Análisis de la demanda actual y potencial, factores motivadores y barreras, para la implementación de servicios de carpooling en comunidades universitarias de Bogotá
dc.contributor.advisor | Mangones Matos, Sonia Cecilia | spa |
dc.contributor.advisor | Orozco Fontalvo, Mauricio | spa |
dc.contributor.author | Merchán Núñez, César Augusto | spa |
dc.contributor.cvlac | Merchán Núñez, César Augusto [0002274101] | |
dc.contributor.orcid | Merchán Núñez, César Augusto [0009-0000-0821-8133] | |
dc.contributor.researchgroup | Grupo de Investigación en Logística para El Transporte Sostenible y la Seguridad Translogyt | spa |
dc.coverage.city | Bogotá | spa |
dc.coverage.country | Colombia | spa |
dc.coverage.region | Cundinamarca | spa |
dc.coverage.tgn | http://vocab.getty.edu/page/tgn/1000838 | |
dc.date.accessioned | 2025-08-27T19:22:13Z | |
dc.date.available | 2025-08-27T19:22:13Z | |
dc.date.issued | 2025-08-26 | |
dc.description | ilustraciones, diagramas, fotografías | spa |
dc.description.abstract | El carpooling, como alternativa de transporte sostenible, ofrece beneficios reconocidos globalmente, como la reducción del consumo energético, las emisiones contaminantes y la congestión vehicular. Aunque su adopción en ciudades del Sur Global enfrenta barreras económicas, tecnológicas y sociales, en lugares como Bogotá —con alta densidad urbana, tráfico congestionado y niveles elevados de contaminación— esta opción podría mejorar significativamente la movilidad y la calidad de vida. A pesar de diversas iniciativas y políticas locales, la implementación de servicios de carpooling sigue siendo limitada, especialmente en comunidades universitarias, donde los factores que influyen en su adopción aún no han sido investigados de manera adecuada. Este estudio busca llenar este vacío mediante una encuesta aplicada a 470 miembros de la comunidad universitaria en Bogotá, utilizando un experimento de elección discreta (DCE por sus siglas en ingles) y modelos estadísticos avanzados como el análisis de correspondencia múltiple, modelos logit y aprendizaje automático. Los resultados revelan que los principales factores que determinan la adopción del carpooling incluyen la sensibilidad al precio, las percepciones de seguridad—particularmente en relación con el género—la preferencia por compartir viajes con compañeros conocidos y características demográficas como la edad y el nivel socioeconómico. Con base en estos resultados, este estudio no solo contribuye a la comprensión de las dinámicas de movilidad compartida en contextos urbanos complejos, sino que también proporciona información valiosa para el diseño de políticas públicas y estrategias de implementación de servicios de carpooling, adaptadas a las condiciones locales de Bogotá y otras ciudades similares del Sur Global. (Texto tomado de la fuente). | spa |
dc.description.abstract | Carpooling, as a sustainable transportation alternative, offers globally recognized benefits, including reduced energy consumption, lower pollutant emissions, and decreased traffic congestion. However, its adoption in cities of the Global South faces economic, technological, and social barriers. In Bogotá—characterized by high urban density, heavy traffic congestion, and severe pollution—carpooling has the potential to significantly improve mobility and quality of life. Despite various local initiatives and policies, the implementation of carpooling services remains limited, particularly within university communities, where the factors influencing adoption have yet to be adequately studied. This study addresses this gap through a survey of 470 university community members in Bogotá, employing a discrete choice experiment (DCE) alongside advanced statistical models such as multiple correspondence analysis, logit models, and machine learning. The results indicate that key factors influencing carpooling adoption include price sensitivity, safety perceptions—particularly regarding gender—preference for sharing rides with known companions, and demographic characteristics such as age and socioeconomic status. These findings contribute to a deeper understanding of shared mobility dynamics in complex urban contexts and offer valuable insights for designing public policies and implementing carpooling services tailored to Bogotá and other similar cities in the Global South. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ingeniería - Transporte | spa |
dc.description.methods | Enfoque metodológico dividido en cuatro secciones: Tamaño de la muestra y características sociodemográficas; diseño de la encuesta; marco de modelado de elección discreta y marco de modelado de aprendizaje automático. Bogotá (Colombia) fue nuestra área de estudio. La población estuvo compuesta por estudiantes y profesores de instituciones de educación superior públicas y privadas reconocidas por el Ministerio de Educación Nacional de Colombia. La información se obtuvo del Sistema Nacional de Información de Educación Superior – SNIES (MinEducación, 2023), que reporta 344.469 estudiantes matriculados y 41.065 profesores en instituciones acreditadas para el segundo semestre de 2023 | spa |
dc.description.researcharea | Transporte y medio ambiente | spa |
dc.description.technicalinfo | Enfoque metodológico dividido en cuatro secciones: Tamaño de la muestra y características sociodemográficas; diseño de la encuesta; marco de modelado de elección discreta y marco de modelado de aprendizaje automático. Bogotá (Colombia) fue nuestra área de estudio. La población estuvo compuesta por estudiantes y profesores de instituciones de educación superior públicas y privadas reconocidas por el Ministerio de Educación Nacional de Colombia. La información se obtuvo del Sistema Nacional de Información de Educación Superior – SNIES (MinEducación, 2023), que reporta 344.469 estudiantes matriculados y 41.065 profesores en instituciones acreditadas para el segundo semestre de 2023. | spa |
dc.format.extent | 140 páginas +1 anexo | spa |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88490 | |
dc.language.iso | spa | |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.department | Departamento de Ingeniería Civil y Agrícola | spa |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ingeniería - Maestría en Ingeniería - Transporte | spa |
dc.relation.references | Abrahamse, W., & Keall, M. (2012a). Effectiveness of a web-based intervention to encourage carpooling to work: A case study of Wellington, New Zealand. Transport Policy, 21, 45–51. https://doi.org/10.1016/J.TRANPOL.2012.01.005 | spa |
dc.relation.references | Agatz, N., Erera, A., Savelsbergh, M., & Wang, X. (2012). Optimization for dynamic ride-sharing: A review. European Journal of Operational Research, 223(2), 295–303. https://doi.org/10.1016/j.ejor.2012.05.028 | spa |
dc.relation.references | Agresti, Alan. (2018). Statistical methods for the social sciences. Pearson. | spa |
dc.relation.references | Amey, A. M., Attanucci, J., & Mishalani, R. (2011). “Real-Time” Ridesharing-The Opportunities and Challenges of Utilizing Mobile Phone Technology to Improve Rideshare Services. Transportation Research Record, 2217(1), 103–110. | spa |
dc.relation.references | ANSV. (2024). Cifras año en curso. https://ansv.gov.co/es/observatorio/estadísticas/cifras-ano-en-curso | spa |
dc.relation.references | Arias-Molinares, D., & García-Palomares, J. C. (2020). The Ws of MaaS: Understanding mobility as a service fromaliterature review. In IATSS Research (Vol. 44, Issue 3, pp. 253–263). Elsevier B.V. https://doi.org/10.1016/j.iatssr.2020.02.001 | spa |
dc.relation.references | Ashraf Javid, M., & Al-Khayyat, M. A. (2021). Factors affecting the student’s intentions to choose carpooling: a case study in Oman. Journal of the Chinese Institute of Engineers, 44(4), 332–341. https://doi.org/10.1080/02533839.2021.1897685 | spa |
dc.relation.references | Banco Mundial. (2020). Informe Anual 2020. https://doi.org/10.1596/978-1-4648-1623-9 | spa |
dc.relation.references | Bastos, J. T., dos Santos, P. A. B., Amancio, E. C., Gadda, T. M. C., Ramalho, J. A., King, M. J., & Oviedo-Trespalacios, O. (2021). Is organized carpooling safer? Speeding and distracted driving behaviors from a naturalistic driving study in Brazil. Accident Analysis & Prevention, 152, 105992. https://doi.org/10.1016/J.AAP.2021.105992 | spa |
dc.relation.references | Ben-Akiva, M., & Lerman, S. (1985). Discrete choice analysis: theory and application to travel demand. https://books.google.com/books?hl=es&lr=&id=oLC6ZYPs9UoC&oi=fnd&pg=PR14&ots=nPcxjZcmJf&sig=3Rgqq8X_w-J10JOapoYoxjxbSMo | spa |
dc.relation.references | Benzécri, J.-P. (1992). Correspondence analysis handbook. New York : Marcel Dekker. | spa |
dc.relation.references | Bergstra, J., Ca, J. B., & Ca, Y. B. (2012). Random Search for Hyper-Parameter Optimization Yoshua Bengio. Journal of Machine Learning Research, 13, 281–305. http://scikit-learn.sourceforge.net. | spa |
dc.relation.references | BID, & SDM. (2022). CONSULTORÍA PARA EL DESARROLLO DEL MODELO DE ELECCIÓN MODAL PARA EVALUAR EL IMPACTO DE LAS MEDIDAS DE GESTIÓN DE LA DEMANDA DE VEHÍCULOS PARTICULARES EN BOGOTÁ. | spa |
dc.relation.references | Bishop, C. M. (1995). Neural Networks for Pattern Recognition. Oxford University Press. https://doi.org/10.1093/oso/9780198538493.001.0001 | spa |
dc.relation.references | Bishop, C. M. (2006). Pattern Recognition and Machine Learning (Information Science and Statistics). Springer-Verlag. | spa |
dc.relation.references | Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324 | spa |
dc.relation.references | Buliung, R. N., Soltys, K., Habel, C., & Lanyon, R. (2009). Driving Factors behind Successful Carpool Formation and Use. Transportation Research Record, 2118(1), 31–38. https://doi.org/10.3141/2118-05 | spa |
dc.relation.references | Bulteau, J., Feuillet, T., & Dantan, S. (2019). Carpooling and carsharing for commuting in the Paris region: A comprehensive exploration of the individual and contextual correlates of their uses. Travel Behaviour and Society, 16, 77–87. https://doi.org/10.1016/j.tbs.2019.04.007 | spa |
dc.relation.references | Burnham, K. P., & Anderson, D. R. (2004). Multimodel Inference: Understanding AIC and BIC in Model Selection. Sociological Methods & Research, 33(2), 261–304. https://doi.org/10.1177/0049124104268644 | spa |
dc.relation.references | Cantwell, M., Caulfield, B., & O’Mahony, M. (2009). Examining the Factors that Impact Public Transport Commuting Satisfaction. Journal of Public Transportation, 12(2), 1–21. https://doi.org/10.5038/2375-0901.12.2.1 | spa |
dc.relation.references | Cellina, F., Derboni, M., Giuffrida, V., Tomic, U., & Hoerler, R. (2024a). Trust me if you can: Practical challenges affecting the integration of carpooling in Mobility-as-a-Service platforms. Travel Behaviour and Society, 37, 100832. https://doi.org/10.1016/J.TBS.2024.100832 | spa |
dc.relation.references | Chan, N. D., & Shaheen, S. A. (2012). Ridesharing in North America: Past, Present, and Future. In Transport Reviews (Vol. 32, Issue 1, pp. 93–112). https://doi.org/10.1080/01441647.2011.621557 | spa |
dc.relation.references | Chaube, Vineeta., Kavanaugh, A. L., & Pérez-Quiñones, M. A. (2010). Leveraging Social Networks to Embed Trust in Rideshare Programs. Proceedings of the 43rd Hawaii International Conference on System Sciences. | spa |
dc.relation.references | Ciari, F., & Axhausen, K. (2012). Choosing carpooling or car sharing as a mode Swiss stated choice experiments. Transportation Research Board . https://doi.org/10.3929/ethz-b-000091515 | spa |
dc.relation.references | Ciasullo, M. V., Troisi, O., Loia, F., & Maione, G. (2018). Carpooling: travelers’ perceptions from a big data analysis. The TQM Journal, 30(5), 554–571. https://doi.org/10.1108/TQM-11-2017-0156 | spa |
dc.relation.references | Correia, G. H., Silva, J. A., & Viegas, J. M. (2013). Using latent attitudinal variables estimated through a structural equations model for understanding carpooling propensity. Transportation Planning and Technology, 36(6), 499–519. https://doi.org/10.1080/03081060.2013.830894 | spa |
dc.relation.references | Cox, D. R., & Snell, E. J. (1990). Analysis of Binary Data. Biometrics, 46(2). https://doi.org/10.2307/2531476 | spa |
dc.relation.references | Crozet, Y., Santos, G., & Coldefy, J. (2019). Shared mobility, MaaS and the regulatory challenges of urban mobility. Center on Regulation in Europe (CERRE). www.cerre.eu | spa |
dc.relation.references | De la Fuente, S. (2020). REGRESIÓN LOGÍSTICA. | spa |
dc.relation.references | Deakin, E., Frick, K. T., & Shively, K. M. (2010). Markets for dynamic ridesharing? Transportation Research Record, 2187, 131–137. https://doi.org/10.3141/2187-17 | spa |
dc.relation.references | Dean, A., Voss, D., & Draguljić, D. (2017). Planning Experiments. In A. Dean, D. Voss, & D. Draguljić (Eds.), Design and Analysis of Experiments (pp. 7–30). Springer International Publishing. https://doi.org/10.1007/978-3-319-52250-0_2 | spa |
dc.relation.references | Delhomme, P., & Gheorghiu, A. (2016). Comparing French carpoolers and non-carpoolers: Which factors contribute the most to carpooling? Transportation Research Part D: Transport and Environment, 42, 1–15. https://doi.org/10.1016/j.trd.2015.10.014 | spa |
dc.relation.references | Dorner, F., & Berger, M. (2016). Community-based mobility: a transport option for rural areas? Transport Research Arena TRA 2018, 7. https://www.researchgate.net/publication/330398168 | spa |
dc.relation.references | Dubernet, T. J. P., Rieser-Schüssler, N., & Axhausen, K. W. (2013). Using a multi-agent simulation tool to estimate the car-pooling potential Conference Paper. ETH Zurich Research Collection. https://doi.org/10.3929/ethz-b-000052402 | spa |
dc.relation.references | European Commission’s transport. (1998). Quality Approach in Tendering Urban Public Transport Operations | TRIMIS. https://trimis.ec.europa.eu/project/quality-approach-tendering-urban-public-transport-operations | spa |
dc.relation.references | Fleiter, J., Lennon, A., & Watson, B. (2010). How do other people influence your driving speed? Exploring the “who” and “how” of social influences on speeding from a qualitative perspective. Transportation Research Part F: Traffic Psychology and Behaviour, 13, 49–62. https://doi.org/10.1016/j.trf.2009.10.002 | spa |
dc.relation.references | Fox, J. (2008). Applied regression analysis and generalized linear models. | spa |
dc.relation.references | Furuhata, M., Dessouky, M., Ordóñez, F., Brunet, M. E., Wang, X., & Koenig, S. (2013a). Ridesharing: The state-of-the-art and future directions. Transportation Research Part B: Methodological, 57, 28–46. https://doi.org/10.1016/j.trb.2013.08.012 | spa |
dc.relation.references | Gargiulo, E., Giannantonio, R., Guercio, E., Borean, C., & Zenezini, G. (2015). Dynamic Ride Sharing Service: Are Users Ready to Adopt it? Procedia Manufacturing, 3, 777–784. https://doi.org/10.1016/j.promfg.2015.07.329 | spa |
dc.relation.references | Geels, F. W. (2012). A socio-technical analysis of low-carbon transitions: introducing the multi-level perspective into transport studies. Journal of Transport Geography, 24, 471–482. https://doi.org/10.1016/J.JTRANGEO.2012.01.021 | spa |
dc.relation.references | Gheorghiu, A., & Delhomme, P. (2018). For which types of trips do French drivers carpool? Motivations underlying carpooling for different types of trips. Transportation Research Part A: Policy and Practice, 113, 460–475. https://doi.org/10.1016/j.tra.2018.05.002 | spa |
dc.relation.references | Greenacre, M. (2017). Correspondence Analysis in Practice (3rd ed.). CRC Press. https://doi.org/https://doi.org/10.1201/9781315369983 | spa |
dc.relation.references | Greene, W. H. . (2012). Econometric analysis (PEARSON, Ed.). Prentice Hall. | spa |
dc.relation.references | Greene, W. H., & Hensher, D. A. (2010). Modeling ordered choices: A primer. In Modeling Ordered Choices: A Primer. Cambridge University Press. https://doi.org/10.1017/CBO9780511845062 | spa |
dc.relation.references | Guidotti, R., Nanni, M., Rinzivillo, S., Pedreschi, D., & Giannotti, F. (2017). Never drive alone: Boosting carpooling with network analysis. Information Systems, 64, 237–257. https://doi.org/10.1016/j.is.2016.03.006 | spa |
dc.relation.references | Guo, Y., Simpson, J. R., & Pignatiello, J. J. (2009). The general balance metric for mixed‐level fractional factorial designs. Quality and Reliability Engineering International, 25. https://api.semanticscholar.org/CorpusID:42202801 | spa |
dc.relation.references | Gurumurthy, K. M., & Kockelman, K. M. (2020). Modeling Americans’ autonomous vehicle preferences: A focus on dynamic ride-sharing, privacy & long-distance mode choices. Technological Forecasting and Social Change, 150. https://doi.org/10.1016/j.techfore.2019.119792 | spa |
dc.relation.references | Gutiérrez, H., & Salazar, R. (2012). Análisis y Diseño de Experimentos. In SERBIULA (sistema Librum 2.0). | spa |
dc.relation.references | Guyader, H., Olsson, L. E., & Friman, M. (2023). Sharing economy platforms as mainstream: balancing pro-social and economic tensions. Total Quality Management and Business Excellence, 34(9–10), 1257–1276. https://doi.org/10.1080/14783363.2022.2159366 | spa |
dc.relation.references | Hagenauer, J., & Helbich, M. (2017). A comparative study of machine learning classifiers for modeling travel mode choice. Expert Systems with Applications, 78, 273–282. https://doi.org/https://doi.org/10.1016/j.eswa.2017.01.057 | spa |
dc.relation.references | Hao, X., Jiang, R., Deng, J., & Song, X. (2022). The Impact of COVID-19 on Human Mobility: A Case Study on New York. 2022 IEEE International Conference on Big Data (Big Data), 4365–4374. https://doi.org/10.1109/BigData55660.2022.10020695 | spa |
dc.relation.references | Hastie, T., Tibshirani, R., & Friedman, J. (2009b). The Elements of Statistical Learning (2nd ed.). Springer New York. https://doi.org/10.1007/978-0-387-84858-7 | spa |
dc.relation.references | Heaton, J. (2018). Ian Goodfellow, Yoshua Bengio, and Aaron Courville: Deep learning. Genetic Programming and Evolvable Machines, 19(1), 305–307. https://doi.org/10.1007/s10710-017-9314-z | spa |
dc.relation.references | Hensher, D. A. (1994). Stated preference analysis of travel choices: the state of practice. Transportation, 21(2), 107–133. https://doi.org/10.1007/BF01098788 | spa |
dc.relation.references | Horowitz, J. L. (1991). Reconsidering the multinomial probit model. Transportation Research Part B: Methodological, 25(6), 433–438. https://doi.org/10.1016/0191-2615(91)90036-I | spa |
dc.relation.references | Husson, F., Le, S., & Pagès, J. (2017). Exploratory Multivariate Analysis by Example Using R. In International Statistical Review (2nd ed., Vol. 79, Issue 3). John Wiley & Sons, Ltd. https://doi.org/https://doi.org/10.1111/j.1751-5823.2011.00159_19.x | spa |
dc.relation.references | IBM. (2016). Pruebas de la razón de verosimilitud. https://www.ibm.com/docs/es/spss-statistics/saas?topic=model-likelihood-ratio-tests&utm_source=chatgpt.com | spa |
dc.relation.references | Jamal, A., Zahid, M., Tauhidur Rahman, M., Al-Ahmadi, H. M., Almoshaogeh, M., Farooq, D., & Ahmad, M. (2021). Injury severity prediction of traffic crashes with ensemble machine learning techniques: a comparative study. International Journal of Injury Control and Safety Promotion, 28(4), 408–427. https://doi.org/10.1080/17457300.2021.1928233 | spa |
dc.relation.references | Johnson, R., & Orme, B. (1996). Getting the Most from CBC. www.sawtoothsoftware.com | spa |
dc.relation.references | Jolliffe, I. (2002). Principal Component Analysis. https://doi.org/https://doi.org/10.1007/b98835 | spa |
dc.relation.references | Julagasigorn, P., Banomyong, R., Grant, D. B., & Varadejsatitwong, P. (2021). What encourages people to carpool? A conceptual framework of carpooling psychological factors and research propositions. Transportation Research Interdisciplinary Perspectives, 12. https://doi.org/10.1016/j.trip.2021.100493 | spa |
dc.relation.references | Kalatian, A., & Farooq, B. (2021). Decoding pedestrian and automated vehicle interactions using immersive virtual reality and interpretable deep learning. Transportation Research Part C: Emerging Technologies, 124, 102962. https://doi.org/10.1016/J.TRC.2020.102962 | spa |
dc.relation.references | Kanafani, A. K. (1983). Transportation_Demand_Analysis (McGraw-Hill, 1983). Universidad de Michigan. | spa |
dc.relation.references | Karlsson, I. C. M., Mukhtar-Landgren, D., Smith, G., Koglin, T., Kronsell, A., Lund, E., Sarasini, S., & Sochor, J. (2020). Development and implementation of Mobility-as-a-Service – A qualitative study of barriers and enabling factors. Transportation Research Part A: Policy and Practice, 131, 283–295. https://doi.org/10.1016/j.tra.2019.09.028 | spa |
dc.relation.references | Ke, J., Yang, H., Zheng, H., Chen, X., Jia, Y., Gong, P., & Ye, J. (2019). Hexagon-Based Convolutional Neural Network for Supply-Demand Forecasting of Ride-Sourcing Services. IEEE Transactions on Intelligent Transportation Systems, 20(11), 4160–4173. https://doi.org/10.1109/TITS.2018.2882861 | spa |
dc.relation.references | Kutner, M. H. ., Nachtsheim, Chris., Neter, John., & Li, William. (2005). Applied linear statistical models. McGraw-Hill Irwin. | spa |
dc.relation.references | Lawless, J. F. (2002). Statistical Models and Methods for Lifetime Data. https://doi.org/10.1002/9781118033005 | spa |
dc.relation.references | LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep Learning. Nature, 521, 436–444. https://doi.org/10.1038/nature14539 | spa |
dc.relation.references | Lee, A., & Savelsbergh, M. (2015). Dynamic ridesharing: Is there a role for dedicated drivers? Transportation Research Part B: Methodological, 81, 483–497. https://doi.org/10.1016/j.trb.2015.02.013 | spa |
dc.relation.references | Lee, B., Coogan, M., Aultman-Hall, L., & Adler, T. (2016). Rideshare mode potential in non-metropolitan areas of the northeastern United States. Journal of Transport and Land Use, 9(3), 111–126. https://doi.org/10.5198/jtlu.2015.669 | spa |
dc.relation.references | Levin, I. P. (1982). MEASURING TRADEOFFS IN CARPOOL DRIVING ARRANGEMENT PREFERENCES 71. In Transportation (Vol. 11). | spa |
dc.relation.references | Li, J., Embry, P., Mattingly, S. P., Sadabadi, K. F., Rasmidatta, I., & Burris, M. W. (2007). Who chooses to carpool and why? Examination of Texas carpoolers. Transportation Research Record, 2021, 110–117. https://doi.org/10.3141/2021-13 | spa |
dc.relation.references | Liaw, A., & Wiener, M. (2002). Classification and Regression by randomForest (Vol. 2, Issue 3). http://www.stat.berkeley.edu/ | spa |
dc.relation.references | Loukaitou-Sideris, A., & Ehrenfeucht, R. (2009). Conflict and Negotiation over Public Space. The MIT Press. http://www.jstor.org/stable/j.ctt5hhh27 | spa |
dc.relation.references | Lundberg, S. M., & Lee, S.-I. (2017). A Unified Approach to Interpreting Model Predictions. Neural Information Processing Systems. https://api.semanticscholar.org/CorpusID:21889700 | spa |
dc.relation.references | Ma, Y., & Zhang, Z. (2020a). Travel Mode Choice Prediction Using Deep Neural Networks with Entity Embeddings. IEEE Access, 8, 64959–64970. https://doi.org/10.1109/ACCESS.2020.2985542 | spa |
dc.relation.references | Macharis, C., De Witte, A., & Turcksin, L. (2010). The Multi-Actor Multi-Criteria Analysis (MAMCA) application in the Flemish long-term decision making process on mobility and logistics. Transport Policy, 17(5), 303–311. https://doi.org/10.1016/J.TRANPOL.2010.02.004 | spa |
dc.relation.references | Maddala, G. S. (1983). Limited-Dependent and Qualitative Variables in Econometrics. In Econometric Society Monographs. Cambridge University Press. https://doi.org/DOI: 10.1017/CBO9780511810176 | spa |
dc.relation.references | Marquardt, D. W. (1970). Generalized Inverses, Ridge Regression, Biased Linear Estimation, and Nonlinear Estimation. Technometrics, 12(3), 591–612. https://doi.org/10.1080/00401706.1970.10488699 | spa |
dc.relation.references | McFadden, D. (1972). Conditional logit analysis of qualitative choice behavior. https://api.semanticscholar.org/CorpusID:153296073 | spa |
dc.relation.references | McFadden, D. (1974). The measurement of urban travel demand. Journal of Public Economics, 3(4), 303–328. https://doi.org/10.1016/0047-2727(74)90003-6 | spa |
dc.relation.references | McFadden, D. L. (1974). Conditional Logit Analysis of Qualitative Choice Behavior. In P. Zarembka (Ed.), Frontiers in Econometrics. Academic Press. https://eml.berkeley.edu/reprints/mcfadden/zarembka.pdf | spa |
dc.relation.references | mineducación. (2023, December). Información Poblacional - SNIES. https://hecaa.mineducacion.gov.co/consultaspublicas/content/poblacional/index.jsf | spa |
dc.relation.references | Minitab. (2024). Pruebas de bondad de ajuste para Ajustar modelo logístico binarioy Regresión logística binaria. https://support.minitab.com/es-mx/minitab/help-and-how-to/statistical-modeling/regression/how-to/fit-binary-logistic-model/interpret-the-results/all-statistics-and-graphs/goodness-of-fit-tests/?utm_source=chatgpt.com | spa |
dc.relation.references | Mitropoulos, L., & Kortsari, A. (2020). RECOMMENDATIONS AND CRITERIA FOR A SUCCESSFUL RIDE-SHARING IN THE IP4 ECOSYSTEM. Ride 2 Rail. | spa |
dc.relation.references | Mitropoulos, L., Kortsari, A., & Ayfantopoulou, G. (2021). A systematic literature review of ride-sharing platforms, user factors and barriers. In European Transport Research Review (Vol. 13, Issue 1). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1186/s12544-021-00522-1 | spa |
dc.relation.references | Monchambert, G. (2020). Why do (or don’t) people carpool for long distance trips? A discrete choice experiment in France. Transportation Research Part A: Policy and Practice, 132, 911–931. https://doi.org/10.1016/j.tra.2019.12.033 | spa |
dc.relation.references | Montgomery, D. C. (2022). Design and Analysis of Experiments (8th ed.). | spa |
dc.relation.references | Myers, R. H., Montgomery, D. C., & Anderson-Cook, C. (2016). Response Surface Methodology: Process and Product Optimization Using Designed Experiments. 705. | spa |
dc.relation.references | Naciones Unidas. (2024). Las ciudades seguirán creciendo, sobre todo en los países en desarrollo. https://www.un.org/es/desa/2018-world-urbanization-prospects | spa |
dc.relation.references | Nagelkerke, N. J. D. (1991). A Note on a General Definition of the Coefficient of Determination. Biometrika, 78(3), 691. https://doi.org/10.2307/2337038 | spa |
dc.relation.references | National Household Travel Survey. (2017). Summary of Travel Trends. https://nhts.ornl.gov/. | spa |
dc.relation.references | Neoh, J. G., Chipulu, M., & Marshall, A. (2017). What encourages people to carpool? An evaluation of factors with meta-analysis. Transportation, 44(2), 423–447. https://doi.org/10.1007/s11116-015-9661-7 | spa |
dc.relation.references | Nourinejad, M., & Roorda, M. J. (2016). Agent based model for dynamic ridesharing. Transportation Research Part C: Emerging Technologies, 64, 117–132. https://doi.org/10.1016/j.trc.2015.07.016 | spa |
dc.relation.references | Núñez, E., Steyerberg, E. W., & Núñez, J. (2011). Estrategias para la elaboración de modelos estadísticos de regresión. Revista Espanola de Cardiologia, 64(6), 501–507. https://doi.org/10.1016/j.recesp.2011.01.019 | spa |
dc.relation.references | Observatorio de Movilidad. (2023, December). Resultados Encuesta de Movilidad. https://www.encuestademovilidad2023.com/ | spa |
dc.relation.references | Olsson, L. E., Maier, R., & Friman, M. (2019). Why do they ride with others? Meta-analysis of factors influencing travelers to carpool. In Sustainability (Switzerland) (Vol. 11, Issue 8). MDPI. https://doi.org/10.3390/su11082414 | spa |
dc.relation.references | Orozco-Fontalvo, M., & Moura, F. (2023). Refocusing MaaS approach: A brief. Transport Policy, 141, 340–342. https://doi.org/10.1016/J.TRANPOL.2023.08.002 | spa |
dc.relation.references | Orozco-Fontalvo, M., Soto, J., Arévalo, A., & Oviedo-Trespalacios, O. (2019). Women’s perceived risk of sexual harassment in a Bus Rapid Transit (BRT) system: The case of Barranquilla, Colombia. Journal of Transport & Health, 14, 100598. https://doi.org/10.1016/J.JTH.2019.100598 | spa |
dc.relation.references | Ortuzar, J., & Willumsen, L. (1994). Modeling Trasport (John Wiley & Son., Ed.). | spa |
dc.relation.references | Pineda-Jaramillo, J., & Arbelaez, O. (2022). Assessing the Performance of Gradient-Boosting Models for Predicting the Travel Mode Choice Using Household Survey Data. Journal of Urban Planning and Development, 148. https://doi.org/10.1061/(ASCE)UP.1943-5444.0000830 | spa |
dc.relation.references | Qin, X. (2024). Sample size and power calculations for causal mediation analysis: A Tutorial and Shiny App. Behavior Research Methods, 56(3), 1738–1769. https://doi.org/10.3758/s13428-023-02118-0 | spa |
dc.relation.references | Quinones, L. M. (2020). Sexual harassment in public transport in Bogotá. Transportation Research Part A: Policy and Practice, 139, 54–69. https://doi.org/10.1016/J.TRA.2020.06.018 | spa |
dc.relation.references | Rao, C. (1948). Large sample tests of statistical hypotheses concerning several parameters with applications to problems of estimation. Mathematical Proceedings of the Cambridge Philosophical Society, 44(1), 50–57. https://doi.org/DOI: 10.1017/S0305004100023987 | spa |
dc.relation.references | Ribeiro, M., Singh, S., & Guestrin, C. (2016). “Why Should I Trust You?”: Explaining the Predictions of Any Classifier. https://doi.org/10.18653/v1/N16-3020 | spa |
dc.relation.references | Rodriguez-Valencia, A., Rosas-Satizábal, D., & Hidalgo, D. (2023). Big effort, little gain for users: lessons from the public transport system reform in Bogotá. Public Transport, 15, 411–433. https://doi.org/10.1007/s12469-022-00308-1 | spa |
dc.relation.references | Rohács, J., & Rohács, D. (2020). Total impact evaluation of transportation systems. Transport, 35(2), 193–202. https://doi.org/10.3846/transport.2020.12640 | spa |
dc.relation.references | Salmerón, R., García Pérez, J., López Martín, M. D. M., & García, C. G. (2016). Collinearity diagnostic applied in ridge estimation through the variance inflation factor. Journal of Applied Statistics, 43(10), 1831–1849. https://doi.org/10.1080/02664763.2015.1120712 | spa |
dc.relation.references | Secretaría Distrital de Movilidad. (2022). ESTUDIO TÉCNICO DE EVALUACIÓN E IMPLEMENTACIÓN DE AJUSTES EN MEDIDAS DE MOVILIDAD PARA VEHÍCULOS PARTICULARES EN LA CIUDAD DE BOGOTÁ. www.movilidadbogota.gov.co | spa |
dc.relation.references | Seguel, R. J., Gallardo, L., Osses, M., Rojas, N. Y., Nogueira, T., Menares, C., De Fatima Andrade, M., Belalcázar, L. C., Carrasco, P., Eskes, H., Fleming, Z. L., Huneeus, N., Ibarra-Espinosa, S., Landulfo, E., Leiva, M., Mangones, S. C., Morais, F. G., Moreira, G. A., Pantoja, N., … Yoshida, A. C. (2022). Photochemical sensitivity to emissions and local meteorology in Bogotá, Santiago, and São Paulo: An analysis of the initial COVID-19 lockdowns. Elementa, 10(1). https://doi.org/10.1525/ELEMENTA.2021.00044/169476 | spa |
dc.relation.references | Shaheen, S. A., Chan, N. D., & Gaynor, T. (2016). Casual carpooling in the San Francisco Bay Area: Understanding user characteristics, behaviors, and motivations. Transport Policy, 51, 165–173. https://doi.org/10.1016/j.tranpol.2016.01.003 | spa |
dc.relation.references | Shaheen, S., & Cohen, A. (2019). Shared ride services in North America: definitions, impacts, and the future of pooling. In Transport Reviews (Vol. 39, Issue 4, pp. 427–442). Routledge. https://doi.org/10.1080/01441647.2018.1497728 | spa |
dc.relation.references | Shaheen, S., Cohen, A., & Bayen, A. (2018). The Benefits of Carpooling. The Environmental and Economic Value of Sharing a Ride. UC Berkeley Recent Work. https://doi.org/10.7922/G2DZ06GF | spa |
dc.relation.references | Shahram, T., Lina, K., & Brian, B. (2015). Propensity to participate in a peer-to-peer social-network-based carpooling System. Journal of Advanced Transportation , 50. | spa |
dc.relation.references | Simancas, W., Vinasco, C., Rosas-Satizábal, D., Alberto Ortiz-Ramirez, H., & Rodriguez-Valencia, A. (2024a). Decision-making in open carpooling programs: Perspectives of drivers versus passengers. Travel Behaviour and Society, 36, 100759. https://doi.org/10.1016/J.TBS.2024.100759 | spa |
dc.relation.references | Simon, H. (2010). Neural_Networks_and_Learning_Machines (Prentice Hall, Ed.; 3rd ed.). | spa |
dc.relation.references | Sims, R., Schaeffer, R., Creutzig, F., Cruz-Núñez, X., D’Agosto, M., Dimitriu, D., Meza, M. J., Fulton, L., Kobayashi, S., Lah, O., Mckinnon, A., Newman, P., Ouyang, M., Schauer, J. J., Sperling, D., & Tiwari, G. (2014). Transport. In: Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. https://doi.org/10.1017/CBO9781107415416.005 | spa |
dc.relation.references | Skouby, K. E., Kivimäki, A., Lotta, H., Per, L., & Iwona, W. (2014). Smart Cities and the Ageing Population. | spa |
dc.relation.references | Stark, J., & Meschik, M. (2018). Women’s everyday mobility: Frightening situations and their impacts on travel behaviour. Transportation Research Part F: Traffic Psychology and Behaviour, 54, 311–323. https://doi.org/10.1016/J.TRF.2018.02.017 | spa |
dc.relation.references | Talele, T., Gauresh, P., & Parimal, D. (2012). Dynamic Ridesharing Using Social Media. International Journal on AdHoc Networking Systems, 2(4), 29–36. https://doi.org/10.5121/ijans.2012.2403 | spa |
dc.relation.references | TomTom Traffic Index. (2023). Ranking 2023. https://www.tomtom.com/traffic-index/ranking/ | spa |
dc.relation.references | Toro-González, D., Cantillo, V., & Cantillo-García, V. (2020). Factors influencing demand for public transport in Colombia. Research in Transportation Business & Management, 36, 100514. https://doi.org/10.1016/J.RTBM.2020.100514 | spa |
dc.relation.references | Train, K. E. (2009). Discrete Choice Methods with Simulation (2nd ed.). Cambridge University Press. https://doi.org/DOI: 10.1017/CBO9780511805271 | spa |
dc.relation.references | Ullah, I., Liu, K., Yamamoto, T., Zahid, M., & Jamal, A. (2021). Electric vehicle energy consumption prediction using stacked generalization: an ensemble learning approach. International Journal of Green Energy, 18(9), 896–909. https://doi.org/10.1080/15435075.2021.1881902 | spa |
dc.relation.references | Valliant, R. , Dever, J. A. , & Kreuter, F. (2018, October 13). Power and Sample Size Determination. https://doi.org/doi.org/10.1007/978-3-319-93632-1_4 | spa |
dc.relation.references | van Cranenburgh, S., Wang, S., Vij, A., Pereira, F., & Walker, J. (2022). Choice modelling in the age of machine learning - Discussion paper. Journal of Choice Modelling, 42, 100340. https://doi.org/10.1016/J.JOCM.2021.100340 | spa |
dc.relation.references | Vanoutrive, T., Van De Vijver, E., Van Malderen, L., Jourquin, B., Thomas, I., Verhetsel, A., & Witlox, F. (2012). What determines carpooling to workplaces in Belgium: Location, organisation, or promotion? Journal of Transport Geography, 22, 77–86. https://doi.org/10.1016/j.jtrangeo.2011.11.006 | spa |
dc.relation.references | Vuchkov, I., & Boyadjieva, L. (2001). Quality Improvement with Design of Experiments A Response Surface Approach. | spa |
dc.relation.references | Wald, A. (1943). Tests of statistical hypotheses concerning several parameters when the number of observations is large. Transactions of the American Mathematical Society, 54, 426–482. https://api.semanticscholar.org/CorpusID:54174575 | spa |
dc.relation.references | Wang, R. (2011). Shaping carpool policies under rapid motorization: The case of Chinese cities. Transport Policy, 18(4), 631–635. https://doi.org/10.1016/j.tranpol.2011.03.005 | spa |
dc.relation.references | Wang, Y., Gu, J., Wang, S., & Wang, J. (2019). Understanding consumers’ willingness to use ride-sharing services: The roles of perceived value and perceived risk. Transportation Research Part C: Emerging Technologies, 105, 504–519. https://doi.org/10.1016/j.trc.2019.05.044 | spa |
dc.relation.references | Wang, Y., Winter, S., & Ronald, N. (2017). How much is trust: The cost and benefit of ridesharing with friends. Computers, Environment and Urban Systems, 65, 103–112. https://doi.org/10.1016/j.compenvurbsys.2017.06.002 | spa |
dc.relation.references | Wang, Y., Winter, S., & Tomko, M. (2018). Collaborative activity-based ridesharing. Journal of Transport Geography, 72, 131–138. https://doi.org/10.1016/j.jtrangeo.2018.08.013 | spa |
dc.relation.references | Wang, Z., Chen, X., & Chen, X. (Michael). (2019). Ridesplitting is shaping young people’s travel behavior: Evidence from comparative survey via ride-sourcing platform. Transportation Research Part D: Transport and Environment, 75, 57–71. https://doi.org/10.1016/j.trd.2019.08.017 | spa |
dc.relation.references | Webb, R., Bai, X., Smith, M. S., Costanza, R., Griggs, D., Moglia, M., Neuman, M., Newman, P., Newton, P., Norman, B., Ryan, C., Schandl, H., Steffen, W., Tapper, N., & Thomson, G. (2017). Sustainable urban systems: Co-design and framing for transformation. https://doi.org/10.1007/s13280-017-0934-6 | spa |
dc.relation.references | Wilkowska, W., Farrokhikhiavi, R., Ziefle, M., & Vallée, D. (2018). Mobility requirements for the use of carpooling among different user groups. Advances in Human Factors, Software, and Systems Engineering, 4. https://doi.org/10.54941/ahfe100134 | spa |
dc.relation.references | Willis, K. G. (2014). The Use of Stated Preference Methods to Value Cultural Heritage. Handbook of the Economics of Art and Culture, 2, 145–181. https://doi.org/10.1016/B978-0-444-53776-8.00007-6 | spa |
dc.relation.references | Yee, T. W. (2015). Vector Generalized Linear and Additive Models Springer Series in Statistics. http://www.springer.com/series/692 | spa |
dc.relation.references | Yu, B., Ma, Y., Xue, M., Tang, B., Wang, B., Yan, J., & Wei, Y. M. (2017). Environmental benefits from ridesharing: A case of Beijing. Applied Energy, 191, 141–152. https://doi.org/10.1016/j.apenergy.2017.01.052 | spa |
dc.relation.references | Zahid, M., Chen, Y., & Jamal, A. (2020). Short term traffic state prediction via hyperparameter optimization based classifiers. Mdpi.ComM Zahid, Y Chen, A Jamal, MQ MemonSensors, 2020•mdpi.Com. https://doi.org/10.3390/s20030685 | spa |
dc.relation.references | Zhang, Y., & Haghani, A. (2015). A gradient boosting method to improve travel time prediction. Transportation Research Part C: Emerging Technologies, 58, 308–324. https://doi.org/10.1016/J.TRC.2015.02.019 | spa |
dc.relation.references | Zhao, X., Yan, X., Yu, A., & Van Hentenryck, P. (2020). Prediction and Behavioral Analysis of Travel Mode Choice: A Comparison of Machine Learning and Logit Models. Travel Behaviour and Society, 20, 22–35. https://doi.org/10.1016/j.tbs.2020.02.003 | spa |
dc.relation.references | Zubaryeva, A., Thiel, C., Zaccarelli, N., Barbone, E., & Mercier, A. (2012). Spatial multi-criteria assessment of potential lead markets for electrified vehicles in Europe. Transportation Research Part A: Policy and Practice, 46(9), 1477–1489. https://doi.org/10.1016/j.tra.2012.05.018 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.ddc | 380 - Comercio , comunicaciones, transporte::388 - Transporte | spa |
dc.subject.proposal | Movilidad compartida | spa |
dc.subject.proposal | Servicios de transporte informal | spa |
dc.subject.proposal | Economía colaborativa | spa |
dc.subject.proposal | Transporte universitario | spa |
dc.subject.proposal | Análisis de correspondencia múltiple | spa |
dc.subject.proposal | Modelos Logit | spa |
dc.subject.proposal | Aprendizaje automático | spa |
dc.subject.proposal | Shared mobility | eng |
dc.subject.proposal | Informal transport services | eng |
dc.subject.proposal | Collaborative economy | eng |
dc.subject.proposal | University transport | eng |
dc.subject.proposal | Multiple correspondence analysis | eng |
dc.subject.proposal | Logit models | eng |
dc.subject.proposal | Machine learning | eng |
dc.subject.unesco | Análisis estadístico | spa |
dc.subject.unesco | Statistical analysis | eng |
dc.subject.unesco | Actitud del estudiante | spa |
dc.subject.unesco | Student attitudes | eng |
dc.subject.unesco | Transporte urbano | spa |
dc.subject.unesco | Urban transport | eng |
dc.title | Análisis de la demanda actual y potencial, factores motivadores y barreras, para la implementación de servicios de carpooling en comunidades universitarias de Bogotá | spa |
dc.title.translated | Analysis of current and potential demand, motivating factors, and barriers to implementing carpooling services in Bogotá's university communities | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Responsables políticos | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | |
oaire.awardtitle | Identificación de factores desencadenantes, motivadores y barreras para la adopción de servicios de movilidad compartida en la transición hacia un MaaS - Convocatoria para el Apoyo a Proyectos de Investigación, Creación Artística e Innovación de la Sede Bogotá de la Universidad Nacional de Colombia 2022-2024 | |
oaire.fundername | Universidad Nacional de Colombia | spa |
Archivos
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: