic and mountain building implications. GSA meeting. doi: 10.1130/abs/2020AM-358191. | spa |
dc.relation.references | Jaramillo-Ríos, J. S., Cardona, A., Zapata, S., Valencia, V., Monsalve, G., & Vervoort, J. (2024). A mantle origin for Pliocene SiO2-rich ignimbrites in the modern Colombian magmatic arc. Lithos, 480-481, 107666. https://doi.org/10.1016/j.lithos.2024.107666 | spa |
dc.relation.references | Jaramillo-Ríos, J. S., Cardona, A., Zapata, S., & Valencia, V. (2023). High-volume ignimbrites and alkaline basalts triggered by slab-retreating and incipient delamination in the Central Volcanic zone of the Colombian Andes. XVI Congreso Geológico Chileno. | spa |
dc.relation.references | Johnson, D.M., Hooper, P.R., & Conrey, R.M., (1999). XRF analysis of rocks and minerals for major and trace elements on a single low dilution Li-tetraborate fused bead. Adv. X-ray Anal, v. 41, p. 843-867. | spa |
dc.relation.references | Jordan, T. E., Reynolds, J. H., III, & Erikson, J. P. (1997). Variability in age of initial shortening and uplift in the central Andes, 16-33°30′S. In Tectonic Uplift and Climate Change (pp. 41-61). Springer. | spa |
dc.relation.references | Juggins, S. (2020). rioja: Analysis of quaternary science data, R package version (0.9-26). Retrieved from https://cran.r-project.org/package=rioja | spa |
dc.relation.references | Kaoungku, N., Suksut, K., Chanklan, R., Kerdprasop, K., & Kerdprasop, N. (2018). The silhouette width criterion for clustering and association mining to select image features. International Journal of Machine Learning and Computing, 8(1), 69-73. https://doi.org/10.18178/ijmlc.2018.8.1.665 | spa |
dc.relation.references | Karlstrom, L., Lee, C.-T. A., & Manga, M. (2014). The role of magmatically driven lithospheric thickening on arc front migration. Geochemistry, Geophysics, Geosystems: G(3), 15(6), 2655-2675. https://doi.org/10.1002/2014gc005355 | spa |
dc.relation.references | Kay, R. W., & Kay, S. M. (1993). Delamination and delamination magmatism. Tectonophysics, 219(1-3), 177-189. https://doi.org/10.1016/0040-1951(93)90295-u | spa |
dc.relation.references | Kay, S. M., Coira, B. L., Caffe, P. J., & Chen, C. H. (2010). Regional chemical diversity, crustal and mantle sources and evolution of central Andean Puna plateau ignimbrites. Journal of Volcanology and Geothermal Research, 198(1-2), 81-111. https://doi.org/10.1016/j.jvolgeores.2010.08.013 | spa |
dc.relation.references | Kay, S. M., Coira, B., Wörner, G., Kay, R. W., & Singer, B. S. (2011). Geochemical, isotopic and single crystal 40Ar/39Ar age constraints on the evolution of the Cerro Galán ignimbrites. Bulletin of Volcanology, 73(10), 1487-1511. https://doi.org/10.1007/s00445-010-0410-7 | spa |
dc.relation.references | Kay, S. M., Mpodozis, C., & Gardeweg, M. (2014). Magma sources and tectonic setting of Central Andean andesites (25.5-288S) related to crustal thickening, forearc subduction erosion and delamination. Geological Society Special Publication, 385(1), 303-334. https://doi.org/10.1144/SP385.11 | spa |
dc.relation.references | Kay, S. M., Mpodozis, C., Ramos, V. A., & Munizaga, F. (1991). Magma source variations for mid-late Tertiary magmatic rocks associated with a shallowing subduction zone and a thickening crust in the central Andes (28 to 33°S). Geological Society of America Special Publication, 265, 113-137. https://doi.org/10.1130/SPE265-p113 | spa |
dc.relation.references | Kennan, L., & Pindell, J. L. (2009). Dextral shear, terrane accretion and basin formation in the Northern Andes: Best explained by interaction with a Pacific-derived Caribbean plate? Geological Society Special Publication, 328, 487-531. https://doi.org/10.1144/SP328.20 | spa |
dc.relation.references | Kennedy, A. K., Wotzlaw, J. F., Schaltegger, U., Crowley, J. L., Schmitz, M., 2014, Eocene zircon reference material for microanalysis of U-Th-Pb isotopes and trace elements. The Canadian Mineralogist, 52, 409-421. | spa |
dc.relation.references | Kerr, A. C., Marriner, G. F., Tarney, J., Nivia, A., Saunders, A. D., Thirlwall, M. F., & Sinton, C. W. (1997). Cretaceous basaltic terranes in Western Colombia: Elemental, chronological and Sr-Nd isotopic constraints on petrogenesis. Journal of Petrology, 38(6), 677-702. https://doi.org/10.1093/petroj/38.6.677 | spa |
dc.relation.references | Kerr, A. C., Tarney, J., Marriner, G. F., Nivia, A., Klaver, G. T., & Saunders, A. D. (1996). The geochemistry and tectonic setting of late Cretaceous Caribbean and Colombian volcanism. Journal of South American Earth Sciences, 9(1-2), 111-120. https://doi.org/10.1016/0895-9811(96)00031-4 | spa |
dc.relation.references | Kirkland, C. L., Smithies, R. H., Taylor, R. J. M., Evans, N., & McDonald, B. (2015). Zircon Th/U ratios in magmatic environs. Lithos, 212-215, 397-414. https://doi.org/10.1016/j.lithos.2014.11.021 | spa |
dc.relation.references | Klein, B. Z., Jagoutz, O., Schmidt, M. W., & Kueter, N. (2023). A global assessment of the controls on the fractionation of arc magmas. Geochemistry, Geophysics, Geosystems: G(3), 24, e2023GC010888. https://doi.org/10.1029/2023GC010888 | spa |
dc.relation.references | Kogiso, T., Hirshcmann, M. M., & Petermann, M. (2004). High-pressure partial melting of mafic lithologies in the mantle. Journal of Petrology, 45(12), 2407-2422. https://doi.org/10.1093/petrology/egh057 | spa |
dc.relation.references | Kohut, E. J., Stern, R. J., Kent, A. J. R., Nielsen, R. L., Bloomer, S. H., & Leybourne, M. (2006). Evidence for adiabatic decompression melting in the Southern Mariana Arc from high-Mg lavas and melt inclusions. Contributions to Mineralogy and Petrology, 152(2), 201-221. https://doi.org/10.1007/s00410-006-0102-7 | spa |
dc.relation.references | Koppers, A. A. P., Becker, T. W., Jackson, M. G., Konrad, K., Müller, R. D., Romanowicz, B., Steinberger, B., & Whittaker, J. M. (2021). Mantle plumes and their role in Earth processes. Nature Reviews. Earth & Environment, 2(6), 382-401. https://doi.org/10.1038/s43017-021-00168-6 | spa |
dc.relation.references | Krogh, T. E. (1973). A low contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determination. Geochimica et Cosmochimica Acta, 37(3), 485-494. https://doi.org/10.1016/0016-7037(73)90213-5 | spa |
dc.relation.references | Kroonenberg, S. B., León-Silvestre, L. A., Pastana, J. M. do N., & Pessoa, M. R. (1981). Ignimbritas Pliopleistocenicas en el Suroeste del Huila, Colombia y su Influencia en el Desarrollo Morfológico. CIAF, 6(1-3), 293-3214. | spa |
dc.relation.references | Kroonenberg, S. B., Pichler, H., & Diederix, H. (1982). Cenozoic alkalibasaltic to ultrabasic volcanism in the upermost Magdalena Valley, Southern Huila Department, Colombia. Geología Norandina, (5), 19-26. | spa |
dc.relation.references | Kroonenberg, S. B., Pichler, H., & Schmitt-Riegraf, C. (1987). Young alkalibasaltic to nephelinitic volcanism in the Southern Colombian Andes - Origin by subduction of a spreading rift? Zentralblatt für Geologie und Paläontologie, Teil I, 919-936. | spa |
dc.relation.references | Kuiper, K. F., Deino, A., Hilgen, F. J., Krijgsman, W., Renne, P. R., & Wijbrans, J. R., (2008). Synchronizing Rock Clocks of Earth History. Science, 320(5875), 500-504. doi:10.1126/science.1154339 | spa |
dc.relation.references | Lambart, S., Laporte, D., Provost, A., & Schiano, P. (2012). Fate of pyroxenite-derived melts in the peridotitic mantle: Thermodynamic and experimental constraints. Journal of Petrology, 53(3), 451-476. https://doi.org/10.1093/petrology/egr068 | spa |
dc.relation.references | Lambart, S., Laporte, D., & Schiano, P. (2013). Markers of the pyroxenite contribution in the major-element compositions of oceanic basalts: Review of the experimental constraints. Lithos, 160-161, 14-36. https://doi.org/10.1016/j.lithos.2012.11.018 | spa |
dc.relation.references | Lanphere, M. A., & Baadsgaard, H. (2001). Precise K-Ar, 40Ar/39Ar, Rb-Sr and U/Pb mineral ages from the 27.5 Ma Fish Canyon Tuff reference standard. Chemical Geology, 175(3-4), 653-671. https://doi.org/10.1016/s0009-2541(00)00291-6 | spa |
dc.relation.references | Le Bas, M. J., Maitre, R. W. L., Streckeisen, A., Zanettin, B., & IUGS Subcommission on the Systematics of Igneous Rocks. (1986). A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology, 27(3), 745-750. https://doi.org/10.1093/petrology/27.3.745 | spa |
dc.relation.references | Le Roux, V., Lee, C.-T. A., & Turner, S. J. (2010). Zn/Fe systematics in mafic and ultramafic systems: Implications for detecting major element heterogeneities in the Earth’s mantle. Geochimica et Cosmochimica Acta, 74(9), 2779-2796. https://doi.org/10.1016/j.gca.2010.02.004 | spa |
dc.relation.references | Leal-Mejía, H. (2011). Phanerozoic gold metallogeny in the Colombian Andes: A tectono-magmatic approach, PhD. Thesis. University of Barcelona, 1-1000p. | spa |
dc.relation.references | Leal-Mejía, H., Shaw, R. P., & Melgarejo-i Draper, J. C. (2019). Spatial-Temporal Migration of Granitoid Magmatism and the Phanerozoic Tectono- Magmatic Evolution of the Colombian Andes. In Cediel, C. & Shaw, R. P. (Eds.), Geology and Tectonics of Northwestern South (pp. 253-410). | spa |
dc.relation.references | Lee, C. -T. A. (2014). Physics and chemistry of deep continental crust recycling. Treatise on Geochemistry, 423-456. https://doi.org/10.1016/B978-0-08-095975-7.00314-4 | spa |
dc.relation.references | Lee, C. -T. A., & Bachmann, O. (2014). How important is the role of crystal fractionation in making intermediate magmas? Insights from Zr and P systematics. Earth and Planetary Science Letters, 393, 266-274. https://doi.org/10.1016/j.epsl.2014.02.044 | spa |
dc.relation.references | Lee, C.-T. A, Cheng, X., & Horodyskyj, U. (2006). The development and refinement of continental arcs by primary basaltic magmatism, garnet pyroxenite accumulation, basaltic recharge and delamination: insights from the Sierra Nevada, California. Contributions to Mineralogy and Petrology, 151(2), 222-242. https://doi.org/10.1007/s00410-005-0056-1 | spa |
dc.relation.references | Lee, C.-T. A., & Anderson, D. L. (2015). Continental crust formation at arcs, the arclogite “delamination” cycle, and one origin for fertile melting anomalies in the mantle. Science Bulletin, 60(13), 1141-1156. https://doi.org/10.1007/s11434-015-0828-6 | spa |
dc.relation.references | Lee, C.-T. A., Luffi, P., Plank, T., Dalton, H., & Leeman, W. P. (2009). Constraints on the depths and temperatures of basaltic magma generation on Earth and other terrestrial planets using new thermobarometers for mafic magmas. Earth and Planetary Science Letters, 279(1-2), 20-33. https://doi.org/10.1016/j.epsl.2008.12.020 | spa |
dc.relation.references | Lee, J. Y., Marti, K., Severinghaus, J. P., Kawamura, K., Yoo, H. S., Lee, J. B., & Kim, J. S. (2006). A redetermination of the isotopic abundances of atmospheric Ar. Geochimica et Cosmochimica Acta, v. 70(17), p. 4507-4512. doi.org/10.1016/j.gca.2006.06.1563 | spa |
dc.relation.references | Lemiszki, P. J., & Brown, L. D. (1988). Variable crustal structure of strike-slip fault zones as observed on deep seismic reflection profiles. Geological Society of America Bulletin, 100(5), 665-676. https://doi.org/10.1130/0016-7606(1988)100<0665:vcsoss>2.3.co;2 | spa |
dc.relation.references | León, S., Monsalve, G., & Bustamante, C. (2021). How Much Did the Colombian Andes Rise by the Collision of the Caribbean Oceanic Plateau? Geophysical Research Letters, 48(7), 1-11. https://doi.org/10.1029/2021GL093362 | spa |
dc.relation.references | Levene, H. (1960). "Robust Tests for Equality of Variances." Contributions to Probability and Statistics. (Edited by I. Olkin, et al.) Stanford: Stanford University Press. Chapter 25. pp. 278-292. | spa |
dc.relation.references | Linnen, R. L., & Keppler, H. (2002). Melt composition control of Zr/Hf fractionation in magmatic processes. Geochimica et Cosmochimica Acta, 66(18), 3293-3301. https://doi.org/10.1016/S0016-7037(02)00924-9 | spa |
dc.relation.references | Lonsdale, P. (2005). Creation of the Cocos and Nazca plates by fission of the Farallon plate. Tectonophysics, 404(3-4), 237-264. https://doi.org/10.1016/j.tecto.2005.05.011 | spa |
dc.relation.references | Ludwig, K. R., (2003). User’s Manual for Isoplot 3.00. Berkeley Geochronology Center: Berkeley, CA, 70 p. | spa |
dc.relation.references | Ludwig, K. R., 2012. Isoplot 3.75: A geochronological toolkit for Microsoft Excel: Spec. Publ., no. 5, Berkeley Geochronological Center, Berkeley, California, 75 p. | spa |
dc.relation.references | Luffi, P., & Ducea, M. N. (2022). Chemical mohometry: Assessing crustal thickness of ancient orogens using geochemical and isotopic data. Reviews of Geophysics, 60(2), e2021RG000753. https://doi.org/10.1029/2021RG000753 | spa |
dc.relation.references | Lustrino, M. (2005). How the delamination and detachment of lower crust can influence basaltic magmatism. Earth-Science Reviews, 72(1-2), 21-38. https://doi.org/10.1016/j.earscirev.2005.03.004 | spa |
dc.relation.references | MacDonald, W. D., Estrada, J. J., Sierra, G. M., & Gonzalez, H. (1996). Late Cenozoic tectonics and paleomagnetism of North Cauca Basin intrusions, Colombian Andes: Dual rotation modes. Tectonophysics, 261(4), 277-289. https://doi.org/10.1016/0040-1951(95)00184-0 | spa |
dc.relation.references | Malusà, M. G., Villa, I. M., Vezzoli, G., & Garzanti, E. (2011). Detrital geochronology of unroofing magmatic complexes and the slow erosion of Oligocene volcanoes in the Alps. Earth and Planetary Science Letters, 301(1-2), 324-336. https://doi.org/10.1016/j.epsl.2010.11.019 | spa |
dc.relation.references | Mann, H. B., & Whitney, D. R. (1947). On a Test of Whether one of Two Random Variables is Stochastically Larger than the Other. The annals of mathematical statistics, 18(1), 50-60. https://doi.org/10.1214/aoms/1177730491 | spa |
dc.relation.references | Marín-Cerón, M. I., Moriguti, T., Makishima, A., & Nakamura, E. (2010). Slab decarbonation and CO2 recycling in the Southwestern Colombian volcanic arc. Geochimica et Cosmochimica Acta, 74(3), 1104-1121. https://doi.org/10.1016/j.gca.2009.10.031 | spa |
dc.relation.references | Marriner, G. F., & Millward, D. (1984). The petrology and geochemistry of Cretaceous to Recent volcanism in Colombia: the magmatic history of an accretionary plate margin. Journal of the Geological Society, 141(3), 473-486. https://doi.org/10.1144/gsjgs.141.3.0473 | spa |
dc.relation.references | Mattinson, J. M. (2005). Zircon U-Pb chemical abrasion (“CA-TIMS”) method: Combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages. Chemical Geology, 220(1-2), 47-66. https://doi.org/10.1016/j.chemgeo.2005.03.011 | spa |
dc.relation.references | McCourt, W., Muñoz, U., & Villegas, V. (1990). Regional Geology and Gold Potential of the GuapieNapi Drainage Basin and Upper Timbiqui River. In: British Geological Survey, Overseas Geology Series. Technical Report WC/90/34. Cauca Department, SW Colombia. | spa |
dc.relation.references | McDonough, W. F., & Sun, S.-S. (1995). The composition of the earth. Chemical Geology, 120(3-4), 223-253. https://doi.org/10.1016/0009-2541(94)00140-4 | spa |
dc.relation.references | McKay, M. P., Jackson, W. T., & Hessler, A. M. (2018). Tectonic stress regime recorded by zircon Th/U. Gondwana Research, 57, 1-9. https://doi.org/10.1016/j.gr.2018.01.004 | spa |
dc.relation.references | McKenzie, N. R., Smye, A. J., Hegde, V. S., & Stockli, D. F. (2018). Continental growth histories revealed by detrital zircon trace elements: A case study from India. Geology, 46(3), 275-278. https://doi.org/10.1130/G39973.1 | spa |
dc.relation.references | Médard, E., Schmidt, M. W., Schiano, P., & Ottolini, L. (2006). Melting of amphibole-bearing wehrlites: An experimental study on the origin of ultra-calcic nepheline-normative melts. Journal of Petrology, 47(3), 481-504. https://doi.org/10.1093/petrology/egi083 | spa |
dc.relation.references | Miller, C. F., McDowell, S. M., & Mapes, R. W. (2003). Hot and cold granites: Implications of zircon saturation temperatures and preservation of inheritance. Geology, 31(6), 529-532. https://doi.org/10.1130/0091-7613(2003)031<0529:HACGIO>2.0.CO;2 | spa |
dc.relation.references | Miller, K. G., Sugarman, P. J., Browning, J. V., Kominz, M. A., Hernández, J. C., Olsson, R. K., Wright, J. D., Feigenson, M. D., & Van Sickel, W. (2003). Late Cretaceous chronology of large, rapid sea-level changes: Glacioeustasy during the greenhouse world. Geology, 31(7), 585. https://doi.org/10.1130/0091-7613(2003)031<0585:lccolr>2.0.co;2 | spa |
dc.relation.references | Min K., Mundil R., Renne P. R., and Ludwig K. R. (2000) A test for systematic errors in 40Ar-39Ar geochronology through comparison with U-Pb analysis of a 1.1 Ga rhyolite. Geochimica et Cosmochimica Acta, 64, 73-98. doi.org/10.1016/S0016-7037(99)00204-5 | spa |
dc.relation.references | Monsalve, M. L., & Pulgarín, B. (1999). Cadena volcánica de Los Coconucos (Colombia): Centros eruptivos y productos recientes. Boletín Geológico, 37(1-3), 16-51. | spa |
dc.relation.references | Monsalve-Bustamante, M. L. (2020). The volcanic front in Colombia: Segmentation and recent and historical activity. In: Gómez, J. & Pinilla-Pachon, A. O. (editors), The Geology of Colombia, Volume 4 Quaternary. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 38, 97-159. Bogotá. https://doi.org/10.32685/pub.esp.38.2019.0 | spa |
dc.relation.references | Monsalve-Bustamante, M. L., Gómez, J. & Núñez-Tello, A. (2020). Rear-arc small-volume basaltic volcanism in Colombia: Monogenetic volcanic fields. In: Gómez, J. & Pinilla-Pachon, A. O. (editors), The Geology of Colombia, Volume 4 Quaternary. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 38, 353-396. Bogotá. https://doi.org/10.32685/pub.esp.38.2019.10 | spa |
dc.relation.references | Montes, C., Cardona, A., Jaramillo, C., Pardo, A., Silva, J. C., Valencia, V., Ayala, C., Pérez-Angel, L. C., Rodriguez-Parra, L. A., Ramirez, V., & Niño, H. (2015). Middle Miocene closure of the Central American Seaway. Science, 348(6231), 226-229. https://doi.org/10.1126/science.aaa2815 | spa |
dc.relation.references | Montes, C., Cardona, A., McFadden, R., Moron, S. E., Silva, C. A., Restrepo-Moreno, S., Ramirez, D. A., Hoyos, N., Wilson, J., Farris, D., Bayona, G. A., Jaramillo, C. A., Valencia, V., Bryan, J., & Flores, J. A. (2012). Evidence for middle Eocene and younger land emergence in central Panama: Implications for Isthmus closure. Geological Society of America Bulletin, 124(5-6), 780-799. https://doi.org/10.1130/b30528.1 | spa |
dc.relation.references | Montes, C., Guzman, G., Bayona, G., Cardona, A., Valencia, V., & Jaramillo, C. (2010). Clockwise rotation of the Santa Marta massif and simultaneous Paleogene to Neogene deformation of the Plato-San Jorge and Cesar-Ranchería basins. Journal of South American Earth Sciences, 29(4), 832-848. https://doi.org/10.1016/j.jsames.2009.07.010 | spa |
dc.relation.references | Montes, C., Rodriguez-Corcho, A. F., Bayona, G., Hoyos, N., Zapata, S., & Cardona, A. (2019). Continental margin response to multiple arc-continent collisions: The Northern Andes-Caribbean margin. Earth-Science Reviews, 198, 102903. https://doi.org/10.1016/j.earscirev.2019.102903 | spa |
dc.relation.references | Mora-Páez, H., Kellogg, J. N., Freymueller, J. T., Mencin, D., Fernandes, R. M. S., Diederix, H., LaFemina, P., Cardona-Piedrahita, L., Lizarazo, S., Peláez-Gaviria, J.-R., Díaz-Mila, F., Bohórquez-Orozco, O., Giraldo-Londoño, L., & Corchuelo-Cuervo, Y. (2019). Crustal deformation in the northern Andes - A new GPS velocity field. Journal of South American Earth Sciences, 89, 76-91. https://doi.org/10.1016/j.jsames.2018.11.002 | spa |
dc.relation.references | Morency, C., & Doin, M.-P. (2004). Numerical simulations of the mantle lithosphere delamination. Journal of Geophysical Research, 109(B03410), 1-17. https://doi.org/10.1029/2003jb002414 | spa |
dc.relation.references | Morón, S., Fox, D. L., Feinberg, J. M., Jaramillo, C., Bayona, G., Montes, C., & Bloch, J. I. (2013). Climate change during the Early Paleogene in the Bogotá Basin (Colombia) inferred from paleosol carbon isotope stratigraphy, major oxides, and environmental magnetism. Palaeogeography, Palaeoclimatology, Palaeoecology, 388, 115-127. https://doi.org/10.1016/j.palaeo.2013.08.010 | spa |
dc.relation.references | Morton, A. C., & Hallsworth, C. (2007). Stability of detrital heavy minerals during burial diagenesis. In Developments in Sedimentology, 58, 215-245. https://doi.org/10.1016/S0070-4571(07)58007-6 | spa |
dc.relation.references | Murray, K. E., Ducea, M. N., & Schoennbohm, L. (2015). Foundering-driven lithospheric melting: The source of central Andean mafic lavas on the Puna Plateau (22 S-27 S). In: DeCelles, P. G., Ducea, M. N., Carrapa, B., & Kapp, P. A. (Eds.), Geodynamics of a Cordilleran Orogenic System: The Central Andes of Argentina and Northern Chile (pp. 139-166). Geological Society of America Memoir 212. https://doi.org/10.1130/2015.1212(08) | spa |
dc.relation.references | Nakakuki, T., & Mura, E. (2013). Dynamics of slab rollback and induced back-arc basin formation. Earth and Planetary Science Letters, 361, 287-297. https://doi.org/10.1016/j.epsl.2012.10.031 | spa |
dc.relation.references | Nesbitt, H. W., & Young, G. M. (1982). Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299(5885), 715-717. https://doi.org/10.1038/299715a0 | spa |
dc.relation.references | Notini, L., Scambelluri, M., Tommasi, A., Zanetti, A., Ferri, F., Rodríguez-Vargas, A., & Rampone, E. (2024). Probing the deep mantle wedge in an active subduction zone: Xenoliths from the Mercaderes Volcanic District, Southern Colombia. Lithos, 464-465, 107401. https://doi.org/10.1016/j.lithos.2023.107401 | spa |
dc.relation.references | O’Hara, M. J. (1968). The bearing of phase equilibria studies in synthetic and natural systems on the origin and evolution of basic and ultrabasic rocks. Earth-Science Reviews 4, 69-133. | spa |
dc.relation.references | Ordoñez, O., Pimentel, M., Armstrong, R., Gioias, S., & Junges, S. (2001). U-Pb SHRIMP and Rb-Sr ages of the Sonsón Batholith. Symposium A Quarterly Journal in Modern Foreign Literatures. | spa |
dc.relation.references | Ort, M. H., Coira, B. L., & Mazzoni, M. M. (1996). Generation of a crust-mantle magma mixture: magma sources and contamination at Cerro Panizos, central Andes. Contributions to Mineralogy and Petrology, 123(3), 308-322. https://doi.org/10.1007/s004100050158 | spa |
dc.relation.references | Pardo-Trujillo, A., Cardona, A., Giraldo, A. S., León, S., Vallejo, D. F., Trejos-Tamayo, R., Plata, A., Ceballos, J., Echeverri, S., Barbosa-Espitia, A., Slattery, J., Salazar-Ríos, A., Botello, G. E., Celis, S. A., Osorio-Granada, E., & Giraldo-Villegas, C. A. (2020). Sedimentary record of the Cretaceous-Paleocene arc-continent collision in the northwestern Colombian Andes: Insights from stratigraphic and provenance constraints. Sedimentary Geology, 401, 105627. https://doi.org/10.1016/j.sedgeo.2020.105627 | spa |
dc.relation.references | Parra, M., Echeverri, S., Patiño, A. M., Ramírez, J.C., Mora, A., Sobel, E. R., Almendral, A. & Pardo-Trujillo, A. (2020). Cenozoic evolution of the Sierra Nevada de Santa Marta, Colombia. In: Gómez, J. & Mateus-Zabala, D. (editors), The Geology of Colombia, Volume 3 Paleogene - Neogene. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 37, 185-213. Bogotá. https://doi.org/10.32685/pub.esp.37.2019.07 | spa |
dc.relation.references | Paterson, B. A., & Stephens, W. E. (1992). Kinetically induced compositional zoning in titanite: implications for accessory-phase/melt partitioning of trace elements. Contributions to Mineralogy and Petrology, 109(3), 373-385. https://doi.org/10.1007/BF00283325 | spa |
dc.relation.references | Paterson, S. R., & Ducea, M. N. (2015). Arc magmatic tempos: Gathering the evidence. Elements, 11(2), 91-98. https://doi.org/10.2113/gselements.11.2.91 | spa |
dc.relation.references | Paterson, S. R., Okaya, D., Memeti, V., Economos, R., & Miller, R. B. (2011). Magma addition and flux calculations of incrementally constructed magma chambers in continental margin arcs: Combined field, geochronologic, and thermal modeling studies. Geosphere, 7(6), 1439-1468. https://doi.org/10.1130/ges00696.1 | spa |
dc.relation.references | Paton, C., Hellstrom, J., Paul, B., Woodhead, J., & Hergt, J. (2011). Iolite: Freeware for the visualisation and processing of mass spectrometric data. Journal of Analytical Atomic Spectrometry, 26(12), 2508. https://doi.org/10.1039/c1ja10172b | spa |
dc.relation.references | Peccerillo, A., & Taylor, S. R. (1976). Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1), 63-81. https://doi.org/10.1007/bf00384745 | spa |
dc.relation.references | Pérez-Consuegra, N., Hoke, G. D., Mora, A., Fitzgerald, P., Sobel, E. R., Sandoval, J. R., Glodny, J., Valencia, V., Parra, M., & Zapata, S. (2021). The case for tectonic control on erosional exhumation on the tropical northern Andes based on thermochronology data. Tectonics, 40(4). https://doi.org/10.1029/2020tc006652 | spa |
dc.relation.references | Piedrahita, V. A., Bernet, M., Chadima, M., Sierra, G. M., Marín-Cerón, M. I., & Toro, G. E. (2017). Detrital zircon fission-track thermochronology and magnetic fabric of the Amagá Formation (Colombia): Intracontinental deformation and exhumation events in the northwestern Andes. Sedimentary Geology, 356, 26-42. https://doi.org/10.1016/j.sedgeo.2017.05.003 | spa |
dc.relation.references | Pindell, J. L., & Kennan, L. (2009). Tectonic evolution of the Gulf of Mexico, Caribbean and northern South America in the mantle reference frame: An update. Geological Society Special Publication, 328(1982), 1-55. https://doi.org/10.1144/SP328.1 | spa |
dc.relation.references | Pinilla-Ocampo, A., Ríos-Blandon, P. A., Rodríguez-Ramos, B. P., Sánchez-Aguilar, J. J., Pulgarín-Alzate, B., Borrero-Peña, C. A., & Roa-Vargas, H. J. (2008). El Neogeno Volcánico en el Altiplano Nariñense, suroccidente Colombiano. Geología Colombiana, 33, 69-78. | spa |
dc.relation.references | Plank, T. (2005). Constraints from thorium/lanthanum on sediment recycling at subduction zones and the evolution of the continents. Journal of Petrology, 46(5), 921-944. https://doi.org/10.1093/petrology/egi005 | spa |
dc.relation.references | Poveda, E., Monsalve, G., & Vargas, C. A. (2015). Receiver functions and crustal structure of the northwestern Andean region, Colombia: Receiver functions in Colombia. Journal of Geophysical Research. Solid Earth, 120(4), 2408-2425. https://doi.org/10.1002/2014jb011304 | spa |
dc.relation.references | Priestley, K., Ho, T., & Mitra, S. (2019). The crustal structure of the Himalaya: A synthesis. Geological Society, London, Special Publications, 483(1), 483-516. https://doi.org/10.1144/sp483-2018-127 | spa |
dc.relation.references | Profeta, L., Ducea, M. N., Chapman, J. B., Paterson, S. R., Gonzales, S. M. H., Kirsch, M., Petrescu, L., & DeCelles, P. G. (2015). Quantifying crustal thickness over time in magmatic arcs. Scientific Reports, 5(1), 17786. https://doi.org/10.1038/srep17786 | spa |
dc.relation.references | Pyle, D. M. (2015). Sizes of volcanic eruptions. In The Encyclopedia of Volcanoes (pp. 257-264). Elsevier. | spa |
dc.relation.references | Quiroga, D. E., Currie, C. A., & Pearse, J. (2024). Lithosphere removal in the Sierra Nevada de Santa Marta, Colombia. Journal of Geophysical Research. Solid Earth, 129, e2023JB027646. https://doi.org/10.1029/2023JB027646 | spa |
dc.relation.references | Ramos, V. A. (2009). Anatomy and global context of the Andes: Main geologic features and the Andean orogenic cycle. En S. M. Kay, V. A. Ramos, & W. R. Dickinson (Eds.), Backbone of the Americas: Shallow Subduction, Plateau Uplift, and Ridge and Terrane Collision (pp. 31-65). Geological Society of America, Memoir 204. https://doi.org/10.1130/2009.1204(02) | spa |
dc.relation.references | Ramos, V. A., & Folguera, A. (2009). Andean flat-slab subduction through time. En J. B. Murphy, J. D. Keppie, & A. J. Hynes (Eds.), Ancient Orogens and Modern Analogues (pp. 31-54). Geological Society, London, Special Publications, 327. https://doi.org/10.1144/sp327.3 | spa |
dc.relation.references | Restrepo, J. J., & Toussaint, J. F. (1988). Terranes and continental accretion in the Colombian Andes. Episodes. https://doi.org/10.18814/epiiugs/1988/v11i3/006 | spa |
dc.relation.references | Restrepo, M., Bustamante, C., Cardona, A., Beltrán-Triviño, A., & Valencia, V. A. (2023). Geochemistry and geochronology of Permian plutonic rocks at the north‐western margin of Gondwana. Geological Journal, 58(7), 2818-2840. https://doi.org/10.1002/gj.4743 | spa |
dc.relation.references | Rodríguez, E. E., Beck, S. L., Ruiz, M., Meltzer, A., Portner, D. E., Hernández, S., Segovia, M., Agurto-Detzel, H., & Charvis, P. (2023). Seismic imaging of the Northern Andean subduction zone from teleseismic tomography: a torn and fragmented Nazca slab. Geophysical Journal International, 236(1), 593-606. https://doi.org/10.1093/gji/ggad421 | spa |
dc.relation.references | Rodríguez, G., & González, H. (2004). Caracteristicas geoquimicas y marco tectonico de los basaltos alcalinos del sur de Colombia. Boletín de Ciencias de la Tierra, 16, 9-22. | spa |
dc.relation.references | Rodríguez, L. M., & Sánchez, J. J. (2018). Morfometría, estratigrafía, petrografía y geoquímica del cono de escoria El Morro, municipio La Argentina (Huila, Colombia). Boletín de Geología, 40(3), 49-65. dx.doi.org/10.18273/revbol.v40n3-2018003 | spa |
dc.relation.references | Rodríguez-Alonso, M. D., Peinado, M., López-Plaza, M., Franco, P., Carnicero, A., & Gonzalo, J. C. (2004). Neoproterozoic-Cambrian synsedimentary magmatism in the Central Iberian Zone (Spain): Geology, petrology and geodynamic significance. International Journal of Earth Sciences, 93(5), 897-920. https://doi.org/10.1007/s00531-004-0425-4 | spa |
dc.relation.references | Rodriguez-Vargas, A., Koester, E., Mallmann, G., Conceição, R. V., Kawashita, K., & Weber, M. B. I. (2005). Mantle diversity beneath the Colombian Andes, Northern Volcanic Zone: Constraints from Sr and Nd isotopes. Lithos, 82(3-4), 471-484. https://doi.org/10.1016/j.lithos.2004.09.027 | spa |
dc.relation.references | Rosenbaum, G., Caulfield, J. T., Ubide, T., Ward, J. F., Sandiford, D., & Sandiford, M. (2021). Spatially and geochemically anomalous arc magmatism: Insights from the Andean arc. Geochemistry, Geophysics, Geosystems: G(3), 22(6). https://doi.org/10.1029/2021gc009688 | spa |
dc.relation.references | Rosenbaum, G., Sandiford, M., Caulfield, J., & Garrison, J. M. (2019). A trapdoor mechanism for slab tearing and melt generation in the northern Andes. Geology, 47(1), 23-26. https://doi.org/10.1130/g45429.1 | spa |
dc.relation.references | Ross, J., 2019, NMGRL/pychron v. 18.2: Zenodo, https://doi.org/10.5281/zenodo.3237834. | spa |
dc.relation.references | Rubatto, D. (2002). Zircon trace element geochemistry: partitioning with garnet and the link between U-Pb ages and metamorphism. Chemical Geology, 184(1-2), 123-138. https://doi.org/10.1016/s0009-2541(01)00355-2 | spa |
dc.relation.references | Rubatto, D. (2017). Zircon: The Metamorphic Mineral. Reviews in Mineralogy and Geochemistry, 83(1), 261-295.. https://doi.org/10.2138/rmg.2017.83.09 | spa |
dc.relation.references | Rudnick, R. L. (1992). Restites, Eu anomalies and the lower continental crust. Geochimica et Cosmochimica Acta, 56(3), 963-970. https://doi.org/10.1016/0016-7037(92)90040-p | spa |
dc.relation.references | Rueda-Gutiérrez, J. B. (2019). Contributions to the Magmatism knowledge of the Central Cordillera of Colombia in its Eastern Flank: Geothermal Area of San Diego, Samaná, Caldas. Boletin de Geologia, 41(2), 45-70. https://doi.org/10.18273/revbol.v41n2-2019003 | spa |
dc.relation.references | Sakata, S., Hirakawa, S., Iwano, H., Danhara, T., Guillong, M., & Hirata, T. (2017). A new approach for constraining the magnitude of initial disequilibrium in Quaternary zircons by coupled uranium and thorium decay series dating. Quaternary Geochronology, 38, 1-12. https://doi.org/10.1016/j.quageo.2016.11.002 | spa |
dc.relation.references | Salazar, C. A., Bustamante, C., & Archanjo, C. J. (2016). Magnetic fabric (AMS, AAR) of the Santa Marta batholith (northern Colombia) and the shear deformation along the Caribbean Plate margin. Journal of South American Earth Sciences, 70, 55-68. https://doi.org/10.1016/j.jsames.2016.04.011 | spa |
dc.relation.references | Salazar-Naranjo, A. F., & Vlach, S. R. F. (2023). New experimental constraints for the evolution and thermobarometry of alkali ultrabasic to intermediate igneous rocks. Journal of Petrology, 64(11). https://doi.org/10.1093/petrology/egad078 | spa |
dc.relation.references | Samacá-Torres, W. (2016). Análisis morfométrico y Geomorfológico de la Caldera de Paletará (Cauca), Colombia. Universidad Nacional de Colombia. | spa |
dc.relation.references | Sánchez-Torres, L., Murcia, H., & Schonwalder-Ángel, D. (2022). The northernmost volcanoes in South America (Colombia, 5-6°N): The potentially active Samaná monogenetic volcanic field. Frontiers in earth science, 10. https://doi.org/10.3389/feart.2022.880003 | spa |
dc.relation.references | Sanín, M. J., & Galeano, G. (2011). A revision of the Andean wax palms, Ceroxylon (Arecaceae). Phytotaxa, 34(1), 1. https://doi.org/10.11646/phytotaxa.34.1.1 | spa |
dc.relation.references | Sanín, M. J., Cardona, A., Valencia-Montoya, W. A., Jiménez-Torres, M. F., Carvalho-Madrigal, S., Gómez, A. C., Bacon, C. D., Roquemen-Tangarife, T., Jaramillo, J. S., Zapata, S., Valencia, V., Arboleda-Valencia, J. W., Vargas, V., & Paris, M. (2022). Volcanic events coincide with plant dispersal across the Northern Andes. Global and Planetary Change, 210, 103757. https://doi.org/10.1016/j.gloplacha.2022.103757 | spa |
dc.relation.references | Schaen, A. J., Jicha, B. R., Hodges, K. V., Vermeesch, P., Stelten, M. E., Mercer, C. M., Phillips, D., Rivera, T. A., Jourdan, F., Matchan, E. L., Hemming, S. R., Morgan, L. E., Kelley, S. P., Cassata, W. S., Heizler, M. T., Vasconcelos, P. M., Benowitz, J. A., Koppers, A. A. P., Mark, D. F., … Singer, B. S. (2021). Interpreting and reporting 40Ar/39Ar geochronologic data. Geological Society of America Bulletin, 133(3-4), 461-487. https://doi.org/10.1130/b35560.1 | spa |
dc.relation.references | Schaltegger, U., Schmitt, A. K., & Horstwood, M. S. A. (2015). U-Th-Pb zircon geochronology by ID-TIMS, SIMS, and laser ablation ICP-MS: Recipes, interpretations, and opportunities. Chemical Geology, 402, 89-110. https://doi.org/10.1016/j.chemgeo.2015.02.028 | spa |
dc.relation.references | Schärer, U. (1984). The effect of initial230Th disequilibrium on young UPb ages: the Makalu case, Himalaya. Earth and Planetary Science Letters, 67(2), 191-204. https://doi.org/10.1016/0012-821x(84)90114-6 | spa |
dc.relation.references | Schiano, P., Eiler, J. M., Hutcheon, I. D., & Stolper, E. M. (2000). Primitive CaO‐rich, silica‐undersaturated melts in island arcs: Evidence for the involvement of clinopyroxene‐rich lithologies in the petrogenesis of arc magmas. Geochemistry, Geophysics, Geosystems: G3, 1(1). https://doi.org/10.1029/1999gc000032 | spa |
dc.relation.references | Schiano, P., Monzier, M., Eissen, J.-P., Martin, H., & Koga, K. T. (2010). Simple mixing as the major control of the evolution of volcanic suites in the Ecuadorian Andes. Contributions to Mineralogy and Petrology, 160(2), 297-312. https://doi.org/10.1007/s00410-009-0478-2 | spa |
dc.relation.references | Schmitz, M. D., & Schoene, B. (2007). Derivation of isotope ratios, errors and error correlations for U-Pb geochronology using 205Pb-235U-(233U)-spiked isotope dilution thermal ionization mass spectrometric data. Geochemistry, Geophysics, Geosystems: G(3), 8(8), Q08006. https://doi.org/10.1029/2006GC001492 | spa |
dc.relation.references | Schmitz, M., Ramírez, K., Mazuera, F., Ávila, J., Yegres, L., Bezada, M., & Levander, A. (2021). Moho depth map of northern Venezuela based on wide-angle seismic studies. Journal of South American Earth Sciences, 107, 103088. https://doi.org/10.1016/j.jsames.2020.103088 | spa |
dc.relation.references | Schulte-Pelkum, V., & Ben-Zion, Y. (2012). Apparent vertical Moho offsets under continental strike-slip faults from lithology contrasts in the seismogenic crust. Bulletin of the Seismological Society of America, 102(6), 2757-2763. https://doi.org/10.1785/0120120139 | spa |
dc.relation.references | Schwartz, T. M., Surpless, K. D., Colgan, J. P., Johnstone, S. A., & Holm-Denoma, C. S. (2021). Detrital zircon record of magmatism and sediment dispersal across the North American Cordilleran arc system (28-48°N). Earth-Science Reviews, 220, 103734. https://doi.org/10.1016/j.earscirev.2021.103734 | spa |
dc.relation.references | Sheldrake, T., Caricchi, L., & Scutari, M. (2020). Tectonic Controls on Global Variations of Large-Magnitude Explosive Eruptions in Volcanic Arcs. Frontiers in Earth Science, 8, 1-14. https://doi.org/10.3389/feart.2020.00127 | spa |
dc.relation.references | Sláma, J., Košler, J, Condon, D.J., Crowley, J.L., Gerdes, A., Hanchar, J.M., Horstwood, M.S.A., Morris, G.A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B. Tubrett, M.N, Whitehouse, M.J., 2008, Plešovice zircon — A new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology, 249: 1-35. | spa |
dc.relation.references | Sorbadere, F., Médard, E., Laporte, D., & Schiano, P. (2013). Experimental melting of hydrous peridotite-pyroxenite mixed sources: Constraints on the genesis of silica-undersaturated magmas beneath volcanic arcs. Earth and Planetary Science Letters, 384, 42-56. https://doi.org/10.1016/j.epsl.2013.09.026 | spa |
dc.relation.references | Stern, C. R. (2020). The role of subduction erosion in the generation of Andean and other convergent plate boundary arc magmas, the continental crust and mantle. Gondwana Research. 88, 220-249. https://doi.org/10.1016/j.gr.2020.08.006 | spa |
dc.relation.references | Stern, T., Houseman, G., Salmon, M., & Evans, L. (2013). Instability of a lithospheric step beneath western North Island, New Zealand. Geology, 41(4), 423-426. https://doi.org/10.1130/g34028.1 | spa |
dc.relation.references | Sundell, K. E., George, S. W. M., Carrapa, B., Gehrels, G. E., Ducea, M. N., Saylor, J. E., & Pepper, M. (2022). Crustal thickening of the northern central Andean plateau inferred from trace elements in zircon. Geophysical Research Letters, 49(3). https://doi.org/10.1029/2021gl096443 | spa |
dc.relation.references | Sundell, K., Laskowski, A., Kapp, P., Ducea, M., & Chapman, J. (2021). Jurassic to Neogene quantitative crustal thickness estimates in southern Tibet. GSA today, 31(6), 4-10. https://doi.org/10.1130/gsatg461a.1 | spa |
dc.relation.references | Sundell, K., Laskowski, A., Kapp, P., Ducea, M., & Chapman, J. (2021). Jurassic to Neogene quantitative crustal thickness estimates in southern Tibet. GSA today: a publication of the Geological Society of America, 31(6), 4-10. https://doi.org/10.1130/gsatg461a.1 | spa |
dc.relation.references | Syracuse, E. M., & Abers, G. A. (2006). Global compilation of variations in slab depth beneath arc volcanoes and implications. Geochemistry, Geophysics, Geosystems: G(3), 7(5). https://doi.org/10.1029/2005GC001045 | spa |
dc.relation.references | Syracuse, E. M., Maceira, M., Prieto, G. A., Zhang, H., & Ammon, C. J. (2016). Multiple plates subducting beneath Colombia, as illuminated by seismicity and velocity from the joint inversion of seismic and gravity data. Earth and Planetary Science Letters, 444, 139-149. https://doi.org/10.1016/j.epsl.2016.03.050 | spa |
dc.relation.references | Syracuse, E. M., van Keken, P. E., & Abers, G. A. (2010). The global range of subduction zone thermal models. Physics of the Earth and Planetary Interiors, 183(1–2), 73–90. https://doi.org/10.1016/j.pepi.2010.02.004 | spa |
dc.relation.references | Tang, M., Erdman, M., Eldridge, G., & Lee, C.-T.A. (2018). The redox “filter” beneath magmatic orogens and the formation of continental crust: Science Advances, 4(5), eaar4444, https://doi .org/10.1126/sciadv.aar4444. | spa |
dc.relation.references | Tang, M., Ji, W. Q., Chu, X., Wu, A., & Chen, C. (2021). Reconstructing crustal thickness evolution from europium anomalies in detrital zircons. Geology, 49(1), 76-80. https://doi.org/10.1130/G47745.1 | spa |
dc.relation.references | Tang, M., Lee, C.-T. A., Chen, K., Erdman, M., Costin, G., & Jiang, H. (2019b). Nb/Ta systematics in arc magma differentiation and the role of arclogites in continent formation. Nature Communications, 10(1), 235. https://doi.org/10.1038/s41467-018-08198-3 | spa |
dc.relation.references | Tang, M., Lee, C.-T.A., Costin, G., & Höfer, H.E. (2019a). Recycling reduced iron at the base of magmatic orogens: Earth and Planetary Science Letters, 528, 115827. https://doi.org/10.1016/ j.epsl.2019.115827 | spa |
dc.relation.references | Thorkelson, D. J., Madsen, J. K., & Sluggett, C. L. (2011). Mantle flow through the Northern Cordilleran slab window revealed by volcanic geochemistry. Geology, 39(3), 267-270. https://doi.org/10.1130/g31522.1 | spa |
dc.relation.references | Torres-Hernández, M. P. (2010). Petrografía, geocronología y geoquímica de las ignimbritas de la Formación Popayán, en el contexto del vulcanismo del Suroccidente de Colombia. MsC. Thesis. Universidad EAFIT. 1-132p. | spa |
dc.relation.references | Van Avendonk, H. J. A., Kuo-Chen, H., McIntosh, K. D., Lavier, L. L., Okaya, D. A., Wu, F. T., Wang, C. Y., Lee, C. S., & Liu, C. S. (2014). Deep crustal structure of an arc-continent collision: Constraints from seismic traveltimes in central Taiwan and the Philippine Sea: Central Taiwan crustal structure. Journal of Geophysical Research. Solid Earth, 119(11), 8397-8416. https://doi.org/10.1002/2014jb011327 | spa |
dc.relation.references | van der Wiel, A.M. (1991). Uplift and Volcanism of the SE Colombian Andes in relation to Neogene sedimentation in the Upper Magdalena Valley. PhD. Thesis. University of Wageningen, 1-208 p. | spa |
dc.relation.references | Vermeesch, P. (2018). IsoplotR: A free and open toolbox for geochronology. Geoscience Frontiers, 9(5), 1479-1493. https://doi.org/10.1016/j.gsf.2018.04.001 | spa |
dc.relation.references | Vermeesch, P. (2021). Maximum depositional age estimation revisited. Geoscience Frontiers, 12(2), 843-850. https://doi.org/10.1016/j.gsf.2020.08.008 | spa |
dc.relation.references | Vervoort, J. D., & Blichert-Toft, J. (1999). Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time. Geochimica et Cosmochimica Acta, 63(3-4), 533-556. doi.org/10.1016/S0016-7037(98)00274-9. | spa |
dc.relation.references | Vervoort, J. D., Patehett, P. J., Söderlund, U., & Baker, M. (2004). Isotopie composition of Yb and the determination of Lu concentrations and Lu/Hf ratios by isotope dilution using MC-ICPMS. Geochemistry, Geophysics, Geosystems: G(3), 5(11). https://doi.org/10.1029/2004GC000721 | spa |
dc.relation.references | Vervoort, J. D., & Patchett, P. J., (1996). Behavior of hafnium and neodymium isotopes in the crust: Constraints from Precambrian crustally derived granites. Geochimica et Cosmochimica Acta 60, 3717-3733. https://doi.org/10.1016/0016-7037(96)00201-3 | spa |
dc.relation.references | Villagómez, D., & Spikings, R. (2013). Thermochronology and tectonics of the Central and Western Cordilleras of Colombia: Early Cretaceous-Tertiary evolution of the Northern Andes. Lithos, 160-161, 228-249. https://doi.org/10.1016/j.lithos.2012.12.008 | spa |
dc.relation.references | Villagómez, D., Spikings, R., Magna, T., Kammer, A., Winkler, W., & Beltrán, A. (2011). Geochronology, geochemistry and tectonic evolution of the Western and Central cordilleras of Colombia. Lithos, 125(3-4), 875-896. https://doi.org/10.1016/j.lithos.2011.05.003 | spa |
dc.relation.references | Vinasco, C. J., Cordani, U. G., González, H., Weber, M., & Pelaez, C. (2006). Geochronological, isotopic, and geochemical data from Permo-Triassic granitic gneisses and granitoids of the Colombian Central Andes. Journal of South American Earth Sciences, 21(4), 355-371. https://doi.org/10.1016/j.jsames.2006.07.007 | spa |
dc.relation.references | Wagner, L. S., Jaramillo, J. S., Ramírez-Hoyos, L. F., Monsalve, G., Cardona, A., & Becker, T. W. (2017). Transient slab flattening beneath Colombia. Geophysical Research Letters, 44(13), 6616-6623. https://doi.org/10.1002/2017gl073981 | spa |
dc.relation.references | Waldbaum, D. R. (1971). Temperature changes associated with adiabatic decompression in geological processes. Nature, 232(5312), 545-547. https://doi.org/10.1038/232545a0 | spa |
dc.relation.references | Wang, X., Griffin, W. L., & Chen, J. (2010). Hf contents and Zr/Hf ratios in granitic zircons. Geochemical Journal, 44(1), 65-72. https://doi.org/10.2343/geochemj.1.0043 | spa |
dc.relation.references | Weber, M. B. I., 1998. The Mercaderes-Rio Mayo xenoliths, Colombia: their bearing on mantle and crustal processes in the Northern Andes. PhD. Thesis. University of Leicester (United Kingdom), 1-295 p. | spa |
dc.relation.references | Weber, M. B. I., Tarney, J., Kempton, P. D., & Kent, R. W. (2002). Crustal make-up of the northern Andes: evidence based on deep crustal xenolith suites, Mercaderes, SW Colombia. Tectonophysics, 345(1-4), 49-82. https://doi.org/10.1016/s0040-1951(01)00206-2 | spa |
dc.relation.references | Weber, M., Cardona, A., Valencia, V., García-Casco, A., Tobón, M., & Zapata, S. (2010). U/Pb detrital zircon provenance from late cretaceous metamorphic units of the Guajira Peninsula, Colombia: Tectonic implications on the collision between the Caribbean arc and the South American margin. Journal of South American Earth Sciences, 29(4), 805-816. https://doi.org/10.1016/j.jsames.2009.10.004 | spa |
dc.relation.references | White, W. M., Albarède, F., & Télouk, P. (2000). High-precision analysis of Pb isotope ratios by multi-collector ICP-MS. Chemical Geology, 167(3-4), 257-270. https://doi.org/10.1016/s0009-2541(99)00182-5 | spa |
dc.relation.references | Wiedenbeck, M., Allé, P., Corfu, F., Griffin, W. L., Meier, M., Oberli, F., Quadt, A. V. O. N., Roddick, J. C., & Spiegel, W. (1995). Three natural zircon standards for u‐Th‐Pb, Lu‐Hf, trace element and Ree analyses. Geostandards Newsletter, 19(1), 1-23. https://doi.org/10.1111/j.1751-908x.1995.tb00147.x | spa |
dc.relation.references | Williams, I.S. (1998). U-Th-Pb geochronology by ion microprobe: M.A. McKibben, W.C. Shanks III, W.I. Ridley (Eds.), Applications of Microanalytical Techniques to Understanding Mineralizing Processes: Reviews in Economic Geology, 7, 1-35. https://doi.org/10.5382/Rev.07.01 | spa |
dc.relation.references | Woodhead, J. D., & Hergt, J. M. (2005). A preliminary appraisal of seven natural zircon reference materials for in situ Hf isotope determination. Geostandards and Geoanalytical Research, 29(2), 183-195. https://doi.org/10.1111/j.1751-908x.2005.tb00891.x | spa |
dc.relation.references | Yang, J., Cawood, P. A., Du, Y., Huang, H., Huang, H., & Tao, P. (2012). Large Igneous Province and magmatic arc sourced Permian-Triassic volcanogenic sediments in China. Sedimentary Geology, 261-262, 120-131. https://doi.org/10.1016/j.sedgeo.2012.03.018 | spa |
dc.relation.references | Zapata, S., Calderon-Diaz, L., Jaramillo, C., Oboh-Ikuenobe, F., Piedrahita, J. C., Rodríguez-Cuevas, M., Cardona, A., Sobel, E. R., Parra, M., Valencia, V., Patiño, A., Jaramillo-Rios, J. S., Flores, M., & Glodny, J. (2023a). Drainage and sedimentary response of the Northern Andes and the Pebas system to Miocene strike‐slip tectonics: A source to sink study of the Magdalena Basin. Basin Research, 35(5), 1674-1717. https://doi.org/10.1111/bre.12769 | spa |
dc.relation.references | Zapata, S., Cardona, A., Jaramillo, J. S., Patiño, A., Valencia, V., León, S., Mejía, D., Pardo-Trujillo, A., & Castañeda, J. P. (2019). Cretaceous extensional and compressional tectonics in the Northwestern Andes, prior to the collision with the Caribbean oceanic plateau. Gondwana Research: International Geoscience Journal, 66, 207-226. https://doi.org/10.1016/j.gr.2018.10.008 | spa |
dc.relation.references | Zapata, S., Jaramillo-Ríos, J. S., Botello, G.E., Siachoque, A., Calderon-Día, L. C., Cardona, A., Till, C., & Valencia, V. (2023b). Miocene Paleogeography of NW Colombia: A review of the sedimentary and magmatic evolution of the Amagá Basin a century after Grosse’s work. Revista de la Academia Colombiana de Ciencias Exactas, Fisicas y Naturales. https://doi.org/10.18257/raccefyn.1871 | spa |
dc.relation.references | Zapata, S., Zapata-Henao, M., Cardona, A., Jaramillo, C., Silvestro, D., & Oboh-Ikuenobe, F. (2021). Long-term topographic growth and decay constrained by 3D thermo-kinematic modeling: Tectonic evolution of the Antioquia Altiplano, Northern Andes. Global and Planetary Change, 203. https://doi.org/10.1016/j.gloplacha.2021.103553 | spa |
dc.relation.references | Zapata-García, G. & Rodríguez-García, G. (2020). New contributions to the knowledge about the Chocó-Panamá Arc in Colombia, including a new segment south of Colombia. In: Gómez, J. & Mateus-Zabala, D. (editors), The Geology of Colombia, Volume 3 Paleogene - Neogene. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 37, 417-450. Bogotá. https://doi.org/10.32685/pub.esp.37.2019.14 | spa |
dc.relation.references | Zapata-Villada, J. P., Cardona, A., Serna, S., & Rodríguez, G. (2021). Late Cretaceous to Paleocene magmatic record of the transition between collision and subduction in the Western and Central Cordillera of northern Colombia. Journal of South American Earth Sciences, 112, 103557. https://doi.org/10.1016/j.jsames.2021.103557 | spa |
dc.relation.references | Zhao, L., Guo, F., Fan, W., & Huang, M. (2019). Roles of Subducted Pelagic and Terrigenous Sediments in Early Jurassic Mafic Magmatism in NE China: Constraints on the Architecture of Paleo-Pacific Subduction Zone. Journal of Geophysical Research: Solid Earth 124, 2525-2550. https://doi.org/10.1029/2018JB016487 | spa |
dc.relation.references | Zieman, L., Ibañez-Mejia, M., Rooney, A. D., Bloch, E., Pardo, N., Schoene, B., & Szymanowski, D. (2023). To sink, or not to sink: The thermal and density structure of the modern northern Andean arc constrained by xenolith petrology. Geology, 51(6), 586-590. https://doi.org/10.1130/g50973.1 | spa |
dc.relation.references | Zimmerer, M. J., & McIntosh, W. C. (2012). The geochronology of volcanic and plutonic rocks at the Questa caldera: Constraints on the origin of caldera-related silicic magmas. Bulletin of the Geological Society of America, 124(7-8), 1394-1408. https://doi.org/10.1130/B30544.1. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.ddc | 550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología | spa |
dc.subject.lemb | Magnetismo | |
dc.subject.lemb | Isotopos | |
dc.subject.lemb | Cronología geológica | |
dc.subject.lemb | Geoquímica | |
dc.subject.proposal | Magmatism | eng |
dc.subject.proposal | U-Pb and Ar-Ar Geochronology | eng |
dc.subject.proposal | Geochemistry | eng |
dc.subject.proposal | Isotopes | eng |
dc.subject.proposal | Dripping, | eng |
dc.subject.proposal | Northern Andes | eng |
dc.subject.proposal | Magmatismo | spa |
dc.subject.proposal | Geocronología U-Pb y Ar-Ar | spa |
dc.subject.proposal | Geoquímica | spa |
dc.subject.proposal | Isotopos | spa |
dc.title | Magmatism as a tracer of the cenozoic crustal evolution of the Northern Andes | eng |
dc.title.translated | Magmatismo como un trazador de la evolución cortical cenozoica de los Andes del Norte | spa |
dc.type | Trabajo de grado - Doctorado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_db06 | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/doctoralThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TD | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1037324442.2024.pdf
- Tamaño:
- 8.36 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Doctorado en Ingeniería - Ciencia y Tecnología de Materiales
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: