El papel de la expresión de síntomas causados por Potato yelllow vein virus (PYVV) en la manipulación de su vector, la mosca blanca de los invernaderos, Trialeurodes vaporariorum (Hemiptera: Aleyrodidae)

dc.contributor.advisorOliveros Garay, Oscar Arturospa
dc.contributor.advisorRincón Rueda, Diego Fernandospa
dc.contributor.authorVasquez Mendieta, Diego Fernandospa
dc.contributor.corporatenameCorporación Colombiana de Investigación Agropecuaria (Agrosavia)spa
dc.contributor.researchgroupControl biológico de plagas agrícolasspa
dc.date.accessioned2020-07-29T23:46:29Zspa
dc.date.available2020-07-29T23:46:29Zspa
dc.date.issued2020-01-20spa
dc.descriptionilustraciones, fotografías, gráficas, tablasspa
dc.description.abstractLos virus transmitidos por vectores pueden manipular la expresión de síntomas en las plantas hospederas para incrementar la probabilidad de ser llevados a un nuevo hospedero sano. Los mecanismos de trasmisión de estos virus se clasifican en tres categorías, de acuerdo con el tiempo de persistencia de los virus en los vectores: persistente (TP), semi persistente (TSP) y no persistente (NP). El mecanismo de transmisión implica diferencias en el tiempo que el virus es infectivo dentro del insecto vector, y su capacidad de invadir y replicarse dentro del vector (acá se hablaría de si es dentro del vector es propagativo o circulativo). Por este motivo, con frecuencia, los virus modulan la manipulación que ejercen sobre sus hospederos en función de la modalidad de trasmisión. Las predicciones relacionadas con la manipulación de los vectores de virus con mecanismo TSP asumen que su estrategia debe ser un punto intermedio entre los virus con TP y NP. Sin embargo, en diversos estudios se ha evidenciado que su complejidad va más allá de ser un punto intermedio y que en realidad pueden compartir características de los virus TP y NP, de acuerdo con ciertos rasgos particulares del sistema. El Potato Yellow Vein Virus (PYVV) es un virus transmitido de forma semipersistente (TSP) y es el agente causal de la enfermedad del amarillamiento de las nervaduras de la hoja de papa (PYVD del inglés Potato Yellow Vein Disease), una enfermedad reemergente de los cultivos de papa en el norte de América del Sur. La infección por el PYVV, que puede ser asintomática, se transmite verticalmente a través de los tubérculos de semillas infectados u horizontalmente por la mosca blanca de los invernaderos (MBI) Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae). Los síntomas de la enfermedad en plantas de papa presentan un desarrollo primario y uno secundario. Los síntomas de desarrollo primario se dan mediante una clorosis de las nervaduras secundarias y terciarias de las hojas del tercio superior de las plantas de papa. Usualmente, estos síntomas se dan en el borde de las hojas y que se va extendiendo hasta el interior, siendo más severo l envés de los foliolos. El tiempo en el que los adultos de la MBI son infectivos después de adquirir el virus puede ser desde días a semanas, haciendo que la reducción de poblaciones de los vectores mediante tratamientos químicos sea generalmente ineficaz para controlar las epidemias de PYVV. Así mismo, la comprensión del rol de los efectos de los virus en las plantas sobre la ecología de los insectos vectores puede ser útil para comparar y contrastar las adaptaciones clave asociadas a modalidades de trasmisión que no impliquen vectores (i.e., trasmisión vertical o trasmisión mecánica). Este estudio tiene como objetivo comprender el efecto que tiene la expresión de los síntomas como estrategia de los virus tipo TSP para transmitirse y permanecer en el ambiente para propagarse en nuevos hospederos; así como realizar un acercamiento a algunos de los factores abióticos que inducen la expresión de síntomas en el hospedero. Al final, este trabajo pretende generar conocimiento que permita avanzar en investigaciones de estrategias de manejo agronómico más sostenibles. (Texto tomado de la fuente).spa
dc.description.abstractVector-borne viruses can manipulate the expression of symptoms in host plants to increase the likelihood of being carried to a new healthy host. Virus transmission can occur through three mechanisms, depending on the time they persist within the vector: persistent (PT), semi-persistent (SPT) or non-persistent (NP). The transmission mechanism implies differences in the time it takes for the virus to enter, and its capability to invade and replicate inside the vector. Therefore, often, viruses modulate vector manipulation as a function the transmission mechanism. Predictions associated with vector manipulation by SPT viruses assume that their strategy should be an intermediate point between PT and NP. However, several studies have shown that their complexity goes beyond being an intermediate point, and that these viruses may share characteristics of PT and NP viruses, according to certain traits associated with the particular system. Potato Yellow Vein Virus (PYVV) is classified as a SPT and the causal agent of potato yellow vein disease (PYVD), a re-emerging disease of potato crops in northern South America. Infection with PYVV, which may be asymptomatic, is transmitted vertically through infected seed tubers or horizontally by the Greenhouse Whitefly (GWF) Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae). The symptoms of PYVD in native potato plants show a primary and a secondary development. The symptoms of primary development occur through a chlorosis of the secondary and tertiary veins of the leaves of the upper third of potato plants. Usually, these symptoms occur at the edge of the leaves and it spreads to the inside, always more noticeable on the underside of the leaves. The time in which GWF adults are infectious can range from days to weeks, making the reduction of vector populations through chemical treatments generally ineffective in controlling epidemics. Likewise, understanding the role of the effects that viruses cause in plants on the ecology of insect vectors can be useful in comparing the key adaptations associated with modes of transmission that do not involve vectors (ie, vertical transmission or mechanical transmission). This study focuses on understanding the effect of symptom expression as a strategy for SPT viruses to transmit and remain in the environment to infect new hosts; as well as to examine some of the abiotic factors that may induce symptom expression in the host plants. Finally, this work aims to provide useful knowledge that allows the development of more sustainable agronomic management strategies. In order to evaluate the effect of the expression of symptoms of PYVD in potato plants on the survival, development and behavior of its GWF vector, experiments were carried out under controlled conditions in climatic chambers. Survival of immature stages, average time of emergence of adults, and preference and settlement of insects fed on virus-free, and infected asymptomatic and symptomatic plants were evaluated and compared. The expression of symptoms and the relative quantification of the virus in potato plants growing under different temperature and water deficit conditions. We found that survival of GWF was affected when insects feed from infected plants instead free-virus plants but not between symptomatic or asymptomatic plants. Regarding the development of GWF, it was evident that the mean emergence time of adults was longer in symptomatic, infected plants than in healthy plants, but it was even longer in asymptomatic, infected plants. The behavior of the GWF adults changed depending on their previous diet. I found that, when GWF did not have any contact with PYVV prior to the experiment, they preferred to select symptomatic infected plants foe feeding rather than asymptomatic or virus-free plants. However, when GWF was pre-fed with potato plants infected with PYVV, they preferred healthy plants. On the other hand, I found that temperature does not have a significant effect on symptom expression, at least at the temperature range I evaluated. However, in those plants in which there was a drought stress, symptoms were evident three days after watering, regardless of the temperature. Well-watered plants had delayed symptom expression, which occurred 10 to 25 days after plants under drought stress. In conclusion, symptom expression of PYVV in potato plants has a direct effect on both the physiology and behavior of its GWF vector and can be triggered by water stress. This study shows that SPT viruses share characteristics with TP and NP viruses. Also show that vector feeding experience influences their choice and settlement on new hosts, as well as the fact that a prolonged period of drought allows that plants are more susceptible to expressing symptoms and attracting new vectors. These factors can be considered when establishing new practices for managing and prevent future PYVV epidemics.eng
dc.description.curricularareaCiencias Agronómicasspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias Agrariasspa
dc.description.notesIncluye anexosspa
dc.description.researchareaFito protección integradaspa
dc.description.sponsorshipCorporación Colombiana de Investigación Agropecuaria (Agrosavia), Universidad Nacional de Colombiaspa
dc.format.extentxvii, 79 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77884
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentEscuela de posgradosspa
dc.publisher.departmentEscuela de posgradosspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias Agrarias - Maestría en Ciencias Agrariasspa
dc.relation.referencesAgranovsky AA, Folimonov AS, Folimonova SY, et al (1998) Beet yellows closterovirus HSP70-like protein mediates the cell-to-cell movement of a potexvirus transport-deficient mutant and a hordeivirus-based chimeric virus. J Gen Virol 79:889–895. doi: 10.1099/0022-1317-79-4-889spa
dc.relation.referencesAlzhanova D V., Napuli AJ, Creamer R, Dolja V V. (2001) Cell-to-cell movement and assembly of a plant closterovirus: Roles for the capsid proteins and Hsp70 homolog. EMBO J 20:6997–7007. doi: 10.1093/emboj/20.24.6997spa
dc.relation.referencesArciniegas N, Guzman M (2003) TÉCNICAS DE DIAGNÒSTICO Y EVALUACIÓN DE RESISTENCIA AL VIRUS DEL AMARILLAMIENTO DE LAS NERVADURAS DE LA PAPA (PYVV) EN ACCESIONES DE LA COLECCIÓN CENTRAL COLOMBIANA DE Solanum phureja. Sinab, Univ Nac Colombiaspa
dc.relation.referencesAtkinson NJ, Lilley CJ, Urwin PE (2013) Identification of genes involved in the response of arabidopsis to simultaneous biotic and abiotic stresses. Plant Physiol 162:2028–2041. doi: 10.1104/pp.113.222372spa
dc.relation.referencesBak A, Cheung AL, Yang C, et al (2017) A viral protease relocalizes in the presence of the vector to promote vector performance. Nat Commun 8:. doi: 10.1038/ncomms14493spa
dc.relation.referencesBernays E and CR (1994) HOST-PLANT SELECTION BY PHYTOPHAGOUS INSECTspa
dc.relation.referencesBidzinski P, Ballini E, Ducasse A, et al (2016) Transcriptional basis of drought-induced susceptibility to the rice blast fungus Magnaporthe oryzae. Front Plant Sci 7:. doi: 10.3389/fpls.2016.01558spa
dc.relation.referencesBosque-Pérez NA, Eigenbrode SD (2011) The influence of virus-induced changes in plants on aphid vectors: Insights from luteovirus pathosystems. Virus Res 159:201–205. doi: 10.1016/j.virusres.2011.04.020spa
dc.relation.referencesBoyer JS (2010) Drought decision-making. J Exp Bot 61:3493–3497. doi: 10.1093/jxb/erq231spa
dc.relation.referencesBueno J, Cardona C, Chacon P (2005) Fenología, distribución espacial y desarrollo de mètodos de muestreo para Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae) en habichuela y frijol (Phaseolus vulgaris L.). Colomb. Entomol. 31:161–170spa
dc.relation.referencesCarr JP, Murphy AM, Tungadi T, Yoon JY (2019) Plant defense signals: Players and pawns in plant-virus-vector interactions. Plant Sci 279:87–95. doi: 10.1016/j.plantsci.2018.04.011spa
dc.relation.referencesCasteel CL, Jander G (2013) New Synthesis: Investigating Mutualisms in Virus-Vector Interactions. J Chem Ecol 39:809. doi: 10.1007/s10886-013-0305-0spa
dc.relation.referencesCasteel CL, Yang C, Nanduri AC, et al (2014) The NIa-Pro protein of Turnip mosaic virus improves growth and reproduction of the aphid vector, Myzus persicae (green peach aphid). Plant J 77:653–663. doi: 10.1111/tpj.12417spa
dc.relation.referencesCFIBAS (Centro Federal de Investigaciones biologicas para Agricultura y silvicultura) (2001) Estadios de las plantas mono-y dicotyledóneas. BBCH Monogr 149spa
dc.relation.referencesChávez P, Zorogastúa P, Chuquillanqui C, et al (2009) Assessing Potato Yellow Vein Virus (PYVV) infection using remotely sensed data. Int J Pest Manag 55:251–256. doi: 10.1080/09670870902862685spa
dc.relation.referencesChen G, Su Q, Shi X, et al (2018) Persistently Transmitted Viruses Restrict the Transmission of Other Viruses by Affecting Their Vectors. Front Physiol. doi: 10.3389/fphys.2018.01261spa
dc.relation.referencesChen Y, Singh A, Kaithakottil GG, et al (2020) An aphid RNA transcript migrates systemically within plants and is a virulence factor. Proc Natl Acad Sci U S A 117:12763–12771. doi: 10.1073/pnas.1918410117spa
dc.relation.referencesChesnais Q, Mauck KE, Bogaert F, et al (2019) Virus effects on plant quality and vector behavior are species specific and do not depend on host physiological phenotype. J Pest Sci (2004) 92:791–804. doi: 10.1007/s10340-019-01082-zspa
dc.relation.referencesColvin J, Omongo CA, Govindappa MR, et al (2006) Host-Plant Viral Infection Effects on Arthropod-Vector Population Growth, Development and Behaviour: Management and Epidemiological Implications. Adv Virus Res 67:419–452. doi: 10.1016/S0065-3527(06)67011-5spa
dc.relation.referencesCuadros DF, Hernandez A, Torres MF, et al (2017) Vector Transmission Alone Fails to Explain the Potato Yellow Vein Virus Epidemic among Potato Crops in Colombia. Front Plant Sci 8:1–8. doi: 10.3389/fpls.2017.01654spa
dc.relation.referencesD N Byrne, and T S Bellows J (1991) Whitefly Biology. Annu Rev Entomol 36:431–457. doi: 10.1146/annurev.en.36.010191.002243spa
dc.relation.referencesDavis TS, Bosque-Pérez NA, Foote NE, et al (2015) Environmentally dependent host-pathogen and vector-pathogen interactions in the Barley yellow dwarf virus pathosystem. J Appl Ecol 52:1392–1401. doi: 10.1111/1365-2664.12484spa
dc.relation.referencesEigenbrode SD, Bosque-Pérez N, Davis TS (2018) Insect-Borne Plant Pathogens and Their Vectors: Ecology, Evolution, and Complex Interactions. Annu Rev Entomol 63:annurev-ento-020117-043119. doi: 10.1146/annurev-ento-020117-043119spa
dc.relation.referencesFereres A (2015) Insect vectors as drivers of plant virus emergence. Curr Opin Virol 10:42–46. doi: 10.1016/j.coviro.2014.12.008spa
dc.relation.referencesFereres A, Moreno A (2009) Behavioural aspects influencing plant virus transmission by homopteran insects. Virus Res 141:158–168. doi: 10.1016/j.virusres.2008.10.020spa
dc.relation.referencesFereres A, Peñaflor MFGV, Favaro CF, et al (2016) Tomato infection by whitefly-transmitted circulative and non-circulative viruses induce contrasting changes in plant volatiles and vector behaviour. Viruses 8:. doi: 10.3390/v8080225spa
dc.relation.referencesFirth D (1995) “Bias reduction of maximum likelihood estimates.” Biometrika 82:667. doi: 10.1093/biomet/82.3.667-bspa
dc.relation.referencesFraile A, García-Arenal F (2016) Environment and evolution modulate plant virus pathogenesis. Curr Opin Virol. doi: 10.1016/j.coviro.2016.01.008spa
dc.relation.referencesFranco-Lara JPAGL (2015) Potato virus Y ( PVY ) Y Potato yellow vein virus ( PYVV ) EN INFECCIONES MIXTAS NO CAUSAN. 26–37spa
dc.relation.referencesFranco-lara L, Rodríguez D (2013) Prevalence of potato yellow vein virus ( PYVV ) in Solanum tuberosum Group Phureja Fields in Three States of Colombia. 324–330. doi: 10.1007/s12230-013-9308-1spa
dc.relation.referencesGallet R, Michalakis Y, Blanc S (2018) Vector-transmission of plant viruses and constraints imposed by virus–vector interactions. Curr Opin Virol 33:144–150. doi: 10.1016/j.coviro.2018.08.005spa
dc.relation.referencesGotz M, Popovski S, Kollenberg M, et al (2012) Implication of Bemisia tabaci Heat Shock Protein 70 in Begomovirus-Whitefly Interactions. J Virol 86:13241–13252. doi: 10.1128/JVI.00880-12spa
dc.relation.referencesGroen SC, Wamonje FO, Murphy AM, Carr JP (2017) Engineering resistance to virus transmission. Curr Opin Virol 26:20–27. doi: 10.1016/j.coviro.2017.07.005spa
dc.relation.referencesGuzmán-barney M, Franco-lara L, Rodríguez D, et al (2012) Yield Losses in Solanum tuberosum Group Phureja Cultivar Criolla Colombia in Plants with Symptoms of PYVV in Field Trials. 438–447. doi: 10.1007/s12230-012-9265-0spa
dc.relation.referencesH. Jane Brockmann, Timothy J. Roper, Marc Naguib, Katherine E. Wynne-Edwards JCM and LWS (Eds. . (2010) Advances inthe study of behavior, 41st edn. Academic pres Elsevier Inc, cambridge cb23eb, united kingdomspa
dc.relation.referencesHe WB, Li J, Liu SS (2015) Differential profiles of direct and indirect modification of vector feeding behaviour by a plant virus. Sci Rep 5:. doi: 10.1038/srep07682spa
dc.relation.referencesHeinze G, Schemper M (2002) A solution to the problem of separation in logistic regression. Stat Med 21:2409–2419. doi: 10.1002/sim.1047spa
dc.relation.referencesHernandez A, Guzmán-barney M (2012) Detección y cuantificación del Potato yellow vein virus (PYVV) en aislamientos de diferentes órganos de Solanum tuberosum Grupo Phurejaspa
dc.relation.referencesIDEAM. Instituto de Hidrología M y EA (2014) ANUARIO CLIMATOLÓGICO 2014. Bol Clim 53:1–352. doi: 10.1017/CBO9781107415324.004spa
dc.relation.referencesJia D, Chen Q, Mao Q, et al (2018) ScienceDirect Vector mediated transmission of persistently transmitted plant viruses. Curr Opin Virol 28:127–132. doi: 10.1016/j.coviro.2017.12.004spa
dc.relation.referencesJones DR (2003) Plant viruses transmitted by whiteflies. Eur. J. Plant Pathol. 109:195–219spa
dc.relation.referencesKiss ZA, Medina V, Falk BW (2013) Crinivirus replication and host interactions. Front. Microbiol. 4spa
dc.relation.referencesKong L, Wu J, Lu L, et al (2014) Interaction between Rice stripe virus disease-specific protein and host PsbP enhances virus symptoms. Mol Plant 7:691–708. doi: 10.1093/mp/sst158spa
dc.relation.referencesLi H, Liu X, Liu X, et al (2018) Host plant infection by soybean mosaic virus reduces the fitness of its vector, aphis glycines (Hemiptera: Aphididae). J Econ Entomol 111:2017–2023. doi: 10.1093/jee/toy165spa
dc.relation.referencesLiu B, Pan H, Xie W, et al (2013) Multiple forms of vector manipulation by a plant-infecting virus: Bemisia tabaci and Tomato yellow leaf curl virus. J Virol 87:4929–4937. doi: 10.1128/JVI.03571-12spa
dc.relation.referencesLu S, Li J, Wang X, et al (2017) A semipersistent plant virus differentially manipulates feeding behaviors of different sexes and biotypes of its whitefly vector. Viruses 9:1–15. doi: 10.3390/v9010004spa
dc.relation.referencesMach JM, Castillo AR, Hoogstraten R, Greenberg JT (2001) The Arabidopsis-accelerated cell death gene ACD2 encodes red chlorophyll catabolite reductase and suppresses the spread of disease symptoms. Proc Natl Acad Sci U S A 98:771–776. doi: 10.1073/pnas.98.2.771spa
dc.relation.referencesMartelli GP, Agranovsky a. a., Bar-Joseph M, et al (2002) The family Closteroviridae revised. Arch Virol 147:2039–2044. doi: 10.1007/s007050200048spa
dc.relation.referencesMascia T, Gallitelli D (2016) Synergies and antagonisms in virus interactions. Plant Sci 252:176–192. doi: 10.1016/j.plantsci.2016.07.015spa
dc.relation.referencesMauck K, Bosque-Pérez NA, Eigenbrode SD, et al (2012) Transmission mechanisms shape pathogen effects on host-vector interactions: Evidence from plant viruses. Funct Ecol 26:1162–1175. doi: 10.1111/j.1365-2435.2012.02026.xspa
dc.relation.referencesMauck KE (2016) Variation in virus effects on host plant phenotypes and insect vector behavior: what can it teach us about virus evolution? Curr Opin Virol 21:114–123. doi: 10.1016/j.coviro.2016.09.002spa
dc.relation.referencesMauck KE, Chesnais Q, Shapiro LR (2018) Evolutionary Determinants of Host and Vector Manipulation by Plant Viruses, 1st edn. Elsevier Inc.spa
dc.relation.referencesNavas-Castillo J, Lõpez-Moya JJ, Aranda MA (2014) Whitefly-transmitted RNA viruses that affect intensive vegetable production. Ann. Appl. Biol.spa
dc.relation.referencesNg JC, Zhou JS (2015) Insect vector–plant virus interactions associated with non-circulative, semi-persistent transmission: current perspectives and future challenges. Curr Opin Virol 15:48–55. doi: 10.1016/j.coviro.2015.07.006spa
dc.relation.referencesNg JCK, Falk BW (2006) Virus-Vector Interactions Mediating Nonpersistent and Semipersistent Transmission of Plant Viruses. Annu Rev Phytopathol 44:183–212. doi: 10.1146/annurev.phyto.44.070505.143325spa
dc.relation.referencesO’Malley MA (2008) “Everything is everywhere: but the environment selects”: ubiquitous distribution and ecological determinism in microbial biogeography. Stud Hist Philos Sci Part C Stud Hist Philos Biol Biomed Sci 39:314–325. doi: 10.1016/j.shpsc.2008.06.005spa
dc.relation.referencesOsorio M, Marques A, Romay G, et al (2016) Adaptación de la técnica RT-PCR para el diagnóstico del virus del amarillamiento de las venas de papa en Venezuela TT - Adaptation of RT-PCR technique for the diagnosis of potato yellow vein virus in Venezuela. Bioagro 28:47–52spa
dc.relation.referencesPalacios I, Drucker M, Blanc S, et al (2002) Cauliflower mosaic virus is preferentially acquired from the phloem by its aphid vectors. J Gen Virol 83:3163–3171. doi: 10.1099/0022-1317-83-12-3163spa
dc.relation.referencesPeñaflor MFGV, Mauck KE, Alves KJ, et al (2016) Effects of single and mixed infections of Bean pod mottle virus and Soybean mosaic virus on host-plant chemistry and host–vector interactions. Funct Ecol 30:1648–1659. doi: 10.1111/1365-2435.12649spa
dc.relation.referencesPerring TM, Stansly PA, Liu TX, et al (2018) Whiteflies: Biology, Ecology, and Management. Elsevier Inc.spa
dc.relation.referencesPiñeros C (2009) Recopilación de la investigación del sistema productivo papa criolla. Fedepapa 152spa
dc.relation.referencesQiao W, Medina V, Falk BW (2017) Inspirations on virus replication and cell-to-cell movement from studies examining the cytopathology induced by lettuce infectious yellows virus in plant cells. Front Plant Sci 8:1–13. doi: 10.3389/fpls.2017.01672spa
dc.relation.referencesQiao W, Medina V, Kuo YW, Falk BW (2018) A distinct, non-virion plant virus movement protein encoded by a crinivirus essential for systemic infection. MBio 9:1–12. doi: 10.1128/mBio.02230-18spa
dc.relation.referencesRajabaskar D, Bosque-Pérez NA, Eigenbrode SD (2014) Preference by a virus vector for infected plants is reversed after virus acquisition. Virus Res 186:32–37. doi: 10.1016/j.virusres.2013.11.005spa
dc.relation.referencesRendon F, Cardona C, Bueno J (2001) Pérdidas causadas por trialeurodes vaporariorum (Homoptera Aleyrodidae) y Thrips palmi (Thysanoptera Thripidae) en habichuela en el Valle del Cauca. CIAT Articspa
dc.relation.referencesRincon DF, Vasquez DF, Rivera-trujillo HF, et al (2019) Economic injury levels for the potato yellow vein disease and its vector , Trialeurodes vaporariorum ( Hemiptera : Aleyrodidae ), affecting potato crops in the Andes. Crop Prot 119:52–58. doi: 10.1016/j.cropro.2019.01.002spa
dc.relation.referencesRitz C, Baty F, Streibig JC, Gerhard D (2015) Dose-response analysis using R. PLoS One 10:1–13. doi: 10.1371/journal.pone.0146021spa
dc.relation.referencesSalazar LF, Müller G, Querci M, et al (2000) Potato yellow vein virus: its host range, distribution in South America and identification as a crinivirus transmitted by Trialeurodes vaporariorum. Ann Appl Biol 137:1–19. doi: http://dx.doi.org/10.1111/j.1744-7348.2000.tb00052spa
dc.relation.referencesShanker AK, Maheswari M, Yadav SK, et al (2014) Drought stress responses in crops. Funct Integr Genomics 14:11–22. doi: 10.1007/s10142-013-0356-xspa
dc.relation.referencesShao HB, Chu LY, Jaleel CA, Zhao CX (2008) Water-deficit stress-induced anatomical changes in higher plants. Comptes Rendus - Biol 331:215–225. doi: 10.1016/j.crvi.2008.01.002spa
dc.relation.referencesSkansi M de los M, Brunet M, Sigró J, et al (2013) Warming and wetting signals emerging from analysis of changes in climate extreme indices over South America. Glob Planet Change 100:295–307. doi: 10.1016/j.gloplacha.2012.11.004spa
dc.relation.referencesSukhotu T, Kamijima O, Hosaka K (2006) Chloroplast DNA variation in the most primitive cultivated diploid potato species Solanum stenotomum Juz. et Buk. and its putative wild ancestral species using high-resolution markers. Genet Resour Crop Evol 53:53–63. doi: 10.1007/s10722-004-0573-1spa
dc.relation.referencesSzczepaniec A, Finke D (2019) Plant-Vector-Pathogen Interactions in the Context of Drought Stress. Front Ecol Evol 7:1–7. doi: 10.3389/fevo.2019.00262spa
dc.relation.referencesTzanetakis IE, Martin RR, Wintermantel WM (2013) Epidemiology of criniviruses: An emerging problem in world agriculture. Front Microbiol 4:1–15. doi: 10.3389/fmicb.2013.00119spa
dc.relation.referencesvan Roermund HJW, van Lenteren JC (1992) The parasite-host relationship between Encarsia formosa (Hymenoptera: Aphelinidae) and Trialeurodes vaporariorum (Homoptera: Aleyrodidae) XXXIV. Life-history parameters of the greenhouse whitefly, Trialeurodes vaporariorum as a function of host plant andspa
dc.relation.referencesVargas AM, Rodriguez LE, Oliveros OA (2010) Respuesta de Genotipos de Solanum tuberosum Grupo phureja a la infección con Potato yellow vein virus (PYVV).spa
dc.relation.referencesWei J, Jia D, Mao Q, et al (2018) Complex interactions between insect-borne rice viruses and their vectors. Curr Opin Virol 33:18–23. doi: 10.1016/j.coviro.2018.07.005spa
dc.relation.referencesWhitfield AE, Falk BW, Rotenberg D (2015) Insect vector-mediated transmission of plant viruses. Virology 479–480:278–289. doi: 10.1016/J.VIROL.2015.03.026spa
dc.relation.referencesWu Y, Davis TS, Eigenbrode SD (2014) Aphid behavioral responses to virus-infected plants are similar despite divergent fitness effects. Entomol Exp Appl. doi: 10.1111/eea.12246spa
dc.relation.referencesZhou JS, Drucker M, Ng JC (2018) Direct and indirect influences of virus–insect vector–plant interactions on non-circulative, semi-persistent virus transmission. Curr Opin Virol 33:129–136. doi: 10.1016/j.coviro.2018.08.004spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.agrovocCrinivirusspa
dc.subject.agrovocCriniviruseng
dc.subject.agrovocTrialeurodes vaporariorumspa
dc.subject.agrovocTrialeurodes vaporariorumeng
dc.subject.agrovocEnfermedades de las plantasspa
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetalesspa
dc.subject.proposalcomportamientospa
dc.subject.proposalvector behavioreng
dc.subject.proposalHemipteraeng
dc.subject.proposalalimentación de vectoresspa
dc.subject.proposaloutbreakeng
dc.subject.proposalepidemiaspa
dc.subject.proposalvirus vegetalspa
dc.subject.proposalplant viruseng
dc.subject.proposalhorizontal transmissioneng
dc.subject.proposaltransmisión horizontalspa
dc.subject.proposalhemípteraspa
dc.titleEl papel de la expresión de síntomas causados por Potato yelllow vein virus (PYVV) en la manipulación de su vector, la mosca blanca de los invernaderos, Trialeurodes vaporariorum (Hemiptera: Aleyrodidae)spa
dc.title.translatedSymptom expression caused by Potato yelllow vein virus (PYVV) rol over the manipulation of the Greenhouse whitefly, Trialeurodes vaporariorum (Hemiptera: Aleyrodidae)spa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1014228776.2020.pdf
Tamaño:
2.17 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias Agrarias

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.9 KB
Formato:
Item-specific license agreed upon to submission
Descripción: