Extraction of morphological and spectral features of potato plants from high resolution multispectral images

dc.contributor.advisorLizarazo Salcedo, Iván Alberto
dc.contributor.advisorPrieto Ortíz, Flavio Augusto
dc.contributor.authorRodríguez Galvis, Jorge Luis
dc.contributor.researchgroupAnálisis Espacial del Territorio y del Cambio Global (AET-CG)spa
dc.contributor.researchgroupGrupo de Automática de la Universidad Nacional GAUNALspa
dc.date.accessioned2021-08-26T16:52:33Z
dc.date.available2021-08-26T16:52:33Z
dc.date.issued2021-03-16
dc.descriptionilustraciones, fotografías, gráficas, tablasspa
dc.description.abstractEste trabajo estudia el uso de características espectrales y morfológicas en la evaluación y detección del tizón tardío de la papa utilizando imágenes multiespectrales de muy alta resolución capturadas por vehículos aéreos no tripulados (UAV). Los métodos tradicionales de detección y cartografía del tizón tardío consumen mucho tiempo, requieren un gran esfuerzo humano y, en muchos casos, son subjetivos. El estudio de las características geométricas y espectrales de las plantas de papa mediante UAV puede contribuir a mejorar la eficiencia de los sistemas de detección de campo que se utilizan actualmente. Esta investigación busca contribuir a la determinación de los métodos de captura, procesamiento y análisis de los datos adquiridos a través de UAV de manera que proporcione a los productores herramientas confiables para el mejoramiento y manejo de sus cultivos de manera ágil y eficiente. El enfoque de este estudio integra operaciones morfológicas y evalúa el rendimiento de cinco algoritmos de aprendizaje automático: bosque aleatorio (RF), clasificador de aumento de gradiente (GBC), clasificador de vectores de soporte (SVC), clasificador de vectores de soporte lineal (LSVC) y K- vecinos más cercanos. (KNN) para detectar áreas de tizón tardío. Los principales componentes del enfoque propuesto son: (i) corrección radiométrica y geométrica de imágenes en bruto; (ii) eliminación del suelo desnudo mediante la aplicación de una técnica de umbralización; (iii) la generación de índices espectrales; (iv) la construcción de características morfológicas de las plantas; (v) un procedimiento de clasificación supervisado utilizando algoritmos de ML; y (vi) uso de modelos previamente entrenados para clasificar un nuevo conjunto de datos. El desempeño del método se evalúa en dos fechas en un campo de papa experimental. Los resultados mostraron que los clasificadores LSVC y RF se desempeñaron mejor en términos de métricas de precisión y tiempo de ejecución. El estudio mostró que el método propuesto permite la detección del tizón tardío con poca intervención humana. (Texto tomado de la fuente)spa
dc.description.abstractThis work studies the use of spectral and morphological features in the evaluation and detection of potato late blight using very high resolution multispectral images captured by Unmanned Aerial Vehicles (UAV). Traditional late blight detection and mapping methods are time-consuming, require great human effort and, in many cases, are subjective. The study of the geometric and spectral characteristics of potato plants by means of UAV can contribute to improving the efficiency of the field detection systems that are currently used. This research seeks to contribute to the determination of the capture, processing and analysis methods of the data acquired through UAV in a way that provides producers with reliable tools for the improvement and management of their crops in an agile and efficient way. The approach of this study integrates morphological operations and evaluates the performance of five machine learning algorithms: Random Forest (RF), Gradient Boosting classifier (GBC), Support Vector Classifier (SVC), Linear Support Vector Classifier (LSVC) and K- Nearest Neighbours (KNN) to detect late blight areas. The main components of the proposed approach are: (i) radiometric and geometric correction of raw images; (ii) elimination of bare soil by applying a thresholding technique; (iii) the generation of spectral indices; (iv) the construction of morphological features of the plants; (v) a supervised classification procedure using ML algorithms; and (vi) use of pre-trained models to classify a new data set. The performance of the method is evaluated on two dates in an experimental potato field. The results showed that the LSVC and RF classifiers performed the best in terms of accuracy and execution time metrics. The study showed that the proposed method allows the detection of late blight with little human intervention.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Geomáticaspa
dc.description.researchareaTecnologías Geoespacialesspa
dc.format.extentX, 82 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80029
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentEscuela de posgradosspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias Agrarias - Maestría en Geomáticaspa
dc.relation.referencesAn, N., Palmer, C. M., Baker, R. L., Markelz, R. J., Ta, J., Covington, M. F., Maloof, J. N., Welch, S. M., and Weinig, C. (2016). Plant high-throughput phenotyping using photogrammetry and imaging techniques to measure leaf length and rosette area. Computers and Electronics in Agriculture, 127:376 - 394.spa
dc.relation.referencesAraus, J. L. and Cairns, J. E. (2014). Field high-throughput phenotyping: The new crop breeding frontier. Trends in Plant Science, 19(1):52 - 61.spa
dc.relation.referencesArora, R. K., Sharma, S., and Singh, B. P. (2014). Late blight disease of potato and its management. Potato Journal, 41(1):16 - 40.spa
dc.relation.referencesBagheri, N. (2020). Application of aerial remote sensing technology for detection of fire blight infected pear trees. Computers and Electronics in Agriculture, 168(September 2019):105147.spa
dc.relation.referencesBatchelor, B. G., editor (2012). Machine Vision Handbook. Springer London, London.spa
dc.relation.referencesBendig, J., Yu, K., Aasen, H., Bolten, A., Bennertz, S., Broscheit, J., Gnyp, M. L., and Bareth, G. (2015). Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. International Journal of Applied Earth Observation and Geoinformation, 39:79 - 87.spa
dc.relation.referencesBock, C. H., Poole, G. H., Parker, P. E., and Gottwald, T. R. (2010). Plant disease severity estimated visually, by digital photography and image analysis, and by hyperspectral imaging. Critical Reviews in Plant Sciences, 29(2):59 - 107.spa
dc.relation.referencesBolger, M., Schwacke, R., Gundlach, H., Schmutzer, T., Chen, J., Arend, D., Oppermann, M., Weise, S., Lange, M., Fiorani, F., Spannagl, M., Scholz, U., Mayer, K., and Usadel, B. (2017). From plant genomes to phenotypes. Journal of Biotechnology.spa
dc.relation.referencesBreiman, L. (2001). Random Forest. Machine Learning, 45:5 - 32.spa
dc.relation.referencesCamilus, K. S. and Govindan, V. K. (2012). A Review on Graph Based Segmentation. I.J. Image, Graphics and Signal Processing, (June):1 - 13.spa
dc.relation.referencesChang, C. C. and Lin, C. J. (2011). LIBSVM: A Library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2(3):1 - 39.spa
dc.relation.referencesConci, A., Rodrigues, O., and Liatsis, P. (2018). Morphological classifiers. Pattern Recognition, 84:82 - 96.spa
dc.relation.referencesCongedo, L. (2021). Semi-Automatic Classification Plugin.spa
dc.relation.referencesCoppens, F., Wuyts, N., Inz e, D., and Dhondt, S. (2017). Unlocking the potential of plant phenotyping data through integration and data-driven approaches. Current Opinion in Systems Biology, 4:58{63.spa
dc.relation.referencesDrass, M., Berthold, H., M uller-Braun, S., Seel, M., K onig, M., Hof, P., Schneider, J., and Oechsner, M. (2020). Semantic Segmentation with Deep Learning: Detection of Cracks at the Cut Edge of Glass (under review). Glass Structures & Engineering.spa
dc.relation.referencesDuarte-Carvajalino, J. M., Alzate, D. F., Ramirez, A. A., Santa-Sepulveda, J. D., Fajardo-Rojas, A. E., and Soto-Su arez, M. (2018). Evaluating late blight severity in potato crops using unmanned aerial vehicles and machine learning algorithms. Remote Sensing, 10(10).spa
dc.relation.referencesEisenbeiss, H., Zurich, E. T. H., Eisenbei , H., and Zurich, E. T. H. (2009). UAV photogrammetry. Number 18515.spa
dc.relation.referencesEPPO (2007). General crop inspection procedure for potatoes. Technical report, European and Mediterranean Plant Protection Organization.spa
dc.relation.referencesFan, R. E., Chang, K. W., Hsieh, C. J., Wang, X. R., and Lin, C. J. (2008). LIBLINEAR: A library for large linear classification. Journal of Machine Learning Research, 9(2008):1871 - 1874.spa
dc.relation.referencesFawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27(8):861 - 874.spa
dc.relation.referencesFelzenszwalb, P. F. and Huttenlocher, D. P. (2004). E cient Graph-Based Image Segmentation. International Journal of Computer Vision, 59(2):167 - 181.spa
dc.relation.referencesForbes, G., Perez, W., and Andrade-Piedra, J. (2014). Field assessment of resistance in potato to Phytophthora infestans, International Cooperators Guide.spa
dc.relation.referencesFranceschini, M. H. D., Bartholomeus, H., van Apeldoorn, D. F., Suomalainen, J., and Kooistra, L. (2019). Feasibility of unmanned aerial vehicle optical imagery for early detection and severity assessment of late blight in Potato. Remote Sensing, 11(3).spa
dc.relation.referencesFranke, J. and Menz, G. (2007). Multi-temporal wheat disease detection by multi-spectral remote sensing. Precision Agriculture, 8(3):161 - 172.spa
dc.relation.referencesGago, J., Douthe, C., Coopman, R. E., Gallego, P. P., Ribas-Carbo, M., Flexas, J., Escalona, J., and Medrano, H. (2015). UAVs challenge to assess water stress for sustainable agriculture. Agricultural Water Management, 153:9 - 19.spa
dc.relation.referencesGenuer, R., Poggi, J. M., and Tuleau-Malot, C. (2010). Variable selection using random forests. Pattern Recognition Letters, 31(14):2225 - 2236.spa
dc.relation.referencesGhanem, M. E., Marrou, H., and Sinclair, T. R. (2015). Physiological phenotyping of plants for crop improvement. Trends in Plant Science, 20(3):139 - 144.spa
dc.relation.referencesGibson-Poole, S., Humphris, S., Toth, I., and Hamilton, A. (2017). Identification of the onset of disease within a potato crop using a UAV equipped with un-modified and modified commercial off-the-shelf digital cameras. Advances in Animal Biosciences, 8(2):812 - 816.spa
dc.relation.referencesGitelson, A. and Merzlyak, M. N. (1994). Spectral Reflectance Changes Associated with Autumn Senescence of Aesculus hippocastanum L. and Acer platanoides L. Leaves. Spectral Features and Relation to Chlorophyll Estimation. Journal of Plant Physiology, 143(3):286 - 292.spa
dc.relation.referencesGitelson, A. A., Gritz, Y., and Merzlyak, M. N. (2003). Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. Journal of Plant Physiology, 160(3):271 - 282.spa
dc.relation.referencesGlasbey, C. A. (1993). An Analysis of Histogram-Based Thresholding Algorithms.spa
dc.relation.referencesGranier, C. and Vile, D. (2014). Phenotyping and beyond: Modelling the relationships between traits. Current Opinion in Plant Biology, 18(1):96 - 102.spa
dc.relation.referencesHamuda, E., Glavin, M., and Jones, E. (2016a). A survey of image processing techniques for plant extraction and segmentation in the field. Computers and Electronics in Agriculture, 125:184 - 199.spa
dc.relation.referencesHamuda, E., Glavin, M., and Jones, E. (2016b). A survey of image processing techniques for plant extraction and segmentation in the field. Computers and Electronics in Agriculture, 125:184 - 199.spa
dc.relation.referencesHassan, M. A., Yang, M., Rasheed, A., Yang, G., Reynolds, M., Xia, X., Xiao, Y., and He, Z. (2018). A rapid monitoring of NDVI across the wheat growth cycle for grain yield prediction using a multi-spectral UAV platform. Plant Science, (October 2017):1 - 9.spa
dc.relation.referencesHsu, C. W. and Lin, C. J. (2002). A comparison of methods for multiclass support vector machines. IEEE Transactions on Neural Networks, 13(2):415 - 425.spa
dc.relation.referencesHu, P., Chapman, S. C., Wang, X., Potgieter, A., Duan, T., Jordan, D., Guo, Y., and Zheng, B. (2018). Estimation of plant height using a high throughput phenotyping platform based on unmanned aerial vehicle and self-calibration: Example for sorghum breeding. European Journal of Agronomy, 95(November 2017):24 - 32.spa
dc.relation.referencesHuete, A., Didan, K., Miura, T., Rodriguez, E., Gao, X., and Ferreira, L. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, (83):195 - 213.spa
dc.relation.referencesHuete, A. R. (1988). A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25(3):295 - 309.spa
dc.relation.referencesHussain, T., Singh, B. P., and Anwar, F. (2014). A quantitative real time PCR based method for the detection of Phytophthora infestans causing late blight of potato, in infested soil. Saudi Journal of Biological Sciences, 21(4):380 - 386.spa
dc.relation.referencesJiang, Y., Zebarth, B. J., Somers, G. H., Macleod, J. A., and Savard, M. M. (2012). Sustainable potato production: Global case studies.spa
dc.relation.referencesJiang, Z., Huete, A. R., Didan, K., and Miura, T. (2008). Development of a two-band enhanced vegetation index without a blue band. Remote Sensing of Environment, 112(10):3833 - 3845.spa
dc.relation.referencesJohn Reader (2009). POTATO. A history of the propitious esculent.spa
dc.relation.referencesJones, H. G. and Vaughan, R. A. (2010). Remote sensing of vegetation - principles, techniques, and applications. University Press Oxford, United Kingdom, 1 edition.spa
dc.relation.referencesKamberova, G. and Bajcsy, R. (2006). Sensor Errors and the Uncertainties in Stereo Reconstruction. Technical report, University of Pennsylvania.spa
dc.relation.referencesKaur, D. and Kaur, Y. (2014). Various Image Segmentation Techniques: A Review. International Journal of Computer Science and Mobile Computing, 3(5):809 - 814.spa
dc.relation.referencesKlemenjak, C., Faustine, A., Makonin, S., and Elmenreich, W. (2019). On metrics to assess the transferability of machine learning models in non-intrusive load monitoring. arXiv.spa
dc.relation.referencesKuhl, J. C., Zarka, K., Coombs, J., Kirk, W. W., and Douches, D. S. (2007). Late blight resistance of RB Transgenic potato lines. Journal of the American Society for Horticultural Science, 132(6):783 - 789.spa
dc.relation.referencesKumar, J., Kumar, S., and Pratap, A. (2015). Phenomics in crop plants: Trends, options and limitations.spa
dc.relation.referencesKung, O. ., Strecha, C., Beyeler, A., Zu erey, J.-C., Floreano, D., Fua, P., and Gervaix, F. (2011). The Accuracy of Automatic Photogrammetric Techniques on Ultra-Light UAV Imagery. Paper presented at: UAV-g 2011 - Unmanned Aerial Vehicle in Geomatics.spa
dc.relation.referencesLawrence, R., Bunn, A., Powell, S., and Zambon, M. (2004). Classification of remotely sensed imagery using stochastic gradient boosting as a refinement of classification tree analysis. Remote Sensing of Environment, 90(3):331 - 336.spa
dc.relation.referencesLee, Y. H., Wei, C. P., Cheng, T. H., and Yang, C. T. (2012). Nearest-neighbor-based approach to time-series classification. Decision Support Systems, 53(1):207 - 217.spa
dc.relation.referencesLi, B., Xu, X., Han, J., Zhang, L., Bian, C., Jin, L., and Liu, J. (2019). The estimation of crop emergence in potatoes by UAV RGB imagery. Plant Methods, 15(1):1 - 13.spa
dc.relation.referencesLiu, J., Pattey, E., and J ego, G. (2012). Assessment of vegetation indices for regional crop green LAI estimation from Landsat images over multiple growing seasons. Remote Sensing of Environment, 123:347 - 358.spa
dc.relation.referencesLiu, S., Li, L., Gao, W., Zhang, Y., Liu, Y., Wang, S., and Lu, J. (2018a). Diagnosis of nitrogen status in winter oilseed rape (Brassica napus L.) using in-situ hyperspectral data and unmanned aerial vehicle (UAV) multispectral images. Computers and Electronics in Agriculture, 151(June):185 - 195.spa
dc.relation.referencesLiu, T., Li, R., Zhong, X., Jiang, M., Jin, X., Zhou, P., Liu, S., Sun, C., and Guo, W. (2018b). Estimates of rice lodging using indices derived from UAV visible and thermal infrared images. Agricultural and Forest Meteorology, 252(January):144 - 154.spa
dc.relation.referencesMahlein, A.-K. (2016a). Present and Future Trends in Plant Disease Detection. Plant Disease, 100(2):1 - 11.spa
dc.relation.referencesMahlein, A.-K. (2016b). Present and Future Trends in Plant Disease Detection. Plant Disease, 100(2):1 - 11.spa
dc.relation.referencesMamaghani, B. and Salvaggio, C. (2019). Multispectral sensor calibration and characterization for sUAS remote sensing. Sensors (Switzerland), 19(20).spa
dc.relation.referencesMarr, D. (1982). Vision: a computational investigation into the human representation and processing of visual information.spa
dc.relation.referencesMicasense (2018). Rededge Integration Guide.spa
dc.relation.referencesMinervini, M., Fischbach, A., Scharr, H., and Tsaftaris, S. A. (2016). Finely-grained annotated datasets for image-based plant phenotyping. Pattern Recognition Letters, 81:80 - 89.spa
dc.relation.referencesMishra, Y., Johansson J ank anp a a, H., Kiss, A. Z., Funk, C., Schr oder, W. P., and Jansson, S. (2012). Arabidopsis plants grown in the field and climate chambers significantly differ in leaf morphology and photosystem components. BMC Plant Biology, 12.spa
dc.relation.referencesMoore, A. W. (1991). An introductory tutorial on kd-trees, Robotics Institute. Eficient Memory-based Learning for Robot Control, (209):1 - 20.spa
dc.relation.referencesNamugga, P., Sibiya, J., Melis, R., and Barekye, A. (2017). Phenotypic characterisation of potato (Solanum tuberosum) genotypes in Uganda. South African Journal of Plant and Soil, 1862:1 - 8.spa
dc.relation.referencesOECD (1997). Organization for Economic Co-operation and Development. Consensus document on the biology of solanum tubersoum subsp. Tuberosum (potato). Http://Www.Oecd.Org/Science/Biotrack/46815598.Pdf, (8):1 - 38.spa
dc.relation.referencesOmar, L. and Ivrissimtzis, I. (2019). Using theoretical ROC curves for analysing machine learning binary classifiers. Pattern Recognition Letters, 128:447 - 451.spa
dc.relation.referencesOmohundro, S. M. (1989). Five balltree construction algorithms. Science, 51(1):1 - 22.spa
dc.relation.referencesOse, K., Corpetti, T., and Demagistri, L. (2016). Multispectral Satellite Image Processing. Optical Remote Sensing of Land Surface: Techniques and Methods, pages 58 - 124.spa
dc.relation.referencesOtsu, N. (1979). A Tlreshold Selection Method from Gray-Level Histograms. IEEE transactions on systems, man, and cybernetics, 9(1):62 - 66.spa
dc.relation.referencesPacilly, F. C., Groot, J. C., Hofstede, G. J., Schaap, B. F., and van Bueren, E. T. (2016). Analysing potato late blight control as a social-ecological system using fuzzy cognitive mapping. Agronomy for Sustainable Development, 36(2).spa
dc.relation.referencesPepe, M., Fregonese, L., and Scaioni, M. (2018). Planning airborne photogrammetry and remote-sensing missions with modern platforms and sensors. European Journal of Remote Sensing, 51(1):412 - 435.spa
dc.relation.referencesPradal, C., Artzet, S., Chopard, J., Dupuis, D., Fournier, C., Mielewczik, M., N egre, V., Neveu, P., Parigot, D., Valduriez, P., and Cohen-Boulakia, S. (2017). InfraPhenoGrid: A scientific workflow infrastructure for plant phenomics on the Grid. Future Generation Computer Systems, 67:341 - 353.spa
dc.relation.referencesPuissant, A., Rougiera, S., and Stumpf, A. (2014). Object-oriented mapping of urban trees using random forestclassifiers. International Journal of Applied Earth Observation and Geoinformation, 26(1):235 - 245.spa
dc.relation.referencesRodriguez-Galiano, V. F., Ghimire, B., Rogan, J., Chica-Olmo, M., and Rigol-Sanchez, J. P. (2012). An assessment of the e ectiveness of a random forest classifier for land-cover classification. ISPRS Journal of Photogrammetry and Remote Sensing, 67(1):93 - 104.spa
dc.relation.referencesRouse J.W., J., Haas, R. H., Schell, J. A., and Deering, D. W. (1974). Monitoring Vegetation Systems in the Great Plains with Erts. In NASA Special Publication, volume 351, page 309.spa
dc.relation.referencesSankaran, S., Khot, L. R., Espinoza, C. Z., Jarolmasjed, S., Sathuvalli, V. R., Vandemark, G. J., Miklas, P. N., Carter, A. H., Pumphrey, M. O., Knowles, R. R., and Pavek, M. J. (2015). Low-altitude, high-resolution aerial imaging systems for row and field crop phenotyping: A review.spa
dc.relation.referencesSankaran, S., Zhou, J., Khot, L. R., Trapp, J. J., Mndolwa, E., and Miklas, P. N. (2018). High-throughput field phenotyping in dry bean using small unmanned aerial vehicle based multispectral imagery. Computers and Electronics in Agriculture, 151(June):84 - 92.spa
dc.relation.referencesSchumann, G. L., D'Arcy, C. J., and Ristaino, J. (2000). Late blight of potato and tomato.spa
dc.relation.referencesShakoor, N., Lee, S., and Mockler, T. C. (2017). High throughput phenotyping to accelerate crop breeding and monitoring of diseases in the field. Current Opinion in Plant Biology, 38:184 - 192.spa
dc.relation.referencesSingh, A., Ganapathysubramanian, B., Singh, A. K., and Sarkar, S. (2016). Machine Learning for High-Throughput Stress Phenotyping in Plants.spa
dc.relation.referencesSliwka, J., Jakuczun, H., Chmielarz, M., Hara-Skrzypiec, A., Tomczynska, I., Kilian, A., and Zimnoch-Guzowska, E. (2012). A resistance gene against potato late blight originating from Solanum x michoacanum maps to potato chromosome VII. Theoretical and Applied Genetics, 124(2):397406.spa
dc.relation.referencesSpeiser, J. L., Miller, M. E., Tooze, J., and Ip, E. (2019). A comparison of random forest variable selection methods for classification prediction modeling. Expert Systems with Applications, 134:93 - 101.spa
dc.relation.referencesSrbinovska, M., Gavrovski, C., Dimcev, V., Krkoleva, A., and Borozan, V. (2015). Environmental parameters monitoring in precision agriculture using wireless sensor networks. Journal of Cleaner Production, 88:297 - 307.spa
dc.relation.referencesStrobl, C., Boulesteix, A. L., Zeileis, A., and Hothorn, T. (2007). Bias in random forest variable importance measures: Illustrations, sources and a solution. BMC Bioinformatics, 8.spa
dc.relation.referencesStruik, P. C. (2010). Can Physiology Help Us to Combat Late Blight in Potato? Potato Research, 53(4):277 - 287.spa
dc.relation.referencesSugiura, R., Tsuda, S., Tamiya, S., Itoh, A., Nishiwaki, K., Murakami, N., Shibuya, Y., Hirafuji, M., and Nuske, S. (2016). Field phenotyping system for the assessment of potato late blight resistance using RGB imagery from an unmanned aerial vehicle. Biosystems Engineering, 148:1 - 10.spa
dc.relation.referencesTardieu, F., Cabrera-Bosquet, L., Pridmore, T., and Bennett, M. (2017). Plant Phenomics, From Sensors to Knowledge. Current Biology, 27(15):R770 - R783.spa
dc.relation.referencesTharwat, A. (2018). Classification assessment methods. Applied Computing and Informatics.spa
dc.relation.referencesTokekar, P., Hook, J. V., Mulla, D., and Isler, V. (2016). Sensor Planning for a Symbiotic UAV and UGV System for Precision Agriculture. IEEE Transactions on Robotics, 32(6):1498 - 1511.spa
dc.relation.referencesVan Der Walt, S., Sch onberger, J. L., Nunez-Iglesias, J., Boulogne, F., Warner, J. D., Yager, N., Gouillart, E., and Yu, T. (2014). Scikit-image: Image processing in python. PeerJ, 2014(1):1 - 18.spa
dc.relation.referencesVaroquaux, G., Buitinck, L., Louppe, G., Grisel, O., Pedregosa, F., and Mueller, A. (2015). Scikit-learn. GetMobile: Mobile Computing and Communications, 19(1):29 - 33.spa
dc.relation.referencesWhite, J. W., Andrade-Sanchez, P., Gore, M. A., Bronson, K. F., Coffelt, T. A., Conley, M. M., Feldmann, K. A., French, A. N., Heun, J. T., Hunsaker, D. J., Jenks, M. A., Kimball, B. A., Roth, R. L., Strand, R. J., Thorp, K. R., Wall, G. W., and Wang, G. (2012). Field-based phenomics for plant genetics research. Field Crops Research, 133:101 - 112.spa
dc.relation.referencesWiik, L. (2014). Potato Late Blight and Tuber Yield: Results from 30 Years of Field Trials. Potato Research, 57(1):77 - 98.spa
dc.relation.referencesWoebbecke, D. M., Meyer, G. E., Von Bargen, K., and Mortensen, D. A. (1995). Color indices for weed identification under various soil, residue, and lighting conditions. Transactions of the American Society of Agricultural Engineers, 38(1):259 - 269.spa
dc.relation.referencesXu, H., Zhang, H., He, W., and Zhang, L. (2019). Superpixel-based spatial-spectral dimension reduction for hyperspectral imagery classification. Neurocomputing, 360:138 - 150.spa
dc.relation.referencesZhang, C., Chen, W., and Sankaran, S. (2019). High-throughput field phenotyping of Ascochyta blight disease severity in chickpea. Crop Protection, 125:104885.spa
dc.relation.referencesZhang, F. and Yang, X. (2020). Improving land cover classification in an urbanized coastal area by random forests: The role of variable selection. Remote Sensing of Environment, 251(January):112105.spa
dc.relation.referencesZhao, C. J. and Jiang, G. Q. (2010). Baseline detection and matching to vision-based navigation of agricultural robot. 2010 International Conference on Wavelet Analysis and Pattern Recognition, ICWAPR 2010, (July):44 - 48.spa
dc.relation.referencesZhao, H., Yang, C., Guo, W., Zhang, L., and Zhang, D. (2020). Automatic estimation of crop disease severity levels based on vegetation index normalization. Remote Sensing, 12(12):1 - 17.spa
dc.relation.referencesZhou, J., Pavek, M. J., Shelton, S. C., Holden, Z. J., and Sankaran, S. (2016). Aerial multispectral imaging for crop hail damage assessment in potato. Computers and Electronics in Agriculture, 127:406 - 412.spa
dc.rightsDerechos reservados al autor, 2021spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/spa
dc.subject.agrovocEnfermedades de las plantas
dc.subject.agrovocPlant diseases
dc.subject.agrovocPapa
dc.subject.agrovocPotatoes
dc.subject.agrovocVigilancia de plagas
dc.subject.agrovocPest monitoring
dc.subject.agrovocProcesamiento de datos
dc.subject.agrovocData processing
dc.subject.ddc000 - Ciencias de la computación, información y obras generalesspa
dc.subject.proposalLate blighteng
dc.subject.proposalUAVeng
dc.subject.proposalRemote sensingeng
dc.subject.proposalMachine learningeng
dc.subject.proposalPlant traitseng
dc.subject.proposalTizón tardíospa
dc.subject.proposalPercepción remotaspa
dc.subject.proposalAprendizaje de maquinaspa
dc.subject.proposalRasgos de plantasspa
dc.subject.proposalAeronave remotamente tripuladaspa
dc.titleExtraction of morphological and spectral features of potato plants from high resolution multispectral imageseng
dc.title.translatedExtracción de características morfológicas y espectrales de plantas de papa a partir de imágenes multiespectrales de alta resoluciónspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audienceEspecializadaspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
MsC_Thesis_Document_RodriguezJorge.pdf
Tamaño:
37.42 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Geomática

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: