Contribución de grupos polares a las propiedades termodinámicas de soluciones acuosas de aminoalcoholes

dc.contributor.advisorRomero Isaza, Carmen María
dc.contributor.authorCruz Alvarado, Yadhi Patricia
dc.contributor.researchgroupTermodinámica Clásicaspa
dc.date.accessioned2022-08-25T19:35:59Z
dc.date.available2022-08-25T19:35:59Z
dc.date.issued2021
dc.descriptionilustraciones, graficasspa
dc.description.abstractEn la presente investigación se presenta propiedades entálpicas, volumétricas y superficiales de mezclas de 3-amino-1-propanol, (RS)-1-amino-2-propanol ó (RS)-2-amino-1-propanol, 3-amino-1,2-propanodiol y 1,3-diamino-2-propano, con agua y en función de la temperatura. Los solutos seleccionados, sustituidos en diferentes posiciones con grupos hidroxilo y amino, permitieron evaluar el efecto de la contribución de los grupos polares en las interacciones moleculares en solución acuosa. Las entalpías de dilución se determinaron empleando microcalorimetría de flujo a 298,15 K, mientras que a partir de la teoría de McMillan-Mayer se calcularon los coeficientes de interacción entre pares de moléculas, por lo que se aplicó un esquema de contribución de grupo. A su vez, las propiedades volumétricas se encontraron a partir de medidas de densidad y velocidad del sonido de soluciones diluidas en función de la composición y la temperatura en el rango de 293,15 a 308,15 K; con las cuales se analizó el proceso de hidratación y se calcularon los números de hidratación. La tensión superficial de las mezclas se evaluó por el método de volumen de gota pendiente en función de la temperatura (293,15 a 308,15 K) y en todo el rango de composición, obteniendo parámetros de hidrofobicidad, coeficientes de actividad y propiedades de superficie. Los resultados fueron analizados en términos de las interacciones moleculares soluto-agua y soluto-soluto, además del proceso de hidratación. Se encontró que la contribución de los grupos polares no es aditiva, además de una notable diferencia entre la contribución de cada uno de los grupos a las propiedades termodinámicas evaluadas. (Texto tomado de la fuente)spa
dc.description.abstractThis research presents enthalpic, volumetric and surface properties of mixtures of 3-amino-1-propanol, (RS) -1-amino-2-propanol or (RS) -2-amino-1-propanol, 3-amino -1,2-propanediol and 1,3-diamino-2-propane, with water and as a function of temperature. The selected solutes, substituted in different positions with hydroxyl and amino groups, allowed to evaluate the effect of the contribution of the polar groups in the molecular interactions in aqueous solution. The dilution enthalpies, were determined using flow microcalorimetry at 298.15 K and from McMillan's theory the interaction coefficients between pairs of molecules were calculated and a group contribution scheme was applied. In addition, the volumetric properties were found from measurements of density and speed of sound, in dilute solutions as a function with composition and temperature in the range of 293.15 to 308.15 K; with which the hydration process was analyzed and the hydration numbers were calculated. The surface tension of the mixtures was evaluated by the volume pendant drop method, as a function of temperature (293.15 to 308.15 K) and throughout the composition range; obtaining hydrophobicity parameters, activity coefficients and surface properties. The results were analyzed in terms of solute-water and solute-solute molecular interactions, in addition to the hydration process. In turn, it was found that the contribution of the polar groups is not additive, in addition to a notable difference between the contribution of each of the groups to the evaluated thermodynamic properties.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ciencias - Químicaspa
dc.description.researchareaEstudio Fisicoquímico de Interacciones en Soluciónspa
dc.format.extentxxv, 179 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82113
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Químicaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Químicaspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesP. Ball, “Water is an active matrix of life for cell and molecular biology,” Proc. Natl. Acad. Sci., vol. 114, no. 51, p. 201703781, 2017.spa
dc.relation.referencesM. F. Chaplin, “A proposal for the structuring of water,” Biophys. Chem., vol. 83, no. 3, pp. 211–221, 2000.spa
dc.relation.referencesF. Franks, A Matrix of life, 2nd ed. Cambridge: Royal Society of Chemistry, 2000.spa
dc.relation.referencesF. Franks, Water in Crystalline Hydrates Aqueous Solutions of Simple Nonelectrolytes, Vol 2. New York: Plenum Press, 1973.spa
dc.relation.referencesB. Bagchi, Water in Biological and Chemical Processes From Structure and Dynamics to Function. Cambridge, United Kingdom: Cambridge University Press, 2013.spa
dc.relation.referencesJ. L. Finney, “Water? What’s so special about it?,” Philos. Trans. R. Soc. B Biol. Sci., vol. 359, no. 1448, pp. 1145–1165, 2004.spa
dc.relation.referencesD. Eisenberg and W. Kauzmann, The Structure and Properties of Water. New York: Oxford University Press, 2006.spa
dc.relation.referencesF. Franks, Water: A Comprehensive Treatise” The Physics and Physical Chemistry of Water, Vol 1. New York: Plenum Press, 1972.spa
dc.relation.referencesA. Ben-Naim, Molecular Theory of Water and Aqueous Solutions. Singapore: World Scientific Publishing Co., 2009.spa
dc.relation.referencesA. Ben-Naim, Solvation Thermodynamics. New York: Springer Science+ Business Media, 1987.spa
dc.relation.referencesN. A. Chumaevskii and M. N. Rodnikova, “Some peculiarities of liquid water structure,” J. Mol. Liq., vol. 106, no. 2–3, pp. 167–177, 2003.spa
dc.relation.referencesJ. M. Prausnitz, R. N. Linchtenthaler, and G. D. A. A, “Termodinámica Molecular De Los Equilibrios De Fases.” p. 728, 2000.spa
dc.relation.referencesW. G. McMillan and J. E. Mayer, “The statistical thermodynamics of multicomponent systems,” J. Chem. Phys., vol. 13, no. 7, pp. 276–305, 1945.spa
dc.relation.referencesJ. J. Savage and R. H. Wood, “Enthalpy of dilution of aqueous mixtures of amides, sugars, urea, ethylene glycol, and pentaerythritol at 25oC: Enthalpy of interaction of the hydrocarbon, amide, and hydroxyl functional groups in dilute aqueous solutions,” J. Solution Chem., vol. 5, no. 10, pp. 733–750, 1976.spa
dc.relation.referencesR. H. Wood, B. Y. Okamoto, and P. T. Thompson, “Freezing Points of Aqueous Alcohols. Free Energy of Interaction of the CHOH, CH2, CONH and C=C Functional Groups in Dilute Aqueous Solutions,” J. Chem. Soc. Faraday I, vol. 74, pp. 1990–2007, 1978.spa
dc.relation.referencesR. H. Wood and L. H. Hiltzik, “Enthalpies of dilution of aqueous solutions of formamide, acetamide, propionamide, and N,N-dimethylformamide,” J. Solution Chem., vol. 9, no. 1, pp. 45–57, 1980.spa
dc.relation.referencesI. R. Tasker and R. H. Wood, “Enthalpies of dilution of aqueous systems containing hexamethylenetetramine and other nonelectrolytes,” J. Solution Chem., vol. 11, no. 10, pp. 729–747, 1982.spa
dc.relation.referencesI. R. Tasker and R. H. Wood, “Enthalpies of dilution of aqueous solutions of cyclohexanol, inositol, and mannitol,” J. Phys. Chem., vol. 86, no. 20, pp. 4040–4045, 1982.spa
dc.relation.referencesI. R. Tasker and R. H. Wood, “Enthalpy of dilution of aqueous systems containing S-trioxane and some amides. Analysis of the interaction of saccharides with amides in aqueous media,” J. Solution Chem., vol. 11, no. 7, pp. 481–493, 1982.spa
dc.relation.referencesS. Andini, G. Castronuovo, V. Elia, and L. Fasano, “Hydrophobic Interactions in the Aqueous Solutions of Alkan-1,2-diols,” J. Chem. Soc. Faraday Trans., vol. 86, no. 21, pp. 3567–3571, 1990.spa
dc.relation.referencesC. Cascella, G. Castronuovo, V. Elia, R. Sartorio, and S. Wurzburger, “Hydrophobic Interactions of Alkanols,” J. Chem. Soc. Faraday Trans., vol. 86, no. 1, pp. 85–88, 1990.spa
dc.relation.referencesA. V. Plyasunov and E. L. Shock, “Group contribution values of the infinite dilution thermodynamic functions of hydration for aliphatic noncyclic hydrocarbons, alcohols, and ketones at 298.15 K and 0.1 MPa,” J. Chem. Eng. Data, vol. 46, no. 5, pp. 1016–1019, 2001.spa
dc.relation.referencesM. Bloemendal and G. Somsen, “Solute-Solute Interactions in Non-aqueous Solvents. Enthalpic Interaction Coefficients of Substituted Acetamides Dissolved in N,N-Dimethylformamide,” J. Solution Chem., vol. 12, no. 2, pp. 83–99, 1983.spa
dc.relation.referencesM. Bloemendal and G. Somsen, “Enthalpic interaction coefficients of amides dissolved in N,N-dimethylformamide,” J. Solution Chem., vol. 13, no. 4, pp. 281–295, 1984.spa
dc.relation.referencesP. J. Cheek and T. H. Lilley, “The enthalpies of interaction of some amides with urea in water at 25°C,” J. Chem. Soc. Faraday Trans. I, vol. 84, no. 6, pp. 1927–1940, 1988.spa
dc.relation.referencesG. Barone and G. Castronuovo, “Excess enthalpies of ternary aqueous solutions of amides and ureas at 298.15 K,” J. Chem. Soc. Faraday Trans., vol. 84, no. 6, pp. 1919–1925, 1988.spa
dc.relation.referencesT. H. Lilley and R. H. Wood, “Freezing Temperatures of Aqueous Solutions Containing Formamide, Acetamide, Propionamide and N,N-Dimethylformamide. Free Energy of interaction between the CONH and CH2 Groups in the Dilute Aqueous Solutions,” J. Chem. Soc. Faraday I, vol. 76, pp. 901–905, 1980.spa
dc.relation.referencesW. Marczak, A. Heintz, and J. K. Lehmann, “Calorimetric investigations of hydrogen bonding in binary mixtures containing pyridine and its methyl-substituted derivatives. II. The dilute solutions of methanol and 2-methyl-2-propanol,” J. Chem. Thermodyn., vol. 36, no. 7, pp. 575–582, 2004.spa
dc.relation.referencesD. J. Hofmann, J. H. Butler, and P. P. Tans, “A new look at atmospheric carbon dioxide,” Atmos. Environ., vol. 43, no. 12, pp. 2084–2086, 2009.spa
dc.relation.referencesM. L. Kijevčanin, V. D. Spasojević, S. P. Šerbanović, and B. D. Djordjević, “Densities, viscosities, and refractive indices of aqueous alkanolamine solutions as potential carbon dioxide removal reagents,” J. Chem. Eng. Data, vol. 58, no. 1, pp. 84–92, 2013.spa
dc.relation.referencesH. Hoiland, “Partial Molar volumes, Expansibilities, and Compressibilities for Aqueous Alcohol Solution Between 5 oC and 40 oC.” pp. 857–866, 1980.spa
dc.relation.referencesC. M. Romero, M. S. Páez, and D. Pérez, “A comparative study of the volumetric properties of dilute aqueous solutions of 1-propanol, 1,2-propanediol, 1,3-propanediol, and 1,2,3-propanetriol at various temperatures,” J. Chem. Thermodyn., vol. 40, no. 12, pp. 1645–1653, 2008.spa
dc.relation.referencesC. M. Romero, M. S. Páez, J. C. Arteaga, M. A. Romero, and F. Negrete, “Effect of temperature on the volumetric properties of dilute aqueous solutions of 1,2-hexanediol, 1,5-hexanediol, 1,6-hexanediol, and 2,5-hexanediol,” J. Chem. Thermodyn., vol. 39, no. 8, pp. 1101–1109, 2007.spa
dc.relation.referencesM. Fujisawa, M. Maeda, S. Takagi, and T. Kimura, “Enthalpies of Dilution of Mono-, Di- and Poly-Alcohols in Dilute Aqueous Solutions At 298.15 K,” J. Therm. Anal., vol. 69, pp. 841–848, 2002.spa
dc.relation.referencesF. Franks, M. Pedley, and D. Reid, “Solute Interactions in Dilute Aqueous Solutions,” J. Chem. Soc. Faraday Trans., vol. 72, pp. 359–367, 1976.spa
dc.relation.referencesC. M. Romero, M. S. Páez, and I. Lamprecht, “Enthalpies of dilution of aqueous solutions of n-butanol, butanediols, 1,2,4-butanetriol, and 1,2,3,4-butanetetrol at 298.15 K,” Thermochim. Acta, vol. 437, no. 1–2, pp. 26–29, 2005.spa
dc.relation.referencesM. V. Kaulgud and K. J. Patil, “Volumetric and isentropic compressibility behavior of aqueous amine solutions. I,” J. Phys. Chem., vol. 78, no. 7, pp. 714–717, 1974.spa
dc.relation.referencesM. V. Kaulgud and K. J. Patil, “Volumetric and isentropic compressibility behavior of aqueous amine solutions. II,” J. Phys. Chem., vol. 80, no. 2, pp. 138–143, 1976.spa
dc.relation.referencesB. Hawrylak, K. Gracie, R. Palepu, K. Grade, and R. Palepu, “Thermodynamic properties of binary mixtures of butanediols with water,” J. Solution Chem., vol. 27, no. 1, pp. 17–31, 1998.spa
dc.relation.referencesS. K. Mehta, G. Ram, V. Kumar, and K. K. Bhasin, “Structural and interactional studies of homologous series of α,ω-alkanediols in N,N-dimethylformamide,” J. Chem. Thermodyn., vol. 39, no. 5, pp. 781–790, 2007.spa
dc.relation.referencesM. Pagé, J.-Y. Huot, and C. Jolicoeur, “A comprehensive thermodynamic investigation of water–ethanolamine mixtures at 10, 25, and 40 °C,” Can. J. Chem., vol. 71, no. 7, pp. 1064–1072, 1993.spa
dc.relation.referencesH. Touhara, S. Okazaki, F. Okino, H. Tanaka, K. Ikari, and K. Nakanishi, “Thermodynamic properties of aqueous mixtures of hydrophilic compounds 2. Aminoethanol and its methyl derivatives,” J. Chem. Thermodyn., vol. 14, no. 2, pp. 145–156, 1982.spa
dc.relation.referencesY. Maham, T. T. Teng, L. G. Hepler, and A. E. Mather, “Volumetric properties of aqueous solutions of monoethanolamine, mono- and dimethylethanolamines at temperatures from 5 to 80 °C I,” Thermochim. Acta, vol. 386, no. 2, pp. 111–118, 2002.spa
dc.relation.referencesX. Wang, K. Kang, W. Wang, and Y. Tian, “Volumetric properties of binary mixtures of 3-(methylamino)propylamine with water, N -methyldiethanolamine, N, N -dimethylethanolamine, and N, N -diethylethanolamine from (283.15 to 363.15) K,” J. Chem. Eng. Data, vol. 58, no. 12, pp. 3430–3439, 2013.spa
dc.relation.referencesF. I. Chowdhury, S. Akhtar, M. A. Saleh, M. U. Khandaker, Y. M. Amin, and A. K. Arof, “Volumetric and viscometric properties of aqueous solutions of some monoalkanolamines,” J. Mol. Liq., vol. 223, pp. 299–314, 2016.spa
dc.relation.referencesY. Maham, T. T. Teng, L. G. Hepler, and A. E. Mather, “Densities, excess molar volumes, and partial molar volumes for binary mixtures of water with monoethanolamine, diethanolamine, and triethanolamine from 25 to 80°C,” J. Solution Chem., vol. 23, no. 2, pp. 195–205, 1994.spa
dc.relation.referencesF.-Q. Zhang, H.-P. Li, M. Dai, and J.-P. Zhao, “Volumetric properties of binary mixtures of water with ethanolamine alkyl derivatives,” Thermochim. Acta, vol. 254, pp. 347–357, 1995.spa
dc.relation.referencesY. Maham, T. T. Teng, A. E. Mather, and L. G. Hepler, “Volumetric properties of (water + diethanolamine ) systems,” Can. J. Chem., vol. 73, pp. 1514–1519, 1995.spa
dc.relation.referencesZ. Idris and D. A. Eimer, “Density Measurements of Unloaded and CO2-Loaded 3-Amino-1-propanol Solutions at Temperatures (293.15 to 353.15) K,” J. Chem. Eng. Data, vol. 61, no. 1, pp. 173–181, 2016.spa
dc.relation.referencesA. Henni, A. V Rayer, S. Kadiwala, and K. Narayanaswamy, “Volumetric Properties, Viscosities, and Refractive Indices for Aqueous 1-Amino-2-Propanol (Monoisopropanolamine (MIPA)) Solutions from (298.15 to 343.15) K,” J. Chem. Eng. Data, vol. 55, no. 12, pp. 5562–5568, 2010.spa
dc.relation.referencesS. E. Burke, B. Hawrylak, and R. Palepu, “Thermodynamic transfer functions at infinite dilution and clathrate formation of ethanolamines in water,” Thermochim. Acta, vol. 345, no. 2, pp. 101–107, 2000.spa
dc.relation.referencesA. E. Mather, C. Chan, Y. Maham, and C. Mathonat, “Densities and volumetric properties of the aqueous solutions of 2-amino-2-methyl-1-propanol, n-butyldiethanolamine and n-propylethanolamine at temperatures from 298.15 to 353.15 K,” Fluid Phase Equilib., vol. 198, no. 2, pp. 239–250, 2002.spa
dc.relation.referencesS. Chen, L. Zhang, Y. Zhang, S. Chen, and J. Chen, “Density and viscosity of monoethylethanolamine + H2O and monoethylethanolamine + diethylethanolamine solutions for CO2capture,” Thermochim. Acta, vol. 642, pp. 52–58, 2016.spa
dc.relation.referencesS. Cabani and V. Mollica, “Volume Changes in the Proton Ionization of Amines in Water. 2. Amino Alcohols, Amino Ethers, and Diamines,” J. Ph, vol. 81, no. 10, pp. 987–993, 1977.spa
dc.relation.referencesY. Maham, A. E. Mather, and L. G. Hepler, “Excess molar enthalpies of (Water + Alkanolamine) systems and some thermodynamic calculations,” J. Chem. Eng. Data, vol. 42, no. 5, pp. 988–992, 1997.spa
dc.relation.referencesC. Mathonat, Y. Maham, A. E. Mather, and L. G. Hepler, “Excess Molar Enthalpies of (Water + Monoalkanolamine) Mixtures at 298.15 K and 308.15 K,” J. Chem. Eng. Data, vol. 42, no. 5, pp. 993–995, 1997.spa
dc.relation.referencesY. Maham, A. E. Mather, and C. Mathonat, “Excess properties of (alkyldiethanolamine+ H2O) mixtures at temperatures from (298.15 to 338.15) K,” J. Chem. Thermodyn., vol. 32, no. 2, pp. 229–236, 2000.spa
dc.relation.referencesM. Mundhwa and A. Henni, “Molar excess enthalpy (HmE) for various {alkanolamine (1) + water (2)} systems at T = (298.15, 313.15, and 323.15) K,” J. Chem. Thermodyn., vol. 39, no. 11, pp. 1439–1451, 2007.spa
dc.relation.referencesG. Castronuovo, V. Elia, M. R. Tranchino, and F. Velleca, “The role of preferential interactions between similar domains in determining the behavior of aqueous solutions of aminoalkanols. A microcalorimetric study,” Thermochim. Acta, vol. 313, no. 2, pp. 125–130, 1998.spa
dc.relation.referencesH. Liang, X. Hu, G. Fang, S. Shao, A. Guo, and Z. Guo, “Pairwise Interaction Enthalpies of Enantiomers of b-Amino Alcohols in DMSO+H2O Mixtures at 298.15K,” Chirality, vol. 24, pp. 374–385, 2012.spa
dc.relation.referencesE. B. Rinker, D. W. Oelschlager, A. T. Colussi, K. R. Henry, and O. C. Sandall, “Viscosity, Density, and Surface Tension of Binary Mixtures of Water and N-Methyldiethanolamine and Water and Diethanolamine and Tertiary Mixtures of These Amines with Water over the Temperature Range 20‒100°C,” J. Chem. Eng. Data, vol. 39, no. 2, pp. 392–395, 1994.spa
dc.relation.referencesG. Vázquez, E. Alvarez, R. Rendo, E. Romero, and J. M. Navaza, “Surface tension of aqueous solutions of diethanolamine and triethanolamine from 25°C to 50°C,” J. Chem. Eng. Data, vol. 41, no. 4, pp. 806–808, 1996.spa
dc.relation.referencesG. Vázquez, E. Alvarez, J. M. Navaza, R. Rendo, and E. Romero, “Surface tension of binary mixtures of water + monoethanolamine and water + 2-amino-2-methyl-1-propanol and tertiary mixtures of these amines with water from 25 °C to 50 °C,” J. Chem. Eng. Data, vol. 42, no. 1, pp. 57–59, 1997.spa
dc.relation.referencesE. Alvarez, R. Rendo, B. Sanjurjo, M. Sanchéz-Vilas, and J. M. Navaza, “Surface Tension of Binary Mixtures of Water + N -Methyldiethanolamine and Ternary Mixtures of This Amine and Water with Monoethanolamine, Diethanolamine, and 2-Amino-2-methyl-1-propanol from 25 to 50 °C,” J. Chem. Eng. Data, vol. 43, no. 1, pp. 1027–1029, 1998.spa
dc.relation.referencesJ. Aguila-Hernández, A. Trejo, and J. Gracia-Fadrique, “Surface tension of aqueous solutions of alkanolamines: Single amines, blended amines and systems with nonionic surfactants,” Fluid Phase Equilib., vol. 185, no. 1–2, pp. 165–175, 2001.spa
dc.relation.referencesA. Muhammad, M. I. A. Mutalib, C. D. Wilfred, T. Murugesan, and A. Shafeeq, “Viscosity, refractive index, surface tension, and thermal decomposition of aqueous N-methyldiethanolamine solutions from (298.15 to 338.15) K,” J. Chem. Eng. Data, vol. 53, no. 9, pp. 2226–2229, 2008.spa
dc.relation.referencesA. Blanco, A. García-Abuín, D. Gómez-Díaz, and J. M. Navaza, “Density, Speed of Sound, Viscosity and Surface Tension of 3-Dimethylamino-1-propylamine + Water, 3-Amino-1-propanol + 3-Dimethylamino-1-propanol, and (3-Amino-1-propanol + 3-Dimethylamino-1-propanol) + Water from T = (293.15 to 323.15) K,” J. Chem. Eng. Data, vol. 62, pp. 2272–2279, 2017.spa
dc.relation.referencesC. M. Romero and M. S. Paéz, “Surface tension of aqueous solutions of alcohol and polyols at 298.15 K,” Phys. Chem. Liq., vol. 44, no. 1, pp. 61–65, 2006.spa
dc.relation.referencesG. Vazquez, E. Alvarez, and J. M. Navaza, “Surface Tension of Alcohol + Water from 20 to 50 °C,” J. Chem. Eng. Data, vol. 40, no. 3, pp. 611–614, 1995.spa
dc.relation.referencesK. A. Connors and J. L. Wright, “Dependence of Surface Tension on Composition of Binary Aqueous-Organic Solutions,” Anal. Chem., vol. 61, no. 3, pp. 194–198, 1989.spa
dc.relation.referencesN. Shardt and J. A. W. Elliott, “Model for the Surface Tension of Dilute and Concentrated Binary Aqueous Mixtures as a Function of Composition and Temperature,” Langmuir, vol. 33, no. 41, pp. 11077–11085, 2017.spa
dc.relation.referencesJ. Gracia-Fradique, P. Brocos, A. Piñero, and A. Amigo, “Activity coefficients at infinite dilution from surface tension data,” Langmuir, vol. 18, no. 9, pp. 3604–3608, 2002.spa
dc.relation.referencesJ. Gracia-Fadrique, J. Viades-Trejo, and A. Amigo, “Activity coefficients at infinite dilution for surfactants,” Fluid Phase Equilib., vol. 250, no. 1–2, pp. 158–164, 2006.spa
dc.relation.referencesJ. Gracia-Fadrique, P. Brocos, Á. Piñeiro, and A. Amigo, “A proposal for the estimation of binary mixture activity coefficients from surface tension measurements throughout the entire concentration range,” Fluid Phase Equilib., vol. 260, no. 2, pp. 343–353, 2007.spa
dc.relation.referencesJ. Viades-Trejo and J. Gracia-Fadrique, “A new surface equation of state. Hydrophobic-hydrophilic contributions to the activity coefficient,” Fluid Phase Equilib., vol. 264, no. 1–2, pp. 12–17, 2008.spa
dc.relation.referencesP. Atkins and J. De Paula, Physical Chemistry, Ninth Edit. New York: Oxford University Press, 2010spa
dc.relation.referencesS. Goldman, “The effect of three-body dispersion forces in liquids on solubilities and related functions,” J. Chem. Phys., vol. 69, no. 8, pp. 3775–3781, 1978.spa
dc.relation.referencesA. Kreglewski, K. N. Marsh, and K. R. Hall, “A simple relation for the excess functions of nonrandom mixtures,” Fluid Phase Equilib., vol. 21, no. 1–2, pp. 25–37, 1985.spa
dc.relation.referencesC.-A. Hwang, J. C. Holste, K. R. Hall, and G. A. Mansoori, “A simple relation to predict or to correlate the excess functions of multicomponent mixtures,” Fluid Phase Equilib., vol. 62, no. 3, pp. 173–189, Jan. 1991.spa
dc.relation.referencesY. Lu, X. Wang, G. Su, and J. Lu, “Calorimetric and volumetric studies of the interactions of formamide with alkan-1-ol in water at 298.15 K,” Thermochim. Acta, vol. 406, no. 1–2, pp. 233–239, 2003.spa
dc.relation.referencesY. Lu, Y. Han, M. Liu, Q. Cheng, X. Lou, and J. Lu, “Enthalpic and volumetric studies of the interactions of propionamide in aqueous carboxylic acid solutions at 298.15 K,” Thermochim. Acta, vol. 416, no. 1–2, pp. 65–70, 2004.spa
dc.relation.referencesJ. E. Desnoyers, G. Perron, L. Von Av, and J. Morel, “Enthalpies of the Urea-tert-ButanoI-Water System at 25oC,” vol. 5, no. 9, pp. 631–632, 1976.spa
dc.relation.referencesC. M. Romero, M. S. Páez, and I. Lamprecht, “Enthalpies of dilution of aqueous solutions of n-butanol, butanediols, 1,2,4-butanetriol, and 1,2,3,4-butanetetrol at 298.15 K,” Thermochim. Acta, vol. 437, no. 1–2, pp. 26–29, 2005.spa
dc.relation.referencesL. Giraldo, J. C. Moreno, and A. Gómez, “Desarrollos Instrumentales en Microcalorimetría de conducción de Calor,” Rev. Colomb. Química, vol. 24, no. I, pp. 57–68, 1995.spa
dc.relation.referencesI. Wadsö, “Trends in isothermal microcalorimetry,” Chem. Soc. Rev., vol. 26, no. 3, p. 79, 1997.spa
dc.relation.referencesI. Wadsö, “Isothermal microcalorimetry near ambient temperature: An overview and discussion,” Thermochim. Acta, vol. 294, no. 1, pp. 1–11, 1997.spa
dc.relation.referencesI. Wadsö, “Needs for standards in isothermal microcalorimetry,” Thermochim. Acta, vol. 347, no. 1–2, pp. 73–77, 2000.spa
dc.relation.referencesL. D. Hansen, “Toward a standard nomenclature for calorimetry,” Thermochim. Acta, vol. 371, no. 1–2, pp. 19–22, 2001.spa
dc.relation.referencesL. D. Hansen and R. M. Hart, “The art of calorimetry,” Thermochim. Acta, vol. 417, no. 2, pp. 257–273, 2004.spa
dc.relation.referencesB. N. Taylor and C. E. Kuyatt, “Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results,” NIST Technical Note. U.S. Government Printing Office, Washington, p. 20, 1994.spa
dc.relation.referencesC. M. Romero, Y. P. Cruz, and S. Perez-Casas, “Enthalpies of dilution of amino alcohols in aqueous solutions at 298.15 K,” Thermochim. Acta, vol. 684, no. February 2019, p. 178490, 2020.spa
dc.relation.referencesG. Borghesani, R. Pedriali, F. Pulidori, and I. Scaroni, “Solute-solute-solvent interactions in dilute aqueous solutions. Microcalorimetric study of isomeric butanediols,” J. Solution Chem., vol. 15, no. 5, pp. 397–408, 1986.spa
dc.relation.referencesW. Dimmling and E. Lange, “Verdunnungs- und Losungswarmen yon n-Propylalkohol und iso-Propylalkohol in Wasser bei 25 °C,” Zeitschrift fur Elekrochemie, vol. 55, no. 4, pp. 322–327, 1951.spa
dc.relation.referencesH. Liang, X. Hu, G. Fang, S. Shao, A. Guo, and Z. Guo, “Pairwise interaction enthalpies of enantiomers of β-amino alcohols in DMSO + H2O mixtures at 298.15 K,” Chirality, vol. 24, no. 5, pp. 374–385, 2012.spa
dc.relation.referencesI. R. Tasker and R. H. Wood, “Enthalpies of Dilution of Aqueous Solutions of Cyclohexanol, Inositol, and Mannitol,” J. Phys. Chem., vol. 86, pp. 4040–4045, 1982.spa
dc.relation.referencesG. Borghesani, R. Pedriali, and F. Pulidori, “Solute-solute-solvent interactions in dilute aqueous solutions of aliphatic diols. Excess enthalpies and gibbs free energies,” J. Solution Chem., vol. 18, no. 3, pp. 289–300, 1989.spa
dc.relation.referencesM. Fujisawa, M. Maeda, S. Takagi, and T. Kimura, “Enthalpies of dilution of mono-, di- and poly-alcohols in dilute aqueous solutions at 298.15 K,” J. Therm. Anal. Calorim., vol. 69, no. 3, pp. 841–848, 2002.spa
dc.relation.referencesG. Perron and J. E. Desnoyers, “Heat capacities and volumes of interaction between mixtures of alcohols in water at 298. 5 K,” J. Chem. Thermodyn., vol. 13, pp. 1105–1121, 1981.spa
dc.relation.referencesF. Franks and M. Pedley, “Solute Interactions in Dilute Aqueous Solutions,” J. Chem. Soc. Faraday Trans. I, vol. 79, pp. 2249–2260, 1983.spa
dc.relation.referencesW. Dimmling and E. Lange, “Heats of dilution and solution of n-propyl alcohol and isopropyl alcohol in water at 25|C,” Z. Elektrochem, vol. 55, p. 322, 1951.spa
dc.relation.referencesR. B. Cassel and R. H. Wood, “Heat of mixing aqueous nonelectrolytes at constant molality. Sucrose, urea, and glycine,” J. Phys. Chem., vol. 78, no. 24, pp. 2465–2469, 1974.spa
dc.relation.referencesL. G. Soldi, Y. Marcus, M. J. Blandamer, and P. M. Cullis, “Titration calorimetric determination of the pairwise interaction parameters of glycerol, D-threitol, mannitol, and D-glucitol in dilute aqueous solutions,” J. Solution Chem., vol. 24, no. 3, pp. 201–209, 1995.spa
dc.relation.referencesE. Lange and K. Möhring, “Integrale Verdünnungswärmen einiger Nichtelektrolyte in Wasser und Octamethyltetrasiloxan bei kleinen Konzentrationen,” Z. Elektrochem, vol. 57, no. 8, pp. 660–662, 1953.spa
dc.relation.referencesJ. Sedlbauer and P. Jakubu, “Application of group additivity approach to polar and polyfunctional aqueous solutes,” Ind. Eng. Chem. Res., vol. 47, no. 15, pp. 5048–5062, 2008.spa
dc.relation.referencesS. Cabani, P. Gianni, V. Mollica, and L. Lepori, “Group Contributions to the Thermodynamic Properties of Non-Ionic Organic Solutes in Dilute Aqueous Solution,” J. Solution Chem., vol. 10, no. 8, pp. 563–595, 1981.spa
dc.relation.referencesS. Cabani, V. Mollica, L. Lepori, and S. T. Lobo, “Volume changes in the proton ionization of amines in water. 2. Amino alcohols, amino ethers, and diamines,” J. Phys. Chem., vol. 81, no. 10, pp. 987–993, 1977.spa
dc.relation.referencesH. Wood, Robert and L. H. Hiltzik, “Enthalpies of dilution of aqueous solutions of formamide, acetamide, propionamide, and N,N-dimethylformamide,” J. Solution Chem., vol. 9, no. 1, pp. 45–57, 1980.spa
dc.relation.referencesC. M. Romero, I. Lamprecht, and M. E. Gonzalez, “Enthalpy of dilution of aliphatic amides in aqueous solutions at temperatures between 293.15K and 308.15K,” Thermochim. Acta, vol. 488, pp. 49–53, 2009.spa
dc.relation.referencesI. M. Klotz, Chemical Thermodynamics - Basic Theory and Methods. New York: W. A. Benjamin Inc., 1964spa
dc.relation.referencesK. S. Pitzer, Thermodynamics, 3rd ed. Singapore: MacGraw Hill International Editions, 1995.spa
dc.relation.referencesJ. M. Prausnitz, R. N. Lichtenthaler, and E. G. de Azevedo, “The Gibbs-Duhem Equation,” Molecular Thermodynamics of Fluid-Phase Equilibria. 1998.spa
dc.relation.referencesS. Cabani, G. Conti, and E. Matteoli, “Partial molal expansibilities of organic compounds in aqueous solution. I. Alcohols and ethers,” J. Solution Chem., vol. 5, no. 11, pp. 751–763, 1976.spa
dc.relation.referencesH. Høiland, “Partial molal volumes, expansibilities, and compressibilities for aqueous alcohol solutions between 5°C and 40°C,” J. Solution Chem., vol. 9, no. 11, pp. 857–866, 1980.spa
dc.relation.referencesJ. W. P. Malcolm, Ultrasonic Techniques for Fluids Characterization, Department. Leeds, United Kingdom: Academic Press, 1997.spa
dc.relation.referencesA. Burakowski and J. Gliński, “Hydration numbers of non-electrolytes - Application of the acoustic method of Pasynski,” Chem. Phys., vol. 332, no. 2–3, pp. 336–340, 2007.spa
dc.relation.referencesJ. Gliński and A. Burakowski, “New interpretation of the concentration dependence of the compressibility of aqueous solutions of nonelectrolytes,” Int. J. Thermophys., vol. 32, no. 4, pp. 786–794, 2011.spa
dc.relation.referencesJ. Gliński and A. Burakowski, “Hydration numbers of nonelectrolytes from acoustic methods,” Chem. Rev., vol. 112, no. 4, pp. 2059–2081, 2012.spa
dc.relation.referencesA. Burakowski and J. Gliński, “Additivity of adiabatic compressibility with the size and geometry of the solute molecule,” J. Mol. Liq., vol. 137, no. 1–3, pp. 25–30, 2008.spa
dc.relation.referencesY. Kano, M. Hasumoto, Y. Kayukawa, and K. Watanabe, “Rapid measurements of thermodynamic properties for alternative refrigerants with vibrating-tube densimeter,” Int. J. Thermophys., vol. 26, no. 1, pp. 63–81, 2005.spa
dc.relation.referencesS. Cabani, V. Mollica, L. Lepori, and S. T. Lobo, “Volume Changes in the Proton Ionization of Amines in Water. 2. Amino Alcohols, Amino Ethers, and Diamines,” J. Phys. Chem., vol. 81, no. 10, pp. 987–993, 1977.spa
dc.relation.referencesA. Henni, J. J. Hromek, P. Tontiwachwuthikul, and A. Chakma, “Volumetric Properties and Viscosities for Aqueous AMP Solutions from 25 °C to 70 °C,” J. Chem. Eng. Data, vol. 48, no. 3, pp. 551–556, 2003.spa
dc.relation.referencesA. Henni, J. J. Hromek, P. Tontiwachwuthikul, and A. Chakma, “Volumetric properties and viscosities for aqueous diisopropanolamine solutions from 25 oC to 70 oC,” J. Chem. Eng. Data, vol. 48, no. 4, pp. 1062–1067, 2003.spa
dc.relation.referencesA. Muhammad, M. I. A. Mutalib, T. Murugesan, and A. Shafeeq, “Density and Excess Properties of Aqueous N-Methyldiethanolamine Solutions from (298.15 to 338.15) K,” J. Chem. Eng. Data, vol. 53, no. 9, pp. 2217–2221, 2008.spa
dc.relation.referencesE. Álvarez, F. Cerdeira, D. Gómez-Diaz, and J. M. Navaza, “Density, Speed of Sound, Isentropic Compressibility, and Excess Volume of Binary Mixtures of 1-Amino-2-propanol or 3-Amino-1-propanol with 2-Amino-2-methyl-1-propanol, Diethanolamine, or Triethanolamine from (293.15 to 323.15) K,” J. Chem. Eng. Data, vol. 55, pp. 2567–2575, 2010.spa
dc.relation.referencesF. Kermanpour and H. Z. Niakan, “Experimental excess molar properties of binary mixtures of (3-amino-1-propanol + isobutanol, 2-propanol) at T = (293.15 to 333.15) K and modelling the excess molar volume by Prigogine-Flory-Patterson theory,” J. Chem. Thermodyn., vol. 54, pp. 10–19, 2012.spa
dc.relation.referencesD. Gómez-Díaz, M. D. La Rubia, A. B. López, J. M. Navaza, R. Pacheco, and S. Sánchez, “Density, speed of sound, refractive index, and viscosity of 1-amino-2-propanol {or Bis(2-hydroxypropyl)amine} + triethanolamine + water from T = (288.15 to 333.15) K,” J. Chem. Eng. Data, vol. 57, no. 4, pp. 1104–1111, 2012.spa
dc.relation.referencesV. D. Spasojevic, B. D. Djordjevic, S. P. Šerbanovic, I. R. Radovic, and M. Lj Kijevčanin, “Densities, refractive indices, viscosities, and spectroscopic study of 1-amino-2-propanol + 1-butanol and + 2-butanol solutions at (288.15 to 333.15) K,” J. Chem. Eng. Data, vol. 59, no. 6, pp. 1817–1829, 2014.spa
dc.relation.referencesY. P. Cruz, M. A. Esteso, and C. M. Romero, “Effect of temperature on the partial molar volumes and the partial molar compressibilities of amino alcohols in aqueous solution,” J. Chem. Thermodyn., vol. 160, p. 106521, 2021.spa
dc.relation.referencesE. Bulemela and P. R. Tremaine, “Standard Partial Molar Volumes of Some Aqueous Alkanolamines and Alkoxyamines at Temperatures up to 325 °C: Functional Group Additivity in Polar Organic Solutes under Hydrothermal Conditions,” J. Phys. Chem. B, vol. 112, no. 18, pp. 5626–5645, 2008.spa
dc.relation.referencesC. M. Romero and Y. P. Cruz, “Volumen Molar Parcial de Algunas Alcanolaminas en agua a 298,15 K,” Rev. Colomb. Química, vol. 40, no. 3, pp. 381–390, 2011.spa
dc.relation.referencesS. Mokraoui, A. Valtz, C. Coquelet, and D. Richon, “Volumetric properties of the isopropanolamine-water mixture at atmospheric pressure from 283.15 to 353.15 K,” Thermochim. Acta, vol. 440, no. 2, pp. 122–128, 2006.spa
dc.relation.referencesS. Cabani, G. Conti, and L. Lepori, “Volumetric properties of aqueous solutions of organic compounds. III. Aliphatic secondary alcohols, cyclic alcohols, primary, secondary, and tertiary amines,” J. Phys. Chem., vol. 78, no. 10, pp. 1030–1034, 1974.spa
dc.relation.referencesL. Lepori and P. Gianni, “Partial Molar Volumes of Ionic and Nonionic Organic Solutes in Water : A Simple Additivity Scheme Based on the Intrinsic Volume Approach,” J. Solution Chem., vol. 29, no. 5, pp. 405–447, 2000.spa
dc.relation.referencesJ. Gliński and A. Burakowski, “Is the hydration number of a non-electrolyte additive with length and constituents of the solute molecule?,” Eur. Phys. J. Spec. Top., vol. 154, no. 1, pp. 275–279, 2008.spa
dc.relation.referencesC. M. Romero and M. S. Páez, “Volumetric properties of aqueous binary mixtures of 1-butanol, butanediols, 1,2,4-butanetriol and butanetetrol at 298.15 K,” J. Solution Chem., vol. 36, no. 2, pp. 237–245, 2007.spa
dc.relation.referencesP. Hynčica, L. Hnědkovský, and I. Cibulka, “Partial molar volumes of organic solutes in water. XII. Methanol(aq), ethanol(aq), 1-propanol(aq), and 2-propanol(aq) at T= (298 to 573) K and at pressures up to 30 MPa,” J. Chem. Thermodyn., vol. 36, no. 12, pp. 1095–1103, 2004.spa
dc.relation.referencesJ. T. Edward, P. G. Farrell, and F. G. Shahidi, “Partial Molar Volumes of Organic Compounds in Water Part 1. Ethers, Ketones, Esters and Alcohols,” J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases, vol. 73, pp. 705–714, 1977.spa
dc.relation.referencesF. G. Shahidi, P. G. Farrell, and J. T. Edward, “Partial Molar Volumes of Organic Compounds in Water Part 2. Amines and Amides,” J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases, vol. 73, pp. 715–721, 1977.spa
dc.relation.referencesS. Cabani, E. Matteoli, and M. R. Tinè, “Compressibility Changes in the Reaction of Proton Addition to some Organic Aliphatic Nitrogen Compounds in Aqueous Solution,” Z. Phys. Chem. Neue Folge, vol. 137, pp. 23–30, 1983.spa
dc.relation.referencesA. Da̧browski, “Adsorption - From theory to practice,” Adv. Colloid Interface Sci., vol. 93, no. 1–3, pp. 135–224, 2001.spa
dc.relation.referencesH. J. Butt, K. Graf, and M. Kappl, The Physics and Chemistry of Interfaces, vol. 53, no. 9. Weinheim: WILEY-VCH Verlag GmbH & Co., 2003.spa
dc.relation.referencesG. G. Láng, “Basic interfacial thermodynamics and related mathematical background,” ChemTexts, vol. 1, no. 4, pp. 1–17, 2015.spa
dc.relation.referencesH. Y. Erbil, Surface Chemistry of Solid and Liquid Interfaces. Oxford: Blackwell Publishing, 2006.spa
dc.relation.referencesM. A. Alanis-García and J. Gracia-Fadrique, “Ecuación de estado superficial de Volmer líquidos simples y tensoactivos,” Educ. Química, vol. 29, no. 2, p. 36, 2018.spa
dc.relation.referencesA. W. Adamson and A. P. Gast, Physical Chemistry of Surfaces, 6th ed. New York: John Wiley & Sons, 1997.spa
dc.relation.referencesH. Y. Erbil, Surface Chemistry Of Solid and Liquid Interfaces, vol. 9, no. 4. Oxford: Blackwell Publishing Ltd, 2006.spa
dc.relation.referencesF. D. Sandoval-Ibarra, J. L. López-Cervantes, and J. Gracia-Fadrique, “Ecuación de Langmuir en líquidos simples y tensoactivos,” Educ. Quim., vol. 26, no. 4, pp. 307–313, 2015.spa
dc.relation.referencesB. Hawrylak, S. Andrecyk, C.-E. Gabriel, K. Gracie, and R. Palepu, “Viscosity, Surface Tension, and Refractive Index Measurements of Mixtures of Isomeric Butanediols with Water,” J. Solut. Chem., vol. 27, no. 9, pp. 827–841, 1998.spa
dc.relation.referencesY. Maham and A. E. Mather, “Surface thermodynamics of aqueous solutions of alkylethanolamines,” Fluid Phase Equilib., vol. 182, no. 1–2, pp. 325–336, 2001.spa
dc.relation.referencesC. M. Romero, M. S. Páez, J. A. Miranda, D. J. Hernández, and L. E. Oviedo, “Effect of temperature on the surface tension of diluted aqueous solutions of 1,2-hexanediol, 1,5-hexanediol, 1,6-hexanediol and 2,5-hexanediol,” Fluid Phase Equilib., vol. 258, no. 1, pp. 67–72, 2007.spa
dc.relation.referencesA. Blanco, A. García-Abuín, D. Gómez-Díaz, and J. M. Navaza, “Surface tension and refractive index of benzylamine and 1,2-diaminopropane aqueous solutions from T = (283.15 to 323.15) K,” J. Chem. Eng. Data, vol. 57, no. 9, pp. 2437–2441, 2012.spa
dc.relation.referencesH. Everett, D, “The Thermodynamics of Adsorption. Part II. Thermodynamics of Monolayers on Solids,” Trans. Faraday Soc., vol. 46, pp. 453–957, 1950.spa
dc.relation.referencesD. Khossravi and K. A. Connors, “Solvent effects on chemical processes. 3. Surface tension of binary aqueous organic solvents,” J. Solution Chem., vol. 22, no. 4, pp. 321–330, 1993.spa
dc.relation.referencesM. C. Wilkinson, “Extended use of, and Comments on, the Drop-Weight (drop-volume) Technique for the Determination of Surface and Interfacial Tensions,” J. Colloid Interface Sci., vol. 40, no. 1, pp. 14–26, 1972.spa
dc.relation.referencesLAUDA, “Drop Volume Tensiometer TVT1.” Dr Wobser Gmbh and Co., Konigshofen, Germany, 1993.spa
dc.relation.referencesC. Wohlfarth and B. Wohlfarth, Surface tension of pure liquids and binary liquid mixtures. In Landolt-Börnstein Nomerical Data and Functional Relationships in Science and Technology, vol. 16, no. IV. Osnabrück, Germany: Springer, 1997.spa
dc.relation.referencesE. Álvarez, Á. Cancela, R. Maceiras, J. M. Navaza, and R. Táboas, “Surface tension of aqueous binary mixtures of 1-amino-2-propanol and 3-amino-1-propanol, and aqueous ternary mixtures of these amines with diethanolamine, triethanolamine, and 2-amino-2-methyl-1-propanol from (298.15 to 323.15) K,” J. Chem. Eng. Data, vol. 48, no. 1, pp. 32–35, 2003.spa
dc.relation.referencesJ. Aguila-Hernández, R. Gómez-Quintana, F. Murrieta-Guevara, A. Romero-Martínez, and A. Trejo, “Liquid density of aqueous blended alkanolamines and N-methylpyrrolidone as a function of concentration and temperature,” J. Chem. Eng. Data, vol. 46, no. 4, pp. 861–867, 2001.spa
dc.relation.referencesE. Alvarez, D. Gómez-Díaz, M. Dolores La Rubia, and J. M. Navaza, “Surface tension of binary mixtures of N-methyldiethanolamine and triethanolamine with ethanol,” J. Chem. Eng. Data, vol. 53, no. 3, pp. 874–876, 2008.spa
dc.relation.referencesC. Bermúdez-Salguero, A. Amigo, and J. Gracia-Fadrique, “Activity coefficients from Gibbs adsorption equation,” Fluid Phase Equilib., vol. 330, pp. 17–23, 2012.spa
dc.relation.referencesJ. J. Jasper, “The Surface Tension of Pure Liquid Compounds,” J. Phys. Chem. Ref. Data, vol. 1, no. 4, pp. 841–1010, 1972.spa
dc.relation.referencesD. C. Harris, Quantitative Chemical Analysis, 8th ed. New York: W. H. Freeman and Company, 2010.spa
dc.relation.referencesNational Institute of Standards and Technology, “NIST.” [Online]. Available: https://physics.nist.gov/cgi-bin/Compositions/stand_alone.pl?ele=H&all=all. [Accessed: 10-Mar-2014].spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materialesspa
dc.subject.lembSOLUCIONES (QUIMICA)spa
dc.subject.lembSolution (chemistry)eng
dc.subject.proposalAminoalcoholesspa
dc.subject.proposalEntalpía de diluciónspa
dc.subject.proposalVolumen molar parcialspa
dc.subject.proposalCompresibilidad molar parcialspa
dc.subject.proposalTensión superficialspa
dc.subject.proposalInteracciones molecularesspa
dc.subject.proposalContribución de grupos polaresspa
dc.subject.proposalAmino alcoholseng
dc.subject.proposalDilution enthalpyeng
dc.subject.proposalPartial molar volumeeng
dc.subject.proposalPartial molar compressibilityeng
dc.subject.proposalSurface tensioneng
dc.subject.proposalMolecular interactionseng
dc.subject.proposalContribution of polar groupseng
dc.titleContribución de grupos polares a las propiedades termodinámicas de soluciones acuosas de aminoalcoholesspa
dc.title.translatedContribution of polar groups to the thermodynamic properties of aqueous solutions of amino alcoholseng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleEstudio fisicoquímico de interacciones en solución. Fase IIIspa
oaire.fundernameDIEBspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
52429586.2022.pdf
Tamaño:
2 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ciencias - Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción: