Characterization of organic pollutants in seston, sediment, and mangrove of the Colombian Caribbean

dc.contributor.advisorMonroy López, Mario Armando
dc.contributor.advisorMancera-Rodríguez, Néstor Javier
dc.contributor.authorGarcía Meléndez, Laura Daniela
dc.contributor.cvlacGarcía Meléndez, Laura Daniela [0002034832]
dc.contributor.orcidGarcía Meléndez, Laura Daniela [0009000519252157]
dc.contributor.orcidMonroy, Mario [0000000287395687]
dc.contributor.researchgroupEcología y Conservación de Fauna Silvestre
dc.date.accessioned2026-01-19T21:48:38Z
dc.date.available2026-01-19T21:48:38Z
dc.date.issued2025-08-04
dc.descriptionIlustraciones
dc.description.abstractEl aumento de la intervención antropogénica en los ecosistemas naturales ha provocado la degradación de numerosos ambientes acuáticos, costeros y marinos. Una de las preocupaciones más urgentes es la liberación de contaminantes orgánicos (OPs), los cuales representan una amenaza significativa para la salud ambiental y humana debido a su persistencia, capacidad de bioacumulación y toxicidad. Este estudio tuvo como objetivo determinar las concentraciones de hidrocarburos aromáticos policíclicos (HAP) y bifenilos policlorados (BPC), analizar su relación con variables fisicoquímicas durante las estaciones lluviosa y seca, y evaluar el riesgo de contaminación en dos sectores costeros del Caribe colombiano influenciados por los ríos Sinú y Magdalena. El Capítulo uno se centró en el análisis de las concentraciones de HAP en seston y sedimentos. Las muestras fueron recolectadas en noviembre de 2021 (temporada de lluvias) y abril de 2022 (temporada seca), y analizadas mediante cromatografía de gases acoplada a espectrometría de masas (GC-MS). Los resultados mostraron concentraciones elevadas de HAP en el seston durante la temporada de lluvias, especialmente en la Ciénaga Grande de Santa Marta (CGSM), con valores que alcanzaron los 4428.7 ng g⁻¹, y en cinco sitios de la región del Sinú, con un promedio de 2641.3 ± 861.6 ng g⁻¹ (rango: 1421.4 a 3735.1 ng g⁻¹). En contraste, las muestras de sedimento del sector del Sinú registraron mayores niveles de HAP durante la temporada seca, con un promedio de 2870.5 ± 3218.3 ng g⁻¹ (rango: 886.4 a 8557.8 ng g⁻¹). Las principales variables que influyeron en la presencia de compuestos de alto peso molecular (HAP-APM) fueron la salinidad, la materia orgánica y el contenido de limo. Aunque las concentraciones de HAP se mantuvieron por debajo de los límites regulatorios establecidos por la EPA de EE. UU., los índices de calidad de sedimento (M-ERM-Q y M-PEL-Q) indicaron niveles de contaminación de moderados a muy altos, sugiriendo posibles riesgos ecológicos. El Capítulo Dos examinó las concentraciones de HAP y BPC en los tejidos radiculares de R. mangle, con muestras recolectadas en septiembre de 2022 (temporada de lluvias) y abril de 2023 (temporada seca) en dos zonas estuarinas: CGSM y la Ciénaga de Cispatá (CIS), con tres puntos de muestreo por sitio. Las raíces fueron analizadas mediante GC-MS. Los niveles de HAP en raíces de mangle fueron más altos en CIS durante la temporada de lluvias, con un promedio de 180.5 ± 21.4 ng g⁻¹ (rango: 156.8 a 198.5 ng g⁻¹), mientras que las concentraciones de PCB fueron más altas en CGSM durante la temporada seca, con un promedio de 10.7 ± 11.6 ng g⁻¹ (rango: 9 a 23 ng g⁻¹). Se encontró una correlación positiva significativa entre el contenido de limo y los HAP totales en raíces durante la temporada de lluvias. Por otro lado, se observaron correlaciones negativas significativas entre los PCB totales con el pH y el sedimento fino durante la temporada de lluvias, y con el sedimento grueso en la temporada seca. El Factor de Acumulación Biota-Sedimento (BSAF) identificó ciertos sitios como puntos críticos de microacumulación. Además, la presencia de mangles albinos en Cispatá podría estar asociada a estrés mutagénico derivado de la contaminación crónica. Estos hallazgos subrayan la necesidad urgente de mitigar la contaminación por compuestos orgánicos y de estandarizar protocolos de monitoreo a largo plazo que permitan preservar la biodiversidad estuarina y garantizar la seguridad alimentaria en la región. Fortalecer la gestión ambiental en estos ecosistemas vulnerables es esencial para prevenir una mayor degradación ecológica y asegurar la sostenibilidad de las comunidades locales.spa
dc.description.abstractIncreasing anthropogenic intervention in natural ecosystems has resulted in the degradation of numerous aquatics, coastal, and marine environments. Among the most pressing concerns is the release of organic pollutants (OPs), which pose significant threats to both environmental and human health due to their persistence, bioaccumulative nature, and toxicity. This study aimed to determine the concentrations of polycyclic aromatic hydrocarbons (PAH) and polychlorinated biphenyls (PCB), examine their relationship with physicochemical variables during the rainy and dry seasons, and assess the associated contamination risk in two coastal sectors of the Colombian Caribbean influenced by the Sinú and Magdalena rivers. Chapter One focused on the analysis of PAH concentrations in seston and sediments. Samples were collected in November 2021 (rainy season) and April 2022 (dry season) and analyzed using gas-chromatography-mass spectrometry (GC-MS). The results revealed elevated PAH concentrations in seston during the rainy season in the Ciénaga Grande de Santa Marta (CGSM) with values reaching 4428.7 ng g⁻¹, and across five sites in the Sinú region, where concentrations averaged 2641.3 ± 861.6 ng g⁻¹ (range: 1421.4 to 3735.1 ng g⁻¹). In contrast, sediment samples from the Sinú sector recorded higher PAH levels during the dry season, with a mean of 2870.5 ± 3218.3 ng g⁻¹ (range: 886.4 to 8557.8 ng g⁻¹). Key variables influencing the presence of high molecular weight (HMW) PAHs included salinity, organic matter, and silt content. While PAH concentrations remained below U.S. EPA regulatory limits, sediment quality indices (M-ERM-Q and M-PEL-Q) indicated moderate to very high contamination levels, suggesting a potential ecological risk. Chapter Two examined PAH and polychlorinated biphenyls (PCB) concentrations in the root of Rhizophora mangle, with samples collected in September 2022 (rainy season) and April 2023 (dry season), from two estuarine areas: the CGSM and the Cispatá Bay (CIS), with three sampling points per site. Root samples of R. mangle were analyzed using GC-MS. PAH levels in mangrove roots were highest in CIS during the rainy season, averaging 180.5 ± 21.4 ng g⁻¹ (range: 156.8 to 198.5 ng g⁻¹), while PCB concentrations were highest in CGSM during the dry season with an average of 10.7 + 11.6 ng g⁻¹ (range: 9 to 23 ng g⁻¹). A significant positive correlation was found between silt content and total PAHs in roots during the rainy season. Conversely, significant negative correlations were observed between total PCBs and both pH and fine sediment in the rainy season, and between total PCBs and coarse sediment during the dry season. The Biota-Sediment Accumulation Factor (BSAF) highlighted specific sites as micro-accumulation hotspots. Furthermore, the presence of albino mangroves in Cispatá indicate potential mutagenic stress associated with chronic contamination. These findings underscore the urgent need to mitigate organic pollution and standardize long-term monitoring protocols to preserve estuarine biodiversity and safeguard food security in the region. Strengthening environmental management efforts in these vulnerable ecosystems is essential to prevent further ecological degradation and ensure the sustainability of local communities. (Tomado de la fuente)eng
dc.description.curricularareaBosques Y Conservación Ambiental.Sede Medellín
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Bosques y Conservación Ambiental
dc.description.researchareaEcología costera y estuarina
dc.description.researchareaImpacto antropogénico en sistemas costeros
dc.description.researchareaEcotoxicología
dc.format.extent1 recurso en línea (119 páginas)
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/89252
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.publisher.facultyFacultad de Ciencias Agrarias
dc.publisher.placeMedellín, Colombia
dc.publisher.programMedellín - Ciencias Agrarias - Maestría en Bosques y Conservación Ambiental
dc.relation.referencesAbdel-Shafy, H. I., & Mansour, M. S. (2016). A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egypt. J. Pet., 25(1), 107-123. https://doi.org/10.1016/J.EJPE.2015.03.011
dc.relation.referencesAguirre-Rubí, J. R., Luna-Acosta, A., Etxebarría, N., Soto, M., Espinoza, F., Ahrens, M. J., & Marigómez, I. (2018). Chemical contamination assessment in mangrove-lined Caribbean coastal systems using the oyster Crassostrea rhizophorae as biomonitor species. Environ. Sci. Pollut. Res, 25(14), 13396–13415.https://doi.org/10.1007/s11356-017-9159-2
dc.relation.referencesAkhbarizadeh, R., Moore, F., Keshavarzi, B., & Moeinpour, A. (2016). Aliphatic and polycyclic aromatic hydrocarbons risk assessment in coastal water and sediments of Khark Island, SW Iran. Mar. Pollut. Bull., 108(1-2), 33-45. https://doi.org/10.1016/j.marpolbul.2016.05.004
dc.relation.referencesAldridge, K. T., & Ganf, G. G. (2003). Modification of sediment redox potential by three contrasting macrophytes: implications for phosphorus adsorption/desorption. Mar. Freshw. Res., 54(1), 87-94. https://doi.org/10.1071/MF02087
dc.relation.referencesAlegbeleye, O. O., Opeolu, B. O., & Jackson, V. A. (2017). Polycyclic aromatic hydrocarbons: a critical review of environmental occurrence and bioremediation. Environ. Manage., 60, 758-783. https://doi.org/10.1007/s00267-017-0896-2
dc.relation.referencesAlegría, H., Martinez-Colon, M., Birgul, A., Brooks, G., Hanson, L., & Kurt-Karakus, P. (2016). Historical sediment record and levels of PCBs in sediments and mangroves of Jobos Bay, Puerto Rico. Science of the Total Environment, 573, 1003-1009. https://doi.org/10.1016/j.scitotenv.2016.08.165
dc.relation.referencesAlongi, D. M. (2020). Global Significance of Mangrove Blue Carbon in Climate Change Mitigation. Sci, 2(3), 67. https://doi.org/10.3390/sci2030067
dc.relation.referencesAmbade, B., Sethi, S. S., Giri, B., Biswas, J. K., & Bauddh, K. (2022). Characterization, behavior, and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in the estuary sediments. Bull. Environ. Contam. Toxicol., 1-10. https://doi.org/10.1007/s00128-021-03393-3
dc.relation.referencesAngulo-Cuero, J. (2020). Estudio de las concentraciones de hidrocarburos aromáticos policíclicos en matrices marinas de la bahía de Tumaco. [Tesis de Maestría, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/79009
dc.relation.referencesAngulo-Cuero, J., Grassi, M. T., Dolatto, R. G., Palacio-Cortés, A. M., Rosero-Moreano, M., & Aristizábal, B. H. (2021). Impact of polycyclic aromatic hydrocarbons in mangroves from the Colombian Pacific coast: Evaluation in sediments and bivalves. Mar. Pollut. Bull., 172. https://doi.org/10.1016/j.marpolbul.2021.112828
dc.relation.referencesANH: Agencia Nacional de Hidrocarburos. (2023). GeoVisor de tierras. Available at: https://www.anh.gov.co/es/hidrocarburos/mapa-de-tierras/
dc.relation.referencesAntonio, J., & Herrera Arango, J. (2022). Contributions of Intercultural Socioenvironmental Justice to the 2030 Agenda in the Colombian Caribbean. Land, 11(6), 835. https://doi.org/10.3390/land11060835
dc.relation.referencesATSDR (2022). Guidance for Calculating Benzo(a)pyrene Equivalents for Cancer Evaluations of Polycyclic Aromatic Hydrocarbons. Agency for Toxic Substances and Disease Registry. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service [Archivo PDF]. https://www.atsdr.cdc.gov/pha-guidance/resources/ATSDR-PAH-Guidance-508.pdf
dc.relation.referencesATSDR. (2024). Substance Priority List. Agency for Toxic Substances and Disease Registry. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service. https://www.atsdr.cdc.gov/programs/substance-priority-list.html
dc.relation.referencesAurrekoetxea Agirre, J.J., Begona Zubero, M., Jiménez García, C., Goñi Irigoyen, F., Cambra Contín, K., Alonso Fustel, E., Díaz-Tejeiro, M.C.C., (2011). Plaguicidas y PCBs en suero en población general de Barakaldo posiblemente expuesta al hexaclorociclohexano entre 1947 y 2002. Revista Española de Salud Pública, 85, 189-204. https://doi.org/10.1590/s1135-57272011000200007
dc.relation.referencesAvila, B. S., Ramírez, C., & Tellez-Ávila, E. (2022). Human biomonitoring of Polychlorinated Biphenyls (PCBs) in the breast milk of colombian mothers. Bulletin of Environmental Contamination and Toxicology, 109, 526–533. https://doi.org/10.1007/s00128-022-03577-5
dc.relation.referencesAwuku-Sowah, E. M., Graham, N. A., & Watson, N. M. (2022). Investigating mangrove-human health relationships: A review of recently reported physiological benefits. Dialogues in Health, 1, 100059. https://doi.org/10.1016/j.dialog.2022.100059
dc.relation.referencesBadea, S., Mustafa, M., Lundstedt, S., & Tysklind, M. (2014). Leachability and desorption of PCBs from soil and their dependency on pH and dissolved organic matter. Science of the Total Environment,, 499, 220-227. https://doi.org/10.1016/j.scitotenv.2014.08.031
dc.relation.referencesBaird, R., Rice, E., & Eaton, A. (Eds.). (2017). Standard methods for the examination of water and wastewater (23rd ed., pp. 749-754). American Public Health Association, American Water Works Association, & Water Environment Federation. https://www.standardmethods.org/doi/book/10.2105/SMWW.2882
dc.relation.referencesBarakat, A. O., Kim, M., Qian, Y., & Wade, T. L. (2002). Organochlorine pesticides and PCB residues in sediments of Alexandria Harbour, Egypt. Marine Pollution Bulletin, 44(12), 1426-1434. https://doi.org/10.1016/S0025-326X(02)00313-2
dc.relation.referencesBarletta, M., Lima, A. R., & Costa, M. F. (2019). Distribution, sources and consequences of nutrients, persistent organic pollutants, metals and microplastics in South American estuaries. Sci. Total Environ., 651, 1199-1218. https://doi.org/10.1016/j.scitotenv.2018.09.276
dc.relation.referencesBashir, I., Lone, F. A., Bhat, R. A., Mir, S. A., Dar, Z. A., & Dar, S. A. (2020). Concerns and threats of contamination on aquatic ecosystems. In Bioremediation and biotechnology: sustainable approaches to pollution degradation (pp. 1-26). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-35691-0_1
dc.relation.referencesBastürk, O., Dogan, M., Salihoglu, I., & Balkas, T. I. (1980). DDT, DDE, and PCB residues in fish, crustaceans and sediments from the eastern Mediterranean coast of Turkey. Marine Pollution Bulletin, 11(7), 191-195. https://doi.org/10.1016/0025-326X(80)90491-9
dc.relation.referencesBaumard, P., Budzinski, H., Michon, Q., Garrigues, P., Burgeot, T., & Bellocq, J. (1998). Origin and bioavailability of PAHs in the Mediterranean Sea from mussel and sediment records. Est. Coast. Shelf Sci., 47(1), 77-90. https://doi.org/10.1006/ecss.1998.0337
dc.relation.referencesBayen, S. (2012). Occurrence, bioavailability and toxic effects of trace metals and organic contaminants in mangrove ecosystems: A review. Environment Iinternational,48, 84-101. https://doi.org/10.1016/j.envint.2012.07.008
dc.relation.referencesBayen, S., Wurl, O., Karuppiah, S., Sivasothi, N., Lee, H. K., & Obbard, J. P. (2005). Persistent organic pollutants in mangrove food webs in Singapore. Chemosphere, 61(3), 303-313. https://doi.org/10.1016/j.chemosphere.2005.02.097
dc.relation.referencesBehera, B. K., Das, A., Sarkar, D. J., Weerathunge, P., Parida, P. K., Das, B. K., Thavamani, P., Ramanathan, R., & Bansal, V. (2018). Polycyclic Aromatic Hydrocarbons (PAHs) in inland aquatic ecosystems: Perils and remedies through biosensors and bioremediation. Environmental Pollution, 241, 212-233. https://doi.org/10.1016/j.envpol.2018.05.016
dc.relation.referencesBettinetti, R., Giarei, C., & Provini, A. (2003). Chemical analysis and sediment toxicity bioassays to assess the contamination of the River Lambro (Northern Italy). Archives of Environmental Contamination and Toxicology, 45 (1), 0072–0078. https://doi.org/10.1007/s00244-002-0126-6
dc.relation.referencesBillah, M. M., Bhuiyan, M. K. A., Amran, M. I. U. A., Cabral, A. C., & Garcia, M. R. D. (2022). Polycyclic aromatic hydrocarbons (PAHs) pollution in mangrove ecosystems: global synthesis and future research directions. Reviews in Environmental Science and Bio/Technology,21, 747–770. https://doi.org/10.1007/s11157-022-09625-0
dc.relation.referencesBodin, N., Abarnou, A., Fraisse, D., Defour, S., Loizeau, V., Le Guellec, A., & Philippon, X. (2007). PCB, PCDD/F and PBDE levels and profiles in crustaceans from the coastal waters of Brittany and Normandy (France). Marine Pollution Bulletin, 54(6), 657-668. https://doi.org/10.1016/j.marpolbul.2007.01.018
dc.relation.referencesBoethling, R., Fenner, K., Howard, P., Klečka, G., Madsen, T., Snape, J. R., & Whelan, M. J. (2009). Environmental Persistence of Organic Pollutants: Guidance for Development and Review of POP Risk Profiles. Integrated Environmental Assessment and Management, 5(4), 539-556. https://doi.org/10.1897/IEAM_2008-090.1
dc.relation.referencesBonert, C., Pinto, L., & Estrada, R. (2010). Hidrocarburos aromáticos policíclicos dispersos/disueltos en agua, en el área del canal moraleda, XI Región-CIMAR 7 Fiordos. Cienc. Tecnol. Mar (Valpso), 33(1), 95-99.
dc.relation.referencesBorja, J., Taleon, D. M., Auresenia, J., & Gallardo, S. (2005). Polychlorinated biphenyls and their biodegradation. Process Bbiochemistry, 40(6), 1999–2013. https://doi.org/10.1016/j.procbio.2004.08.006
dc.relation.referencesBorrell, A., Tornero, V., Bhattacharjee, D., & Aguilar, A. (2019). Organochlorine concentrations in aquatic organisms from different trophic levels of the Sundarbans mangrove ecosystem and their implications for human consumption. Environmental Pollution,, 251, 681-688. https://doi.org/10.1016/j.envpol.2019.04.120
dc.relation.referencesBurgess, R. M., Ahrens, M. J., & Hickey, C. W. (2003). Geochemistry of PAHs in aquatic environments: source, persistence and distribution. PAHs: an ecotoxicological perspective, 35-45. https://doi.org/10.1002/0470867132.ch3
dc.relation.referencesBurgos-Núñez, S., Navarro-Frómeta, A., Marrugo-Negrete, J., Enamorado-Montes, G., & Urango-Cárdenas, I. (2017). Polycyclic aromatic hydrocarbons and heavy metals in the Cispata Bay, Colombia: A marine tropical ecosystem. Mar. Pollut. Bull., 120(1–2), 379–386. https://doi.org/10.1016/j.marpolbul.2017.05.016
dc.relation.referencesCaballero-Gallardo, K., Guerrero-Castilla, A., Johnson-Restrepo, B., de la Rosa, J., & Olivero-Verbel, J. (2015). Chemical and toxicological characterization of sediments along a Colombian shoreline impacted by coal export terminals. Chemosphere, 138, 837–846. https://doi.org/10.1016/j.chemosphere.2015.07.062
dc.relation.referencesCaballero-Gallardo, K., Olivero-Verbel, J., Corada-Fernández, C., Lara-Martín, P. A., & Juan-García, A. (2021). Emerging contaminants and priority substances in marine sediments from Cartagena Bay and the Grand Marsh of Santa Marta (Ramsar site), Colombia. Environ. Monit. Assess., 193(9). https://doi.org/10.1007/s10661-021-09392-5
dc.relation.referencesCahyaningsih, A. P., Deanova, A. K., Pristiawati, C. M., Ulumuddin, Y. I., Kusumaningrum, L., & Setyawan, A. D. (2022). Causes and impacts of anthropogenic activities on mangrove deforestation and degradation in Indonesia International Journal of Bonorowo Wetlands, 12(1), 12-22. https://doi.org/10.13057/bonorowo/w120102
dc.relation.referencesCardoso, F. D., Dauner, A. L. L., & Martins, C. C. (2016). A critical and comparative appraisal of polycyclic aromatic hydrocarbons in sediments and suspended particulate material from a large South American subtropical estuary. Environ. Pollut., 214, 219-229. https://doi.org/10.1016/j.envpol.2016.04.011
dc.relation.referencesCastro-Jiménez, J., Deviller, G., Ghiani, M., Loos, R., Mariani, G., Skejo, H., Umlauf, G., Wollgast, J., Laugier, T., Heas-Moisan, K., Leauté, F., Munschy, C., Tixier, C., & Tronczyński, J. (2008). PCDD/F and PCB multi-media ambient concentrations, congener patterns and occurrence in a Mediterranean coastal lagoon (Etang de Thau, France). Environmental Pollution, 156(1), 123-135. 10.1016/j.envpol.2007.12.019
dc.relation.referencesCCME. (2010). Polycyclic aromatic hydrocarbons. Canadian soil quality guideline for protection of environmental and human health. Canadian Council of Ministers of the Environment. Canadian soil quality guideline. http://ceqg-rcqe.ccme.ca/.
dc.relation.referencesCogua, P., Campos-Campos, N. H., & Duque, G. (2012). Concentración de mercurio total y metilmercurio en sedimento y seston de la bahía de Cartagena, Caribe colombiano. Bol. Invest. Mar. Cost., 41(2), 267-285. http://www.scielo.org.co/scielo.php?pid=S0122-97612012000200002&script=sci_arttext
dc.relation.referencesCombi, T., Martins, C. C., Taniguchi, S., Leonel, J., Lourenço, R. A., & Montone, R. C. (2017). Depositional history and inventories of polychlorinated biphenyls (PCBs) in sediment cores from an Antarctic Specially Managed Area (Admiralty Bay, King George Island). Marine Pollution Bulletin, 118(1-2), 447-451. https://doi.org/10.1016/j.marpolbul.2017.03.031
dc.relation.referencesDai, C., Han, Y., Duan, Y., Lai, X., Fu, R., Liu, S., Leong, K. H., Tu, Y., & Zhou, L. (2022). Review on the contamination and remediation of polycyclic aromatic hydrocarbons (PAHs) in coastal soil and sediments. Environ. Res, 205, 112423. https://doi.org/10.1016/j.envres.2021.112423
dc.relation.referencesDANE. (2022). Geovisor Directorio de Empresas 2022-II. Departamento Administrativo Nacional de Estadística. Available at: https://geoportal.dane.gov.co/geovisores/economia/directorio-estadistico-de-empresas/
dc.relation.referencesDeYoe, H., Lonard, R. I., Judd, F. W., Stalter, R., & Feller, I. (2020). Biological flora of the tropical and subtropical intertidal zone: literature review for Rhizophora mangle L. Journal of Coastal Research,, 36(4), 857-884. https://doi.org/10.2112/JCOASTRES-D-19-00088.1
dc.relation.referencesDHIME. (2025). Consulta y Descarga de Datos Hidrometeorológicos. Instituto de Hidrología, Meteorología y Estudios Ambientales. Available at: http://dhime.ideam.gov.co/atencionciudadano/
dc.relation.referencesDudhagara, D. R., Rajpara, R. K., Bhatt, J. K., Gosai, H. B., Sachaniya, B. K., & Dave, B. P. (2016). Distribution, sources and ecological risk assessment of PAHs in historically contaminated surface sediments at Bhavnagar coast, Gujarat, India. Environ. Pollut., 213, 338-346. https://doi.org/10.1016/j.envpol.2016.02.030
dc.relation.referencesDuke, N. C., & Watkinson, A. J. (2002). Chlorophyll-deficient propagules of Avicennia marina and apparent longer term deterioration of mangrove fitness in oil-polluted sediments. Marine Pollution Bulletin, 44(11), 1269-1276. https://doi.org/10.1016/S0025-326X(02)00221-7
dc.relation.referencesDurant, J. L., Busby Jr, W. F., Lafleur, A. L., Penman, B. W., & Crespi, C. L. (1996). Human cell mutagenicity of oxygenated, nitrated and unsubstituted polycyclic aromatic hydrocarbons associated with urban aerosols. Mutat. Res. Gen. Tox, 371(3-4), 123-157. https://doi.org/10.1016/S0165-1218(96)90103-2
dc.relation.referencesEdokpayi, J. N., Odiyo, J. O., Popoola, O. E., & Msagati, T. A. (2016). Determination and distribution of polycyclic aromatic hydrocarbons in rivers, sediments and wastewater effluents in Vhembe District, South Africa. Int. J. Environ. Res. Public Health, 13(4), 387. https://doi.org/10.3390/ijerph13040387
dc.relation.referencesEl-Amin Bashir, M., El-Maradny, A., El-Sherbiny, M. & Mohammed Orif, R. (2017). Bio-concentration of Polycyclic Aromatic Hydrocarbons in the grey Mangrove (Avicennia marina) along eastern coast of the Red Sea. Open Chemistry,, 15(1), 344-351. https://doi.org/10.1515/chem-2017-0038
dc.relation.referencesEspinosa, L. F., Campos, N, & Ramírez, G. (1995). Residuos de plaguicidas organoclorados en Rhizophora mangle y Avicennia germinans en la Ciénaga Grande de Santa Marta, Caribe colombiano. Caldasia, 20(1), 44-56. https://repositorio.unal.edu.co/handle/unal/31102
dc.relation.referencesEspinosa-Díaz, L. F., Sánchez-Cabeza, J. A., Sericano, J. L., Parra, J. P., Ibarra-Gutierrez, K. P., Garay-Tinoco, J. A., Betancourt-Portela, J. M., Alonso-Hernández, C., Ruiz-Fernández, A. C., Quejido-Cabezas, A., & Díaz-Asencio, M. (2021). Sedimentary record of the impact of management actions on pollution of Cartagena Bay, Colombia. Mar. Pollut. Bull., 172. https://doi.org/10.1016/j.marpolbul.2021.112807
dc.relation.referencesFaroon, O., & Ruiz, P. (2016). Polychlorinated biphenyls: New evidence from the last decade. oxicology and industrial health,32(11), 1825-1847. https://doi.org/10.1177/0748233715587849
dc.relation.referencesFeller, I. C., Lovelock, C. E., Berger, U., McKee, K. L., Joye, S. B., & Ball, M. C. (2010). Biocomplexity in mangrove ecosystems. Annual Review of Marine Science, 2(1), 395-417. https://doi.org/10.1146/annurev.marine.010908.163809
dc.relation.referencesFernandes, A., Mortimer, D., Rose, M., & Gem, M. (2010). Dioxins (PCDD/Fs) and PCBs in offal: Occurrence and dietary exposure. Chemosphere, 81(4), 536-540. https://doi.org/10.1016/j.chemosphere.2010.06.034
dc.relation.referencesFu, C. T., & Wu, S. C. (2006). Seasonal variation of the distribution of PCBs in sediments and biota in a PCB-contaminated estuary. Chemosphere, 62(11), 1786-1794. https://doi.org/10.1016/j.chemosphere.2005.07.034
dc.relation.referencesGarcés-Ordóñez, O., Castillo-Olaya, V. A., Granados-Briceño, A. F., García, L. M. B., & Díaz, L. F. E. (2019). Marine litter and microplastic pollution on mangrove soils of the Ciénaga Grande de Santa Marta, Colombian Caribbean. Marine Pollution Bulletin,, 145, 455-462. https://doi.org/10.1016/j.marpolbul.2019.06.058
dc.relation.referencesGarcia, M. R., & Martins, C. C. (2021). A systematic evaluation of polycyclic aromatic hydrocarbons in South Atlantic subtropical mangrove wetlands under a coastal zone development scenario. J. Environ. Manage., 277, 111421. https://doi.org/10.1016/j.jenvman.2020.111421
dc.relation.referencesGe, M., Wang, X., Yang, G., Wang, Z., Li, Z., Zhang, X., & Xu, Q. (2021). Persistent organic pollutants (POPs) in deep-sea sediments of the tropical western Pacific Ocean. Chemosphere, 277, 130267. https://doi.org/10.1016/j.chemosphere.2021.130267
dc.relation.referencesGrmasha, R. A., Stenger-Kovács, C., Al-Sareji, O. J., Al-Juboori, R. A., Meiczinger, M., Andredaki, M., Idowu, I. A., Majdi, H. S., Hashim, K., & Al-Ansari, N. (2024). Temporal and spatial distribution of polycyclic aromatic hydrocarbons (PAHs) in the Danube River in Hungary. Sci. Rep., 14(1), 1-14. https://doi.org/10.1038/s41598-024-58793-2
dc.relation.referencesGu, Y.-G., Lin, Q., Lu, T.-T., Ke, C.-L., Sun, R.-X., & Du, F.-Y. (2013). Levels, composition profiles and sources of polycyclic aromatic hydrocarbons in surface sediments from Nan’ao Island, a representative mariculture base in South China. Mar. Pollut. Bull., 75(1-2), 310–316. https://doi.org/10.1016/j.marpolbul.2013.07.039
dc.relation.referencesGünindi, M., & Tasdemir, Y. (2010). Atmospheric polychlorinated biphenyl (PCB) inputs to a coastal city near the Marmara sea. Marine Pollution Bulletin, 60(12), 2242-2250. https://doi.org/10.1016/j.marpolbul.2010.08.012
dc.relation.referencesGuo, W., Ren, H., Jin, Y., Chai, Z., & Liu, B. (2024). The bioremediation of the typical persistent organic pollutants (POPs) by microalgae-bacteria consortia: A systematic review. Chemosphere, 141852. https://doi.org/10.1016/j.chemosphere.2024.141852
dc.relation.referencesHan, Z. X., Wang, N., Zhang, H. L., & Zhao, Y. X. (2017). Bioaccumulation of PBDEs and PCBs in a small food chain at electronic waste recycling sites. Environmental Forensics, 18(1), 44–49. https://doi.org/10.1080/15275922.2016.1263900
dc.relation.referencesHonda, M., & Suzuki, N. (2020). Toxicities of Polycyclic Aromatic Hydrocarbons for Aquatic Animals. Int. J. Environ. Res. Public Health, 17(4), 1363. https://doi.org/10.3390/ijerph17041363
dc.relation.referencesHosoda, J., Ofosu-Anim, J., Sabi, E. B., Akita, L. G., Onwona-Agyeman, S., Yamashita, R., & Takada, H. (2014). Monitoring of organic micropollutants in Ghana by combination of pellet watch with sediment analysis: E-waste as a source of PCBs. Marine Pollution Bulletin, 86(1-2), 575-581. https://doi.org/10.1016/j.marpolbul.2014.06.008
dc.relation.referencesHung, C., Huang, C., Lam, S. S., Chen, C., & Dong, C. (2020). The removal of polycyclic aromatic hydrocarbons (PAHs) from marine sediments using persulfate over a nano-sized iron composite of magnetite and carbon black activator. J. Environ. Chem. Eng., 8(5), 104440. https://doi.org/10.1016/j.jece.2020.104440
dc.relation.referencesHuxham, M., Dencer-Brown, A., Diele, K., Kathiresan, K., Nagelkerken, I., & Wanjiru, C. (2017). Mangroves and people: local ecosystem services in a changing climate. Mangrove Ecosystems: A Global Biogeographic Perspective: Structure, Function, and Services, 245-274. Springer, Cham. https://doi.org/10.1007/978-3-319-62206-4_8
dc.relation.referencesIARC. (2015). Polychlorinated biphenyls and polybrominated biphenyls (Vol. 107). International Agency for Research on Cancer. https://publications.iarc.who.int/Book-And-Report-Series/Iarc-Monographs-On-The-Identification-Of-Carcinogenic-Hazards-To-Humans/Polychlorinated-Biphenyls-And-Polybrominated-Biphenyls-2015
dc.relation.referencesIhunwo, O. C., Ibezim-Ezeani, M. U., & DelValls, T. A. (2021). Human health and ecological risk of polycyclic aromatic hydrocarbons (PAHs) in sediment of Woji creek in the Niger Delta region of Nigeria. Marine Pollution Bulletin, 162, 111903. https://doi.org/10.1016/j.marpolbul.2020.111903
dc.relation.referencesINVEMAR. (2000). Programa nacional de investigación en biodiversidad marina y costera PNIBM. Editado por Juan Manuel Díaz Merlano y Diana Isabel Gómez López. Santa Marta: INVEMAR, FONADE, MMA, 2000. 80 pág. https://observatorio.epacartagena.gov.co/wp-content/uploads/2018/12/0001-ProgramaNacionaldeInvestigacionenBiodiversidadMarinayCostera.pdf
dc.relation.referencesINVEMAR. (2014). Visor de puertos marítimos de Colombia: Mapa de las zonas portuarias marítimas principales de Colombia [Visor de mapas]. Instituto de Investigaciones Marinas y Costeras José Benito Vives de Andréis. https://storymaps.arcgis.com/stories/634053c1c6af42c5bc0ea95f6005742f
dc.relation.referencesINVEMAR. (2018). Monitoreo de las condiciones ambientales y los cambios estructurales y funcionales de las comunidades vegetales y de los recursos pesqueros durante la rehabilitación de la Ciénaga Grande de Santa Marta. In: Informe Técnico Final 2017. vol. 16, 174p. Santa Marta, Colombia. https://mail.corpamag.gov.co/archivos/Publicaciones/MonitoreoCondicionesAmbientalesCambiosINVEMAR.pdf
dc.relation.referencesJia, H., Lu, H., Liu, J., Li, J., Dai, M., Yan, C., (2016). Effects of root exudates on the leachability, distribution, and bioavailability of phenanthrene and pyrene from mangrove sediments. Environmental Science and Pollution Research., 23 (6), 5566–5576. https://doi.org/10.1007/s11356-015-5772-0
dc.relation.referencesJohnson-Restrepo, B., Olivero-Verbel, J., Lu, S., Guette-Fernández, J., Baldiris-Avila, R., O’Byrne-Hoyos, I., Aldous, K. M., Addink, R., & Kannan, K. (2008). Polycyclic aromatic hydrocarbons and their hydroxylated metabolites in fish bile and sediments from coastal waters of Colombia. Environ. Pollut., 151(3), 452–459. https://doi.org/10.1016/j.envpol.2007.04.011
dc.relation.referencesKapsimalis, V., Panagiotopoulos, I., Talagani, P., Hatzianestis, I., Kaberi, H., Rousakis, G., Kanellopoulos, T., & Hatiris, G. (2014). Organic contamination of surface sediments in the metropolitan coastal zone of Athens, Greece: Sources, degree, and ecological risk. Mar. Pollut. Bull., 80(1-2), 312-324. https://doi.org/10.1016/j.marpolbul.2013.12.051
dc.relation.referencesKathiresan, K., & Bingham, B. (2001). Biology of mangroves and mangrove Ecosystems. Advances in Marine Biology., 40, 81-251. https://doi.org/10.1016/S0065-2881(01)40003-4
dc.relation.referencesKenny, A. J., & Sotheran, I. (2013). Characterising the physical properties of seabed habitats. In A. Eleftheriou (Ed.), Methods for the study of marine benthos (4th ed., pp. 47–95). Wiley Blackwell. https://doi.org/10.1002/9781118542392.ch2
dc.relation.referencesKeshavarzifard, M., Moore, F., Keshavarzi, B., & Sharifi, R. (2017). Polycyclic aromatic hydrocarbons (PAHs) in sediment and sea urchin (Echinometra mathaei) from the intertidal ecosystem of the northern Persian Gulf: Distribution, sources, and bioavailability. Marine Pollution Bulletin, 123(1-2), 373-380. https://doi.org/10.1016/j.marpolbul.2017.09.008
dc.relation.referencesKida, M., & Fujitake, N. (2020). Organic Carbon Stabilization Mechanisms in Mangrove Soils: A Review. Forests, 11(9), 981. https://doi.org/10.3390/f11090981
dc.relation.referencesKoopman-Esseboom, C., Huisman, M., Weisglas-Kuperus, N., Van der Paauw, C., Th.Tuinstra, L., Boersma, E., & Sauer, P. (1994). PCB and dioxin levels in plasma and human milk of 418 dutch women and their infants. Predictive value of PCB congener levels in maternal plasma for fetal and infant's exposure to PCBs and dioxins. Chemosphere, 28(9), 1721-1732. https://doi.org/10.1016/0045-6535(94)90428-6
dc.relation.referencesKozielska, B. (2018). Health hazards from polycyclic aromatic hydrocarbons bound to submicrometer particles in Gliwice (Poland). FESE MATEC Web Conf., 247. https://doi.org/10.1051/matecconf/201824700034
dc.relation.referencesKuznetsova, O. V., & Timerbaev, A. R. (2022). Marine sediment analysis–A review of advanced approaches and practices focused on contaminants. Analytica Chimica Acta, 1209, 339640. https://doi.org/10.1016/j.aca.2022.339640
dc.relation.referencesKwok, C.K., Liang, Y., Leung, S.Y., Wang, H., Dong, Y.H., Young, L., Giesy, J.P., & Wong, M.H. (2013). Biota-sediment accumulation factor (BSAF), bioaccumulation factor (BAF), and contaminant levels in prey fish to indicate the extent of PAHs and OCPs contamination in eggs of waterbirds. Environmental Science and Pollution Research, 20, 8425e8434. https://doi.org/10.1007/s11356-013-1809-4.
dc.relation.referencesLarreta, J., Solaun, O., Menchaca, I., Rodríguez, J. G., & Valencia, V. (2012). Estudio de la Contaminación en los Sedimentos de los Estuarios del País Vasco (1998-2001/2009-2012). Informe elaborado por AZTI-Tecnalia para URA, 223 [Archivo PDF]. https://www.uragentzia.euskadi.eus/contenidos/documentacion/azti_ur_diagnostikoa_009/es_def/adjuntos/0000_FINAL_VERSION_URA_20130131.pdf
dc.relation.referencesLGC Standards (2025). Environmental Food Contaminant Reference Materials. https://www.lgcstandards.com/ES/es/Food-and-Beverage-Reference-Materials/Environmental-Food-Contaminant-Reference-Materials-/cat/279557
dc.relation.referencesLi, G. L., Lang, Y. H., Gao, M. S., Yang, W., Peng, P., & Wang, X. M. (2014). Carcinogenic and mutagenic potencies for different PAHs sources in coastal sediments of Shandong Peninsula. Mar. Pollut. Bull., 84(1-2), 418-423. https://doi.org/10.1016/j.marpolbul.2014.04.039
dc.relation.referencesLi, R., Tan, H., Zhu, Y., & Zhang, Y. (2017). The retention and distribution of parent, alkylated, and N/O/S-containing polycyclic aromatic hydrocarbons on the epidermal tissue of mangrove seedlings. Environmental Pollution, 226, 135-142. https://doi.org/10.1016/j.envpol.2017.04.025
dc.relation.referencesLi, S., Zhang, S., Dong, H., Zhao, Q., & Cao, C. (2015). Presence of aliphatic and polycyclic aromatic hydrocarbons in near-surface sediments of an oil spill area in Bohai Sea. Mar. Pollut. Bull, 100(1), 169-175. https://doi.org/10.1016/j.marpolbul.2015.09.009
dc.relation.referencesLuo, X., Chen, S., Mai, B., Yang, Q., Sheng, G., & Fu, J. (2006). Polycyclic aromatic hydrocarbons in suspended particulate matter and sediments from the Pearl River Estuary and adjacent coastal areas, China. Environ. Pollut., 139(1), 9-20. https://doi.org/10.1016/j.envpol.2005.05.001
dc.relation.referencesMaciel-Souza, M. D. C., Macrae, A., Volpon, A. G. T., Ferreira, P. S., & Mendonça-Hagler, L. C. (2006). Chemical and microbiological characterization of mangrove sediments after a large oil-spill in Guanabara Bay-RJ-Brazil. Braz. J. Microbiol., 37, 262-266. https://doi.org/10.1590/S1517-83822006000300013
dc.relation.referencesMaioli, O. L., Rodrigues, K. C., Knoppers, B. A., & Azevedo, D. A. (2011). Distribution and sources of aliphatic and polycyclic aromatic hydrocarbons in suspended particulate matter in water from two Brazilian estuarine systems. Cont. Shelf Res., 31(10), 1116-1127. https://doi.org/10.1016/j.csr.2011.04.004
dc.relation.referencesMaletić, S. P., Beljin, J. M., Rončević, S. D., Grgić, M. G., & Dalmacija, B. D. (2019). State of the art and future challenges for polycyclic aromatic hydrocarbons is sediments: sources, fate, bioavailability and remediation techniques J. Hazard. Mater., 365, 467-482. https://doi.org/10.1016/j.jhazmat.2018.11.020
dc.relation.referencesMartins, C. C., Moreira, L. B., Sutilli, M., & De Souza Abessa, D. M. (2023). Unraveling sources of hydrocarbons in subtropical estuaries with distinct degrees of protection in the Southwestern Atlantic Ocean, Brazil. Marine Pollution Bulletin, 195, 115499. https://doi.org/10.1016/j.marpolbul.2023.115499
dc.relation.referencesMbusnum, K. G., Malleret, L., Deschamps, P., Khabouchi, I., Asia, L., Lebarillier, S., Menot, G., Onguene, R., & Doumenq, P. (2020). Persistent organic pollutants in sediments of the Wouri Estuary Mangrove, Cameroon: Levels, patterns and ecotoxicological significance. Marine Pollution Bulletin,, 160, 111542. https://doi.org/10.1016/j.marpolbul.2020.111542
dc.relation.referencesMehr, M.R., Keshavarzi, B., Moore, F., Fooladivanda, S., Sorooshian, A., & Biester, H. (2020). Spatial distribution, environmental risk and sources of heavy metals and polycyclic aromatic hydrocarbons (PAHs) in surface sediments-northwest of Persian Gulf. Cont. Shelf Res., 193, 104036. https://doi.org/10.1016/j.csr.2019.104036
dc.relation.referencesMejía Quiñones, L.M., Molina Jiménez, M.P., Sanjuan Muñoz, A., Grijalba Bendeck, M., Niño Martínez, L.M. (2014). Bosque de manglar, un ecosistema que debemos cuidar. Universidad Jorge Tadeo Lozano, Instituto Colombiano de Desarrollo Rural. Cartagena D. T. 27p. https://observatorio.epacartagena.gov.co/wp-content/uploads/2017/12/bosque-de-manglar-un-ecosistema-que-debemos-cuidar.pdf
dc.relation.referencesMejía-Monterroza, G. E. (2015). Hidrocarburos aromáticos policíclicos en la Costa Caribe colombiana y posibles fuentes de contaminación [Doctoral dissertation, Universidad de Cartagena]. 56-58. https://repositorio.unicartagena.edu.co/entities/publication/184be12f-881a-48ed-a334-f7ca0d6c8ae2
dc.relation.referencesMeng, Y., Liu, X., Lu, S., Zhang, T., Jin, B., Wang, Q., Tang, Z., Liu, Y., Guo, X., Zhou, J., & Xi, B. (2019). A review on occurrence and risk of polycyclic aromatic hydrocarbons (PAHs) in lakes of China. In Sci. Total Environ., (Vol. 651, pp. 2497–2506). Elsevier B.V. https://doi.org/10.1016/j.scitotenv.2018.10.162
dc.relation.referencesMeramo-Hurtado, S. I., Moreno-Sader, K. A., & González-Delgado, Á. D. (2020). Design, simulation, and environmental assessment of an adsorption-based treatment process for the removal of polycyclic aromatic hydrocarbons (PAHs) from seawater and sediments in North Colombia. ACS omega, 5(21), 12126-12135. https://doi.org/10.1021/acsomega.0c00394
dc.relation.referencesMerhaby, D., Net, S., Halwani, J., & Ouddane, B. (2015). Organic pollution in surficial sediments of Tripoli harbour, Lebanon. Marine Pollution Bulletin, 93(1-2), 284-293. https://doi.org/10.1016/j.marpolbul.2015.01.004
dc.relation.referencesMinisterio de Ambiente y Desarrollo Sostenible. (2011). Resolución 0222 de 2011, por la cual se establecen requisitos para la gestión ambiental integral de equipos y desechos que consisten, contienen o están contaminados con Bifenilos Policlorados (PCB). Diario Oficial, 15 de diciembre de 2011. https://www.minambiente.gov.co/wp-content/uploads/2021/10/resolucion-0222-de-2011.pdf
dc.relation.referencesMinisterio de Ambiente, Vivienda y Desarrollo Territorial. (2016). Resolución 1741 de 2016, por la cual se modifica la resolución 222 de 2011 y se adoptan otras disposiciones. Diario Oficial, 24 de octubre de 2016. https://www.minambiente.gov.co/wp-content/uploads/2021/10/Resolucion-1741-de-2016.pdf
dc.relation.referencesMojiri, A., Zhou, J. L., Ohashi, A., Ozaki, N., & Kindaichi, T. (2019). Comprehensive review of polycyclic aromatic hydrocarbons in water sources, their effects and treatments Science of the Total Environment, 696, 133971. https://doi.org/10.1016/j.scitotenv.2019.133971
dc.relation.referencesMontone, R. C., Taniguchi, S., Boian, C., & Weber, R. R. (2005). PCBs and chlorinated pesticides (DDTs, HCHs and HCB) in the atmosphere of the southwest Atlantic and Antarctic oceans. Marine Pollution Bulletin, 50(7), 778-782. https://doi.org/10.1016/j.marpolbul.2005.03.002
dc.relation.referencesMontuori, P., Aurino, S., Garzonio, F., Sarnacchiaro, P., Nardone, A., & Triassi, M. (2016). Distribution, sources and ecological risk assessment of polycyclic aromatic hydrocarbons in water and sediments from Tiber River and estuary, Italy. Sci. Total Environ., 566–567, 1254–1267. https://doi.org/10.1016/j.scitotenv.2016.05.183
dc.relation.referencesMukherjee, A. G., Wanjari, U. R., Eladl, M. A., Elsherbini, D. M. A., Sukumar, A., Kannampuzha, S., Ravichandran, M., Renu, K., Vellingiri, B., Kandasamy, S., & Gopalakrishnan, A. V. (2022). Mixed contaminants: Occurrence, interactions, toxicity, detection, and remediation. Molecules, 27(8), Article 2577. https://doi.org/10.3390/molecules27082577
dc.relation.referencesMzoughi, N., & Chouba, L. (2011). Distribution and partitioning of aliphatic hydrocarbons and polycyclic aromatic hydrocarbons between water, suspended particulate matter, and sediment in harbours of the West coastal of the Gulf of Tunis (Tunisia). J. Environ. Monit., 13(3), 689-698. DOI https://doi.org/10.1039/C0EM00616E
dc.relation.referencesNagar, N., Saxena, H., Pathak, A., Mishra, A., & Poluri, K. M. (2023). A review on structural mechanisms of protein-persistent organic pollutant (POP) interactions. Chemosphere, 332, 138877. https://doi.org/10.1016/j.chemosphere.2023.138877
dc.relation.referencesNaidoo, G., & Naidoo, K. (2016). Uptake of polycyclic aromatic hydrocarbons and their cellular effects in the mangrove Bruguiera gymnorrhiza. Marine Pollution Bulletin, 113(1-2), 193-199. https://doi.org/10.1016/j.marpolbul.2016.09.012
dc.relation.referencesNaidoo, G., & Naidoo, K. (2017). Ultrastructural effects of polycyclic aromatic hydrocarbons in the mangroves Avicennia marina and Rhizophora mucronata. Flora, 235, 1-9. https://doi.org/10.1016/j.flora.2017.08.006
dc.relation.referencesNaidoo, G., & Naidoo, K. (2018). Uptake and accumulation of polycyclic aromatic hydrocarbons in the mangroves Avicennia marina and Rhizophora mucronata. Environmental Science and Pollution Research, 25, 28875-28883. https://doi.org/10.1007/s11356-018-2934-x
dc.relation.referencesNaskar, S., & Palit, P. K. (2015). Anatomical and physiological adaptations of mangroves. Wetlands Ecology and Management, 23(3), 357–370. https://doi.org/10.1007/s11273-014-9385-z
dc.relation.referencesNemirovskaya, I. A. (2009). Hydrocarbons in the water, particulate matter, seston, and bottom sediments of the White Sea in the late summer. Water Res., 36, 64-75. https://doi.org/10.1134/S0097807809010060
dc.relation.referencesNing, X., Lin, M., Shen, L., Zhang, J., Wang, J., Wang, Y., Yang, Z., & Liu, J. (2014). Levels, composition profiles and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in sludge from ten textile dyeing plants. Environmental research, 132, 112-118. https://doi.org/10.1016/j.envres.2014.03.041
dc.relation.referencesNisbet, I. C. T., & Lagoy, P. K. (1992). Toxic Equivalency Factors (TEFs) for Polycyclic Aromatic Hydrocarbons (PAHs). In Regul. Toxicol. Pharmacol., 16(3), 290-300. https://doi.org/10.1016/0273-2300(92)90009-X
dc.relation.referencesNOAA. (2025). Cold & Warm Episodes by Season. National Oceanic and Atmospheric Administration Available at: https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php
dc.relation.referencesNorling, K., Rosenberg, R., Hulth, S., Grémare, A., & Bonsdorff, E. (2007). Importance of functional biodiversity and species-specific traits of benthic fauna for ecosystem functions in marine sediment. Marine Ecology Progress Series, 332, 11-23. https://doi.org/10.3354/meps332011
dc.relation.referencesNunes, B. Z., Zanardi-Lamardo, E., Choueri, R. B., & Castro, Í. B. (2021). Marine protected areas in Latin America and Caribbean threatened by polycyclic aromatic hydrocarbons. Environ. Pollut., 269, 116194. https://doi.org/10.1016/j.envpol.2020.116194
dc.relation.referencesOntiveros-Cuadras, J. F., Ruiz-Fernández, A. C., Sanchez-Cabeza, J., Sericano, J., Pérez Bernal, L. H., Páez-Osuna, F., Dunbar, R. B., & Mucciarone, D. A. (2019). Recent history of persistent organic pollutants (PAHs, PCBs, PBDEs) in sediments from a large tropical lake. Journal of Hazardous Materials, 368, 264-273. https://doi.org/10.1016/j.jhazmat.2018.11.010
dc.relation.referencesÖzkara, A., & Akyıl, D. (2018). Environmental pollution and the effects of the pollutants on the ecosystem. Türk bilimsel derlemeler dergisi, 11(2), 11-17. https://dergipark.org.tr/en/pub/derleme/issue/41716/451356#article_cite
dc.relation.referencesPardue, J. H., Delaune, R. D., & Patrick, W. H. (1988). Effect of sediment pH and oxidation-reduction potential on PCB mineralization. Water, Air, and soil pollution, 37(3-4), 439–447. https://doi.org/10.1007/BF00192953
dc.relation.referencesParques Nacionales Naturales de Colombia (2006). Manglar de la Bahía de Cispatá y Sector Aledaño del Delta Estuarino del Río Sinú. Available at: https://runap.parquesnacionales.gov.co/area-protegida/519
dc.relation.referencesParques Nacionales Naturales de Colombia (2008). Ecosistema de Manglar y Lagunar Ciénaga de la Caimanera. Available at: https://runap.parquesnacionales.gov.co/area-protegida/636
dc.relation.referencesPemberthy, D., Quintero, A., Martrat, M. G., Parera, J., Ábalos, M., Abad, E., & Villa, A. L. (2016). Polychlorinated dibenzo-p-dioxins, dibenzofurans and dioxin-like PCBs in commercialized food products from Colombia. Science of the Total Environment, 568, 1185-1191. https://doi.org/10.1016/j.scitotenv.2016.04.113
dc.relation.referencesPichler, N., Maria de Souza, F., Ferreira dos Santos, V., & Martins, C. C. (2021). Polycyclic aromatic hydrocarbons (PAHs) in sediments of the amazon coast: Evidence for localized sources in contrast to massive regional biomass burning. Environmental Pollution268, 115958. https://doi.org/10.1016/j.envpol.2020.115958
dc.relation.referencesPino, N. J., Muñera, L. M., & Peñuela, G. A. (2016). Root exudates and plant secondary metabolites of different plants enhance polychlorinated biphenyl degradation by rhizobacteria. Bioremediation Journal, 20(2), 108-116. https://doi.org/10.1080/10889868.2015.1124065
dc.relation.referencesPolanía, J., Urrego, L., & Agudelo, C. (2015). Recent advances in understanding Colombian mangroves. Acta Oecologica, 63, 82-90. https://doi.org/10.1016/j.actao.2015.01.001
dc.relation.referencesPozo, K., Perra, G., Menchi, V., Urrutia, R., Parra, O., Rudolph, A., & Focardi, S. (2011). Levels and spatial distribution of polycyclic aromatic hydrocarbons (PAHs) in sediments from Lenga Estuary, central Chile. Mar. Pollut. Bull., 62(7), 1572-1576. https://doi.org/10.1016/j.marpolbul.2011.04.037
dc.relation.referencesPriotto, S. E. (2017). Dinámica de compuestos nitrogenados en zonas productivas del Mar Argentino en relación con la producción de biomasa de crustáceos planctónicos. [Doctoral dissertation, Universidad Nacional del Sur]. https://repositoriodigital.uns.edu.ar/handle/123456789/3712
dc.relation.referencesProffitt, C. E., & Travis, S. E. (2005). Albino mutation rates in red mangroves (Rhizophora mangle L.) as a bioassay of contamination history in Tampa Bay, Florida, USA. Wetlands, 25(2), 326-334. https://doi.org/10.1672/9
dc.relation.referencesQiu, Y. W., Qiu, H. L., Li, J., & Zhang, G. (2018). Bioaccumulation and cycling of polycyclic aromatic hydrocarbons (PAHs) in typical mangrove wetlands of Hainan Island, South China. Archives of Environmental Contamination and Toxicology, 75, 464–475. https://doi.org/10.1007/s00244-018-0548-4
dc.relation.referencesQiu, Y., Qiu, H., Zhang, G., & Li, J. (2019). Bioaccumulation and cycling of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in three mangrove reserves of South China. Chemosphere, 217, 195-203. https://doi.org/10.1016/j.chemosphere.2018.10.188
dc.relation.referencesRAMSAR. (1998). Ramsar Sites Information Service. Sistema Delta Estuarino del Río Magdalena, Ciénaga Grande de Santa Marta. Available at: https://rsis.ramsar.org/es/ris/951
dc.relation.referencesRecabarren-Villalon, T., Ronda, A. C., & Arias, A. H. (2019). Polycyclic aromatic hydrocarbons levels and potential biomarkers in a native South American marine fish. Regional Studies in Marine Science, 29, 100695. https://doi.org/10.1016/j.rsma.2019.100695
dc.relation.referencesReizer, E., Viskolcz, B., & Fiser, B. (2022). Formation and growth mechanisms of polycyclic aromatic hydrocarbons: A mini-review. Chemosphere, 291, 132793. https://doi.org/10.1016/j.chemosphere.2021.132793
dc.relation.referencesRestrepo-López, J. C., Ortíz -Royero, J. C., Otero-Díaz, L., & Ospino-Ortiz, S. R. (2015). Transporte de sedimentos en suspensión en los principales ríos del Caribe colombiano: magnitud, tendencias y variabilidad. Rev. Acad. Colomb. Cien. Ex. Fis. Nat., 39(153), 527 - 546. https://doi.org/10.18257/raccefyn.209
dc.relation.referencesRhind, S. (2009). Anthropogenic pollutants: a threat to ecosystem sustainability?.  Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1534), 3391-3401. https://doi.org/10.1098/rstb.2009.0122
dc.relation.referencesRicaurte-Villota, C. y M.L. Bastidas Salamanca (Eds.). (2017). Regionalización oceanográfica: una visión dinámica del Caribe. Instituto de Investigaciones Marinas y Costeras José Benito Vives De Andréis (INVEMAR). Serie de Publicaciones Especiales de INVEMAR # 14 [Archivo PDF]. Santa Marta, Colombia 180 p. https://observatorio.epacartagena.gov.co/ftp-uploads/pub-regionalizacion-oceanografica-una-vision-dinamica-del-caribe.pdf
dc.relation.referencesRobin, S. L., & Marchand, C. (2022). Polycyclic aromatic hydrocarbons (PAHs) in mangrove ecosystems: A review. Environ. Pollut., 311, 119959. https://doi.org/10.1016/j.envpol.2022.119959
dc.relation.referencesRodríguez-Grimón, R., Campos, N. H., & Castro, Í. B. (2021). Effect of Maritime Traffic on Water Quality Parameters in Santa Marta, Colombia. J. Mar. Sci. Eng., 9(5), 474. https://doi.org/10.3390/jmse9050474
dc.relation.referencesRomero-Murillo, P., Gallego, J. L., & Leignel, V. (2023). Marine pollution and advances in biomonitoring in Cartagena Bay in the Colombian Caribbean. Toxics, 11(7), 631. https://doi.org/10.3390/toxics11070631
dc.relation.referencesSadraddini, S., Azim, M. E., Shimoda, Y., Bhavsar, S. P., Drouillard, K. G., Backus, S. M., & Arhonditsis, G. B. (2011). A Bayesian assessment of the PCB temporal trends in Lake Erie fish communities. Journal of Great Lakes Research, 37(3), 507-520. https://doi.org/10.1016/j.jglr.2011.06.005
dc.relation.referencesSánchez, A. R., Pineda, J. E. M., Casas, X. M., & Calderón, J. H. M. (2021). Morphoanatomic variation in tissues of Rhizophora mangle seedlings subjected to different saline regimes: cross-seeding experiment. Heliyon, 7(10). https://www.cell.com/heliyon/fulltext/S2405-8440(21)02348-3
dc.relation.referencesSantos, E., Souza, M. R., Vilela Junior, A. R., Soares, L. S., Frena, M., & Alexandre, M. R. (2018). Polycyclic aromatic hydrocarbons (PAH) in superficial water from a tropical estuarine system: Distribution, seasonal variations, sources and ecological risk assessment. Mar. Pollut. Bull., 127, 352-358. https://doi.org/10.1016/j.marpolbul.2017.12.014
dc.relation.referencesSarria-Villa, R., Ocampo-Duque, W., Páez, M., & Schuhmacher, M. (2016). Presence of PAHs in water and sediments of the Colombian Cauca River during heavy rain episodes, and implications for risk assessment. Sci. Total Environ., 540, 455-465. https://doi.org/10.1016/j.scitotenv.2015.07.020
dc.relation.referencesSchantz, S. L., Widholm, J. J., & Rice, D. C. (2003). Effects of PCB exposure on neuropsychological function in children. Environmental health perspectives, 111(3), 357-576. https://doi.org/10.1289/ehp.546
dc.relation.referencesSerrano, B.E. (2004). The Sinú river delta on the northwestern Caribbean coast of Colombia: Bay infilling associated with delta development. J. S. Am. Earth Sci., 16: 623-631. https://doi.org/10.1016/j.jsames.2003.10.005
dc.relation.referencesSimhadri, J. J., Loffredo, C. A., Trnovec, T., Murinova, L. P., Nunlee-Bland, G., Koppe, J. G., Schoeters, G., Jana, S. S., & Ghosh, S. (2020). Biomarkers of metabolic disorders and neurobehavioral diseases in a PCB- exposed population: What we learned and the implications for future research. Environmental Rresearch, 191, 110211. https://doi.org/10.1016/j.envres.2020.110211
dc.relation.referencesSong, S., Ding, Y., Li, W., Meng, Y., Zhou, J., Gou, R., Zhang, C., Ye, S., Saintilan, N., Krauss, K. W., Crooks, S., Lv, S., & Lin, G. (2023). Mangrove reforestation provides greater blue carbon benefit than afforestation for mitigating global climate change. Nature Communications, 14(1), 1-11. https://doi.org/10.1038/s41467-023-36477-1
dc.relation.referencesSouza, M. R., Suzarte, J. S., Carmo, L. O., Santos, E., Soares, L. S., Júnior, A. R., Santos, L. G., Krause, L. C., Damasceno, F. C., Frena, M., & Alexandre, M. R. (2021). Assessment of polycyclic aromatic hydrocarbons in three environmental components from a tropical estuary in Northeast Brazil. Mar. Pollut. Bull., 171, 112726. https://doi.org/10.1016/j.marpolbul.2021.112726
dc.relation.referencesSun, R., Sun, Y., Li, Q. X., Zheng, X., Luo, X., & Mai, B. (2018). Polycyclic aromatic hydrocarbons in sediments and marine organisms: Implications of anthropogenic effects on the coastal environment. Sci. Total Environ., 640-641, 264-272. https://doi.org/10.1016/j.scitotenv.2018.05.320
dc.relation.referencesSun, Y., Zhang, Z., Xu, X., Hu, Y., Luo, X., Cai, M., & Mai, B. (2015). Bioaccumulation and biomagnification of halogenated organic pollutants in mangrove biota from the Pearl River Estuary, South China. Marine Pollution Bulletin, 99(1-2), 150-156. https://doi.org/10.1016/j.marpolbul.2015.07.041
dc.relation.referencesTaillardat, P., Friess, DA, y Lupascu, M. (2018). Las estrategias de carbono azul en manglares para la mitigación del cambio climático son más eficaces a escala nacional. Biology letters , 14 (10), 20180251. https://doi.org/10.1098/rsbl.2018.0251
dc.relation.referencesTian, Y. Z., Li, W. H., Shi, G. L., Feng, Y. C., & Wang, Y. Q. (2013). Relationships between PAHs and PCBs, and quantitative source apportionment of PAHs toxicity in sediments from Fenhe reservoir and watershed. Journal of hazardous materials, 248, 89-96. https://doi.org/10.1016/j.jhazmat.2012.12.054
dc.relation.referencesUNESCO. (2000). United Nations Educational, Scientific and Cultural Organization. Biosphere Reserve Information. Available at: https://www.unesco.org/en/mab/cienaga-grande-de-santa-marta
dc.relation.referencesUSEPA. (2000). Guidance for Assessing Chemical Contaminant Data for Use in Fish Advisories: Risk Assessment and Fish Consumption Limits (3 ed., Vol. 2). US EPA Office of Water, Office of Science and Technology [Archivo PDF]. https://www.epa.gov/sites/default/files/2015-06/documents/volume2.pdf
dc.relation.referencesUSEPA. (2002). A Guidance Manual to Support the Assessment of Contaminated Sediments in Freshwater Ecosystems. US EPA [Archivo PDF]. https://archive.epa.gov/water/archive/polwaste/web/pdf/volumeii.pdf
dc.relation.referencesUSEPA. (2007). Method 8272—Parent and Alkyl Polycyclic Aromatics in Sediment Pore Water by Solid-Phase Microextraction and Gas Chromatography/Mass Spectrometry in Selected Ion Monitoring Mode. US EPA [Archivo PDF]. https://www.epa.gov/sites/default/files/2015-12/documents/8272.pdf
dc.relation.referencesUSEPA. (2023). Toxic and Priority Pollutants Under the Clean Water Act. US EPA [Archivo PDF]. https://www.epa.gov/eg/toxic-and-priority-pollutants-under-clean-water-act
dc.relation.referencesUSEPA: United States Environmental Protection Agency. (2000). Polychlorinated biphenyls (PCBs)(Arochlors). Disponible en: https://www.epa.gov/sites/default/files/2016-09/documents/polychlorinated biphenyls.pdf
dc.relation.referencesUSEPA: United States Environmental Protection Agency. (2007). Method 8272 parent and alkyl polycyclic aromatics in sediment pore water by solid-phase microextraction and gas chromatography/mass spectrometry in selected ion monitoring mode. https://www.epa.gov/sites/default/files/2015 12/documents/8272.pdf
dc.relation.referencesUSEPA: United States Environmental Protection Agency. (2007a): Method 3550C Ultrasonic Extraction. United States Environmental Protection Agency [PDF file]. 17 pp. Available at: https://www.epa.gov/sites/default/files/2015-12/documents/3550c.pdf
dc.relation.referencesUSEPA: United States Environmental Protection Agency. (2007b): Method 8082A Polychlorinated Biphenyls (PCBs) by Gas Chromatography. United States Environmental Protection Agency [PDF file]. 56 pp. Available at: https://www.epa.gov/sites/default/files/2015-12/documents/8082a.pdf
dc.relation.referencesUSEPA: United States Environmental Protection Agency. (2013). Polychlorinated Biphenyls (PCBs). America's Children and the Environment, Third Edition. United States Environmental Protection Agency [PDF file]. 151-152. https://www.epa.gov/sites/default/files/2015-05/documents/biomonitoring-pcbs.pdf
dc.relation.referencesUSEPA: United States Environmental Protection Agency. (2017). Polychlorinated Biphenyls (PCBs). Disponible en: https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=341408&Lab=NHE ERL#:~:text=Polychorinated%20biphenyls%20(PCBs)%2C%20originally,commerci ally%20produced%20beginning%20in%201929
dc.relation.referencesUSEPA: United States Environmental Protection Agency. (2021). Method 1628 Polychlorinated Biphenyl (PCB) Congeners in Water, Soil, Sediment, Biosolids, and Tissue by Low-resolution GC/MS using Selected Ion Monitoring. Disponible en: https://www.epa.gov/system/files/documents/2021-07/method-1628_pcb congeners-by-low-resolution-gc-ms_july-2021.pdf
dc.relation.referencesUSEPA: United States Environmental Protection Agency. (2022). Learn about Polychlorinated Biphenyls (PCBs). Disponible en: https://www.epa.gov/pcbs/learn about-polychlorinated-biphenyls-pcbs
dc.relation.referencesUSEPA: United States Environmental Protection Agency. (2023). Toxic and Priority Pollutants Under the Clean Water Act. US EPA [Archivo PDF]. 1-2. https://www.epa.gov/eg/toxic-and-priority-pollutants-under-clean-water-act
dc.relation.referencesVane, C. H., Harrison, I., Kim, A., Moss-Hayes, V., Vickers, B., & Hong, K. (2009). Organic and metal contamination in surface mangrove sediments of South China. Marine Pollution Bulletin, 58(1), 134-144. https://nora.nerc.ac.uk/id/eprint/5547/1/Vane_et_al.,_2009.pdf
dc.relation.referencesVeldkornet, D., Rajkaran, A., Paul, S., & Naidoo, G. (2020). Oil induces chlorophyll deficient propagules in mangroves. Marine Pollution Bulletin, 150, 110667. https://doi.org/10.1016/j.marpolbul.2019.110667
dc.relation.referencesVerreault, J., Muir, D. C., Norstrom, R. J., Stirling, I., Fisk, A. T., Gabrielsen, G. W., Derocher, A. E., Evans, T. J., Dietz, R., Sonne, C., Sandala, G. M., Gebbink, W., Riget, F. F., Born, E. W., Taylor, M. K., Nagy, J., & Letcher, R. J. (2005). Chlorinated hydrocarbon contaminants and metabolites in polar bears (Ursus maritimus) from Alaska, Canada, East Greenland, and Svalbard: 1996−2002. Science of the Total Environment, 351-352, 369-390. https://doi.org/10.1016/j.scitotenv.2004.10.031
dc.relation.referencesVillate Daza, D. A., Sánchez Moreno, H., Portz, L., Portantiolo Manzolli, R., José, H., & Anfuso, G. (2020). Mangrove Forests Evolution and Threats in the Caribbean Sea of Colombia. Water, 12(4), 1113. https://doi.org/10.3390/w12041113
dc.relation.referencesWalters, D. M., Fritz, K. M., Johnson, B. R., Lazorchak, J. M., & McCormick, F. H. (2008). Influence of trophic position and spatial location on polychlorinated biphenyl (PCB) bioaccumulation in a stream food web. Environmental science & technology, 42(7), 2316-2322. https://doi.org/10.1021/es0715849
dc.relation.referencesWang, J., Wang, C., Huang, Q., Ding, F., & He, X. (2015). Adsorption of PAHs on the Sediments from the Yellow River Delta as a Function of Particle Size and Salinity. Soil Sediment Contam. Int. J. 24(2), 103–115. https://doi.org/10.1080/15320383.2014.920292
dc.relation.referencesWang, P., Zhang, Y., Wu, T.-H., 2010. Novel method for in situ visualization of polycyclic aromatic hydrocarbons in mangrove plants. Toxicological and Environmental Chemistry, 92 (10), 1825–1829. https://doi.org/10.1080/02772248.2010.482833.
dc.relation.referencesWang, Y., Wu, Y., Pi, N., & Tam, N. F. Y. (2014). Investigation of microbial community structure in constructed mangrove microcosms receiving wastewater-borne polycyclic aromatic hydrocarbons (PAHs) and polybrominated diphenyl ethers (PBDEs). Environmental Pollution, 187, 136-144. https://doi.org/10.1016/j.envpol.2014.01.003
dc.relation.referencesWang, Z., Yang, C., Parrott, J. L., Frank, R. A., Yang, Z., Brown, C. E., Hollebone, B. P., Landriault, M., Fieldhouse, B., Liu, Y., Zhang, G., & Hewitt, L. M. (2014). Forensic source differentiation of petrogenic, pyrogenic, and biogenic hydrocarbons in Canadian oil sands environmental samples. J. Hazard. Mater., 271, 166–177. https://doi.org/10.1016/j.jhazmat.2014.02.021
dc.relation.referencesWolska, L., Mechlińska, A., Rogowska, J., & Namieśnik, J. (2012). Sources and fate of PAHs and PCBs in the marine environment. Crit. Rev. Environ. Sci. Technol., 42(11), 1172-1189. https://doi.org/10.1080/10643389.2011.556546
dc.relation.referencesYunker, M. B., Macdonald, R. W., Vingarzan, R., Mitchell, R. H., Goyette, D., & Sylvestre, S. (2002). PAHs in the Fraser River basin: A critical appraisal of PAH ratios as indicators of PAH source and composition. Org. Geochem., 33(4), 489-515. https://doi.org/10.1016/S0146-6380(02)00002-5
dc.relation.referencesZaalishvili, G., Sadunishvili, T., Scalla, R., Laurent, F., & Kvesitadze, G. (2002). Electron Microscopic Investigation of Nitrobenzene Distribution and Effect on Plant Root Tip Cells Ultrastructure. Ecotoxicology and Environmental Safety, 52(3), 190-197. https://doi.org/10.1006/eesa.2002.2181
dc.relation.referencesZhang, D.-L., Liu, N., Yin, P., Zhu, Z.-G., Lu, J.-F., Lin, X.-H., Jiang, X.-J., & Meng, X.-W (2017). Characterization, sources and ecological risk assessment of polycyclic aromatic hydrocarbons in surface sediments from the mangroves of China. Wetlands Ecology and Management,, 25, 105-117. https://doi.org/10.1007/s11273-016-9505-z
dc.relation.referencesZhao, B., Zhou, Y., & Chen, G. (2012). The effect of mangrove reforestation on the accumulation of PCBs in sediment from different habitats in Guangdong, China. Marine Pollution Bulletin, 64(8), 1614-1619. https://doi.org/10.1016/j.marpolbul.2012.05.029
dc.relation.referencesZhao, Y. L., Yang, L. M., Wang, Q. Q., 2008. Modeling persistent organic pollutant (POP) partitioning between tree bark and air and its application to spatial monitoring of atmospheric POPs in mainland China. Environmental Sscience & Ttechnology, 42, 6046–6051. https://doi.org/10.1021/es800188q
dc.relation.referencesZheng, B., Wang, L., Lei, K., & Nan, B. (2016). Distribution and ecological risk assessment of polycyclic aromatic hydrocarbons in water, suspended particulate matter and sediment from Daliao River estuary and the adjacent area, China. Chemosphere, 149, 91-100. https://doi.org/10.1016/j.chemosphere.2016.01.039
dc.relation.referencesZhu, H., Wang, Y., & Tam, N. F. (2014). Microcosm study on fate of polybrominated diphenyl ethers (PBDEs) in contaminated mangrove sediment. Journal of Hazardous Materials, 265, 61-68. https://doi.org/10.1016/j.jhazmat.2013.11.046
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc570 - Biología::577 - Ecología
dc.subject.ddc540 - Química y ciencias afines::547 - Química orgánica
dc.subject.lembContaminates orgánicos
dc.subject.lembBioacumulación
dc.subject.proposalBbioaccumulationeng
dc.subject.proposalPolychlorinated biphenylseng
dc.subject.proposalPolycyclic aromatic hydrocarbonseng
dc.subject.proposalCarcinogenic compoundseng
dc.subject.proposalCoastal ecosystemseng
dc.subject.proposalRio Magdalenaspa
dc.subject.proposalBioacumulaciónspa
dc.subject.proposalBifenilos policloradosspa
dc.subject.proposalHidrocarburos aromáticos policíclicosspa
dc.subject.proposalCompuestos carcinogénicosspa
dc.subject.proposalEcosistemas costerosspa
dc.subject.wikidataHidrocarburo aromático policíclico
dc.titleCharacterization of organic pollutants in seston, sediment, and mangrove of the Colombian Caribbeaneng
dc.title.translatedCaracterización de contaminantes orgánicos en seston, sedimento y manglar del Caribe colombianospa
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentMaestros
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.awardtitleNiveles de contaminación por metales pesados (Hg, Cd, Ni, Zn, Pb, Se, Al, As y Cu). PCB (bifenilos policlorados) y HAP (hidrocarburos aromáticos policíclicos) en ambientes marinos y costeros del Caribe colombiano
oaire.awardtitleCaracterización de la contaminación por bifenilos policlorados (PCB’s) e hidrocarburos aromáticos policíclicos (PAH’s) en seston y sedimentos del Caribe colombiano
oaire.fundernameMinisterio de Ciencia Tecnología e Innovación
oaire.fundernameFacultad de Ciencias Agrarias sede Medellín

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis de Maestría en Bosques y Conservación Ambiental.pdf
Tamaño:
2.71 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 3 de 3
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
Cargando...
Miniatura
Nombre:
Artículo1_Licencia para publicación de obras en el Repositorio Institucional UNAL.pdf
Tamaño:
505.82 KB
Formato:
Adobe Portable Document Format
Descripción:
Cargando...
Miniatura
Nombre:
Artículo2_Licencia para publicación de obras en el Repositorio Institucional UNAL.pdf
Tamaño:
509.63 KB
Formato:
Adobe Portable Document Format
Descripción: