Elaboración de un producto alimenticio funcional mediante el uso de pulpa liofilizada de guayaba agria (Psidium araca)

dc.contributor.advisorRojano, Benjamín Alberto
dc.contributor.authorZapata Osorio, Luz Angela
dc.contributor.educationalvalidatorMorales Saavedra, Diana Marcela
dc.contributor.researchgroupQuímica de los Productos Naturales y los Alimentosspa
dc.date.accessioned2021-11-29T15:02:16Z
dc.date.available2021-11-29T15:02:16Z
dc.date.issued2021
dc.descriptionilustraciones, tablasspa
dc.description.abstractLa guayaba agria, Psidium araca, tiene características sensoriales y compuestos bioactivos que pueden hacerla competitiva en mercados internacionales y a la vez utilizarse como ingrediente para impulsar el mercado de productos funcionales a nivel nacional. Teniendo esto en cuenta, este trabajo se enfocó en la elaboración de un producto alimenticio del sector de galletería utilizando pulpa de guayaba agria como ingrediente funcional. Inicialmente se hizo una caracterización de los compuestos bioactivos y la capacidad antioxidante de la pulpa liofilizada de guayaba agria. Se evaluó el contenido de fenoles totales, flavonoides totales y taninos condesados. También se evaluó la capacidad para atrapar radicales libres ABTS●+, DPPH y peroxilos (ORAC), y la capacidad para reducir el hierro férrico (FRAP). Luego se fabricaron dos tipos de galleta adicionando la pulpa liofilizada de guayaba agria directamente a la galleta o a la crema de relleno. Se evaluó el contenido de fenoles totales y taninos condensados, al igual que la capacidad reductora (FRAP), tanto a las galletas con adición de pulpa como las galletas sin adición de pulpa. Se hizo una medición adicional de capacidad antioxidantes por ABTS y ORAC para las galletas con adición de pulpa. Finalmente, se efectuó una evaluación sensorial de las galletas utilizando una prueba hedónica para los aspectos de color, sabor, dureza, masticabilidad y aceptabilidad general, en un grupo de 78 personas no entrenadas. A partir de este trabajo, se puede afirmar que la pulpa liofilizada de guayaba presenta actividad antioxidante significativa en comparación con otros productos. Además, se obtuvo un producto alimenticio funcional tipo galleta, con valores de actividad antioxidante significativamente mayores a una galleta común y con buena aceptación del público evaluador. (Texto tomado de la fuente)spa
dc.description.abstractThe sour guava, Psidium araca, has sensory characteristics and bioactive compounds which can make it competitive in international markets and at the same time it can be used as an ingredient to boost the market of functional products at a national scale. Considering this, this work focused on the elaboration of a food product for the biscuit sector using sour guava pulp as a functional ingredient. Initially, the bioactive compounds and antioxidant capacity of freeze-dried sour guava pulp were characterised. The content of total phenols, total flavonoids and condensed tannins was evaluated. The ability to trap ABTS●+, DPPH and peroxyl free radicals (ORAC), and the ability to reduce ferric iron (FRAP) were also evaluated. Two types of biscuit were then manufactured by adding the freeze-dried sour guava pulp directly to the biscuit or to the cream filling. The content of total phenols and condensed tannins, as well as the reducing capacity (FRAP), were evaluated for both the biscuits with added pulp and the biscuits without added pulp. An additional measurement of antioxidant capacity by ABTS and ORAC was made for the biscuits with added pulp. Finally, a sensory evaluation of the biscuits was carried out using a hedonic test for colour, taste, hardness, chewiness and overall acceptability in a group of 78 untrained persons. From the results of this work, it can be stated that freeze-dried guava pulp shows significant antioxidant activity compared to other products. Furthermore, a biscuit-type functional food product was obtained, with significantly higher antioxidant activity values than a common biscuit and with good acceptance by the evaluating public.eng
dc.description.curricularareaÁrea Curricular en Ingeniería Agrícola y Alimentosspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencia y Tecnología de Alimentosspa
dc.format.extent61 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80737
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de Ingeniería Agrícola y Alimentosspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias Agrarias - Maestría en Ciencia y Tecnología de Alimentosspa
dc.relation.referencesAbdel-Hamid, M., Romeih, E., Huang, Z., Enomoto, T., Huang, L., & Li, L. (2020). Bioactive properties of probiotic set-yogurt supplemented with Siraitia grosvenorii fruit extract. Food Chemistry, 303, 125400. https://doi.org/10.1016/j.foodchem.2019.125400spa
dc.relation.referencesAgrahar-Murugkar, D. (2020). Food to food fortification of breads and biscuits with herbs, spices, millets and oilseeds on bio-accessibility of calcium, iron and zinc and impact of proteins, fat and phenolics. Lwt, 130, 109703. https://doi.org/10.1016/j.lwt.2020.109703spa
dc.relation.referencesAjila, C. M., Leelavathi, K., & Prasada Rao, U. J. S. (2008). Improvement of dietary fiber content and antioxidant properties in soft dough biscuits with the incorporation of mango peel powder. Journal of Cereal Science, 48(2), 319–326. https://doi.org/10.1016/j.jcs.2007.10.001spa
dc.relation.referencesAlcaire, F., Antúnez, L., Vidal, L., Velázquez, A. L., Giménez, A., Curutchet, M. R., Girona, A., & Ares, G. (2020). Healthy snacking in the school environment: Exploring children and mothers’ perspective using projective techniques. Food Quality and Preference, 104173. https://doi.org/10.1016/j.foodqual.2020.104173spa
dc.relation.referencesAlongi, M., Melchior, S., & Anese, M. (2019). Reducing the glycemic index of short dough biscuits by using apple pomace as a functional ingredient. LWT, 100, 300–305. https://doi.org/10.1016/j.lwt.2018.10.068spa
dc.relation.referencesAlvídrez-Morales, A., González-Martínez, B. E., & Jiménez-Salas, Z. (2002). Tendencias en la producción de alimentos: Alimentos funcionales. Revista Salud Pública y Nutrición, 3(3), 1–6.spa
dc.relation.referencesAmorim, C., Godoy Alves Filho, E., Soares Rodrigues, T. H., Bender, R. J., Marques Canuto, K., Santos Garruti, D., & Rogéria Antoniolli, L. (2020). Volatile compounds associated to the loss of astringency in ‘Rama Forte’ persimmon fruit. Food Research International, 136, 109570. https://doi.org/10.1016/j.foodres.2020.109570spa
dc.relation.referencesAntoniewska, A., Rutkowska, J., & Martinez Pineda, M. (2019). Antioxidative, sensory and volatile profiles of cookies enriched with freeze-dried Japanese quince (Chaenomeles japonica) fruits. Food Chemistry, 286, 376–387. https://doi.org/10.1016/j.foodchem.2019.02.029spa
dc.relation.referencesAntoniewska, A., Rutkowska, J., Martinez Pineda, M., & Adamska, A. (2018). Antioxidative, nutritional and sensory properties of muffins with buckwheat flakes and amaranth flour blend partially substituting for wheat flour. LWT - Food Science and Technology, 89, 217–223. https://doi.org/10.1016/j.lwt.2017.10.039spa
dc.relation.referencesAranceta Bartrina, J., Blay Cortés, G., Echevarría Guitiérrez, F. J., Inmaculada;, G. C., Hernández Cabria, M., Iglesias Barcia, J. R., & López Díaz-Ufano, M. L. (2011). Atención primaria de calidad: Guía de buena práctica clinica en Alimentos funcionales. Organización Médica Colegial de España.spa
dc.relation.referencesAvello, M., & Suwalsky, M. (2006). Radicales libres, antioxidantes naturales y mecanismos de protección. Atenea, 494, 161–172. https://doi.org/10.4067/s0718-04622006000200010spa
dc.relation.referencesBajaj, S., Urooj, A., & Prabhasankar, P. (2006). Effect of incorporation of mint on texture, colour and sensory parameters of biscuits. International Journal of Food Properties, 9(4), 691–700. https://doi.org/10.1080/10942910600547632spa
dc.relation.referencesBenzie, I. F. F., & Strain, J. J. (1996). The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Analytical Biochemistry, 239(1), 70–76. https://doi.org/10.1006/abio.1996.0292spa
dc.relation.referencesBhat, N. A., Wani, I. A., & Hamdani, A. M. (2020). Tomato powder and crude lycopene as a source of natural antioxidants in whole wheat flour cookies. Heliyon, 6(1), e03042. https://doi.org/10.1016/j.heliyon.2019.e03042spa
dc.relation.referencesBrand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25–30. https://doi.org/10.1016/S0023-6438(95)80008-5spa
dc.relation.referencesBrand, M. H., Connolly, B. A., Levine, L. H., Richards, J. T., Shine, S. M., & Spencer, L. E. (2017). Anthocyanins, total phenolics, ORAC and moisture content of wild and cultivated dark-fruited Aronia species. Scientia Horticulturae, 224, 332–342. https://doi.org/10.1016/j.scienta.2017.06.021spa
dc.relation.referencesBrennan, C. S., & Samyue, E. (2004). Evaluation of Starch Degradation and Textural Characteristics of Dietary Fiber Enriched Biscuits. International Journal of Food Properties, 7(3), 647–657. https://doi.org/10.1081/JFP-200033070spa
dc.relation.referencesChagas Barros, R. G., Corrêa Pereira, U., Santana Andrade, J. K., Santos de Oliveira, C., Vieira Vasconcelos, S., & Narain, N. (2020). In vitro gastrointestinal digestion and probiotics fermentation impact on bioaccessbility of phenolics compounds and antioxidant capacity of some native and exotic fruit residues with potential antidiabetic effects. Food Research International, 136(July), 109614. https://doi.org/10.1016/j.foodres.2020.109614spa
dc.relation.referencesChen, L.-Y., Cheng, C.-W., & Liang, J.-Y. (2015). Effect of esterification condensation on the Folin–Ciocalteu method for the quantitative measurement of total phenols. Food Chemistry, 170, 10–15. https://doi.org/10.1016/j.foodchem.2014.08.038spa
dc.relation.referencesChen, Y., Wang, Y., Xu, L., Jia, Y., Xue, Z., Zhang, M., Phisalaphong, M., & Chen, H. (2020). Ultrasound-assisted modified pectin from unripe fruit pomace of raspberry (Rubus chingii Hu): Structural characterization and antioxidant activities. LWT, 134, 110007. https://doi.org/10.1016/j.lwt.2020.110007spa
dc.relation.referencesChuacharoen, T., Prasongsuk, S., & Sabliov, C. M. (2019). Effect of Surfactant Concentrations on Physicochemical Properties and Functionality of Curcumin Nanoemulsions Under Conditions Relevant to Commercial Utilization. Molecules, 24(15), 2744. https://doi.org/10.3390/molecules24152744spa
dc.relation.referencesCombs, C. A. (Ed.). (2016). Tannins: Biochemistry, food sources and nutritional properties. Nova Science Publishers.spa
dc.relation.referencesCoronado H, M., Vega y León, S., Gutiérrez T, R., Vázquez F, M., & Radilla V, C. (2015). Antioxidantes: perspectiva actual para la salud humana. Revista Chilena de Nutrición, 42(2), 206–212. https://doi.org/10.4067/S0717-75182015000200014spa
dc.relation.referencesCuadrado Silva, C. T. (2016). Estudio químico de las propiedades sensoriales y biofuncionales de la guayaba agria (Psidium friedrichsthalianum Nied.) [Universidad Nacional de Colombia]. http://www.bdigital.unal.edu.co/54997/spa
dc.relation.referencesDas Chagas, E. G. L., Vanin, F. M., dos Santos Garcia, V. A., Yoshida, C. M. P., & de Carvalho, R. A. (2021). Enrichment of antioxidants compounds in cookies produced with camu-camu (Myrciaria dubia) coproducts powders. LWT, 137, 110472. https://doi.org/10.1016/j.lwt.2020.110472spa
dc.relation.referencesDe Lacerda de Oliveira Pineli, L., Veras de Carvalho, M., Andrade de Aguiar, L., de Oliveira, G. T., Costa Celestino, Sô. M., Braz Assunção Botelho, R., & Chiarello, M. D. (2015). Use of baru (Brazilian almond) waste from physical extraction of oil toproduce flour and cookies. LWT - Food Science and Technology, 60(1), 50–55. https://doi.org/10.1016/j.lwt.2014.09.035spa
dc.relation.referencesDe Oliveira, S. D., Araújo, C. M., Borges, G. da S. C., Lima, M. dos S., Viera, V. B., Garcia, E. F., de Souza, E. L., & de Oliveira, M. E. G. (2020). Improvement in physicochemical characteristics, bioactive compounds and antioxidant activity of acerola (Malpighia emarginata D.C.) and guava (Psidium guajava L.) fruit by-products fermented with potentially probiotic lactobacilli. LWT, 134, 110200. https://doi.org/10.1016/j.lwt.2020.110200spa
dc.relation.referencesDinero. (2018). Exportación de frutas colombianas en 2018. 23 /05/2018. https://www.dinero.com/edicion-impresa/pais/articulo/exportacion-de-frutas-colombianas-en-2018/258606spa
dc.relation.referencesDjaoudene, O., Mansinhos, I., Gonçalves, S., Jara-Palacios, M. J., Bachir bey, M., & Romano, A. (2021). Phenolic profile, antioxidant activity and enzyme inhibitory capacities of fruit and seed extracts from different Algerian cultivars of date (Phoenix dactylifera L.) were affected by in vitro simulated gastrointestinal digestion. South African Journal of Botany, 137, 133–148. https://doi.org/10.1016/j.sajb.2020.10.015spa
dc.relation.referencesDos Santos, W. N. L., da Silva Sauthier, M. C., Pinto dos Santos, A. M., de Andrade Santana, D., Almeida Azevedo, R. S., & da Cruz Caldas, J. (2017). Simultaneous determination of 13 phenolic bioactive compounds in guava (Psidium guajava L.) by HPLC-PAD with evaluation using PCA and Neural Network Analysis (NNA). Microchemical Journal, 133, 583–592. https://doi.org/10.1016/j.microc.2017.04.029spa
dc.relation.referencesFonseca C, Z. Y., Patiño B, G. A., & Herrán F, O. F. (2013). Malnutrición y seguridad alimentaria: un estudio multinivel. Revista Chilena de Nutrición, 40(3), 206–215. https://doi.org/10.4067/S0717-75182013000300001spa
dc.relation.referencesGalla, N. R., Pamidighantam, P. R., Karakala, B., Gurusiddaiah, M. R., & Akula, S. (2017). Nutritional, textural and sensory quality of biscuits supplemented with spinach (Spinacia oleracea L.). International Journal of Gastronomy and Food Science, 7, 20–26. https://doi.org/10.1016/j.ijgfs.2016.12.003spa
dc.relation.referencesGarzón, G. Astrid, Narváez-Cuenca, C.-E., Vincken, J.-P., & Gruppen, H. (2017). Polyphenolic composition and antioxidant activity of açai (Euterpe oleracea Mart.) from Colombia. Food Chemistry, 217, 364–372. https://doi.org/10.1016/j.foodchem.2016.08.107spa
dc.relation.referencesGarzón, G.A., Narváez, C. E., Riedl, K. M., & Schwartz, S. J. (2010). Chemical composition, anthocyanins, non-anthocyanin phenolics and antioxidant activity of wild bilberry (Vaccinium meridionale Swartz) from Colombia. Food Chemistry, 122(4), 980–986. https://doi.org/10.1016/j.foodchem.2010.03.017spa
dc.relation.referencesGuevara Benavides, L. M. (2017, December 22). Nutresa y Colombina son los líderes del negocio de las galletas en Navidad. La República. https://www.larepublica.co/empresas/nutresa-y-colombina-son-los-lideres-del-negocio-de-las-galletas-en-navidad-2584201spa
dc.relation.referencesHagerman, A. E., & Butler, L. G. (1989). Choosing appropriate methods and standards for assaying tannin. Journal of Chemical Ecology, 15(6), 1795–1810. https://doi.org/10.1007/BF01012267spa
dc.relation.referencesHamid, Thakur, N. S., Thakur, A., & Kumar, P. (2020). Effect of different drying modes on phenolics and antioxidant potential of different parts of wild pomegranate fruits. Scientia Horticulturae, 274(August), 109656. https://doi.org/10.1016/j.scienta.2020.109656spa
dc.relation.referencesHaytowitz, D. B., & Bhagwat, S. (2010). Oxygen Radical Absorbance Capacity (ORAC) of Selected Foods, Release 2. In Nutrient Data Laboratory (pp. 1–46). U.S. Department of Agriculture, Agricultural Research Service. http://www.ars.usda.gov/Services/docs.htm?docid=15866spa
dc.relation.referencesKasote, D. M., Jayaprakasha, G. K., & Patil, B. S. (2019). Leaf Disc Assays for Rapid Measurement of Antioxidant Activity. Scientific Reports, 9(1), 1884. https://doi.org/10.1038/s41598-018-38036-xspa
dc.relation.referencesKidoń, M., & Grabowska, J. (2021). Bioactive compounds, antioxidant activity, and sensory qualities of red-fleshed apples dried by different methods. LWT, 136(January 2020), 110302. https://doi.org/10.1016/j.lwt.2020.110302spa
dc.relation.referencesKrystyjan, M., Gumul, D., Ziobro, R., & Korus, A. (2015). The fortification of biscuits with bee pollen and its effect on physicochemical and antioxidant properties in biscuits. LWT - Food Science and Technology, 63(1), 640–646. https://doi.org/10.1016/j.lwt.2015.03.075spa
dc.relation.referencesKuskoski, E. M., Asuero, A. G., Troncoso, A. M., Mancini-Filho, J., & Fett, R. (2005). Aplicación de diversos métodos químicos para determinar actividad antioxidante en pulpa de frutos. Ciência e Tecnologia de Alimentos, 25(4), 726–732. https://doi.org/10.1590/S0101-20612005000400016spa
dc.relation.referencesLara Mantilla, C. (2008a). Chemical analysis of the culture medium: Psidium araca, 25% P/V. Archivos de Zootecnia, 217, 79–82.spa
dc.relation.referencesLara Mantilla, C. (2008b). Composición química de un medio de cultivo a partir de guayaba agria (Psidium araca) y su relación con la nutrición de los microorganismos ruminales. Revista Colombiana de Biotecnología, 10(2), 44–49.spa
dc.relation.referencesLara Mantilla, C., Nerio, L., & Oviedo Zumaqué, L. E. (2007). Evaluación fisicoquímica y bromatológica de la guayaba agria (Psidium araca) en dos estados de maduración. Temas Agrarios, 12(1), 13–21. https://doi.org/10.21897/rta.v12i1.647spa
dc.relation.referencesLee, D. P. S., Gan, A. X., & Kim, J. E. (2020). Incorporation of biovalorised okara in biscuits: Improvements of nutritional, antioxidant, physical, and sensory properties. LWT, 134, 109902. https://doi.org/10.1016/j.lwt.2020.109902spa
dc.relation.referencesLillo, A., Carvajal-Caiconte, F., Nuñez, D., Balboa, N., & Alvear Zamora, M. (2016). Cuantificacion espectrofometria de compuestos fenolicos y actividad antioxidante en distintos berries nativos de Cono Sur de America. Revista de Investigaciones Agropecuarias, 42(2), 168–174. http://www.redalyc.org/articulo.oa?id=86447075010%0ACómospa
dc.relation.referencesLima, R. da S., Ferreira, S. R. S., Vitali, L., & Block, J. M. (2019). May the superfruit red guava and its processing waste be a potential ingredient in functional foods? Food Research International, 115, 451–459. https://doi.org/10.1016/j.foodres.2018.10.053spa
dc.relation.referencesLucini Mas, A., Brigante, F. I., Salvucci, E., Pigni, N. B., Martinez, M. L., Ribotta, P., Wunderlin, D. A., & Baroni, M. V. (2020). Defatted chia flour as functional ingredient in sweet cookies. How do Processing, simulated gastrointestinal digestion and colonic fermentation affect its antioxidant properties? Food Chemistry, 316, 126279. https://doi.org/10.1016/j.foodchem.2020.126279spa
dc.relation.referencesMahloko, L. M., Silungwe, H., Mashau, M. E., & Kgatla, T. E. (2019). Bioactive compounds, antioxidant activity and physical characteristics of wheat-prickly pear and banana biscuits. Heliyon, 5(10), e02479. https://doi.org/10.1016/j.heliyon.2019.e02479spa
dc.relation.referencesMammen, D., & Daniel, M. (2012). A critical evaluation on the reliability of two aluminum chloride chelation methods for quantification of flavonoids. Food Chemistry, 135(3), 1365–1368. https://doi.org/10.1016/j.foodchem.2012.05.109spa
dc.relation.referencesMarinova, D., Ribarova, F., & Atanassova, M. (2005). Total Phenolics and Total Flavonoids in Bulgarian Fruits and Vegetables. Journal of the University of Chemical Technology and Metallurgy, 40(3), 255–260.spa
dc.relation.referencesMir, S. A., Bosco, S. J. D., Shah, M. A., Santhalakshmy, S., & Mir, M. M. (2017). Effect of apple pomace on quality characteristics of brown rice based cracker. Journal of the Saudi Society of Agricultural Sciences, 16(1), 25–32. https://doi.org/10.1016/j.jssas.2015.01.001spa
dc.relation.referencesPasqualone, A., Makhlouf, F. Z., Barkat, M., Difonzo, G., Summo, C., Squeo, G., & Caponio, F. (2019). Effect of acorn flour on the physico-chemical and sensory properties of biscuits. Heliyon, 5(8), e02242. https://doi.org/10.1016/j.heliyon.2019.e02242spa
dc.relation.referencesPedraza Chaverri, J., & Cárdenas Rodríguez, N. (2018). Especies reactivas de oxígeno y sistemas antioxidantes. Aspectos básicos. Educación Química, 17(2), 164. https://doi.org/10.22201/fq.18708404e.2006.2.66056spa
dc.relation.referencesPérez-Burillo, S., Oliveras, M. J., Quesada, J., Rufián-Henares, J. A., & Pastoriza, S. (2018). Relationship between composition and bioactivity of persimmon and kiwifruit. Food Research International, 105, 461–472. https://doi.org/10.1016/j.foodres.2017.11.022spa
dc.relation.referencesPerumal, V., Khatib, A., Uddin Ahmed, Q., Fathamah Uzir, B., Abas, F., Murugesu, S., Zuwairi Saiman, M., Primaharinastiti, R., & EL-Seedi, H. (2021). Antioxidants profile of Momordica charantia fruit extract analyzed using LC-MS-QTOF-based metabolomics. Food Chemistry: Molecular Sciences, 100012. https://doi.org/10.1016/j.fochms.2021.100012spa
dc.relation.referencesPrice, M. L., Van Scoyoc, S., & Butler, L. G. (1978). A critical evaluation of the vanillin reaction as an assay for tannin in sorghum grain. Journal of Agricultural and Food Chemistry, 26(5), 1214–1218. https://doi.org/10.1021/jf60219a031spa
dc.relation.referencesPrior, R. L., Hoang, H., Gu, L., Wu, X., Bacchiocca, M., Howard, L., Hampsch-Woodill, M., Huang, D., Ou, B., & Jacob, R. (2003). Assays for Hydrophilic and Lipophilic Antioxidant Capacity (oxygen radical absorbance capacity (ORAC FL)) of Plasma and Other Biological and Food Samples. Journal of Agricultural and Food Chemistry, 51(11), 3273–3279. https://doi.org/10.1021/jf0262256spa
dc.relation.referencesPrior, R. L., Wu, X., & Schaich, K. (2005). Standardized Methods for the Determination of Antioxidant Capacity and Phenolics in Foods and Dietary Supplements. Journal of Agricultural and Food Chemistry, 53(10), 4290–4302. https://doi.org/10.1021/jf0502698spa
dc.relation.referencesRe, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9–10), 1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3spa
dc.relation.referencesRodriguez-Sandoval, E., Prasca-Sierra, I., & Hernandez, V. (2017). Effect of modified cassava starch as a fat replacer on the texture and quality characteristics of muffins. Journal of Food Measurement and Characterization, 11(4), 1630–1639. https://doi.org/10.1007/s11694-017-9543-0spa
dc.relation.referencesRojano, B., Gaviria, C., Gil, M., Saez, J., Schinella, G., & Tournier, H. (2008). Actividad antioxidante del isoespintanol en diferentes medios. Vitae, 15(1), 173–181.spa
dc.relation.referencesRoleira, F. M. F., Varela, C. L., Costa, S. C., & Tavares-da-Silva, E. J. (2018). Phenolic Derivatives From Medicinal Herbs and Plant Extracts: Anticancer Effects and Synthetic Approaches to Modulate Biological Activity. In B. T.-S. in N. P. C. Atta-ur-Rahman (Ed.), Studies in Natural Product Chemistry (Vol. 57, pp. 115–156). Elsevier. https://doi.org/10.1016/B978-0-444-64057-4.00004-1spa
dc.relation.referencesRotta, E. M., Giroux, H. J., Lamothe, S., Bélanger, D., Sabik, H., Visentainer, J. V., & Britten, M. (2020). Use of passion fruit seed extract (Passiflora edulis Sims) to prevent lipid oxidation in dairy beverages during storage and simulated digestion. LWT, 123, 109088. https://doi.org/10.1016/j.lwt.2020.109088spa
dc.relation.referencesSánchez-Riaño, A. M., Solanilla-Duque, J. F., Méndez-Arteaga, J. J., & Váquiro-Herrera, H. A. (2020). Bioactive potential of Colombian feijoa in physiological ripening stage. Journal of the Saudi Society of Agricultural Sciences, 19(4), 299–305. https://doi.org/10.1016/j.jssas.2019.05.002spa
dc.relation.referencesSharma, P., Velu, V., Indrani, D., & Singh, R. P. (2013). Effect of dried guduchi (Tinospora cordifolia) leaf powder on rheological, organoleptic and nutritional characteristics of cookies. Food Research International, 50(2), 704–709. https://doi.org/10.1016/j.foodres.2012.03.002spa
dc.relation.referencesSidhu, J. S., Al-Hooti, S. N., Al-Saqer, J. M., Al-Amiri, H. A., Al-Foudari, M., Al-Othman, A., Ahmad, A., Al-Haji, L., Ahmed, N., Mansor, I. B., & Minal, J. (2004). Developing Functional Foods Using Red Palm Olein: Pilot-Scale Studies. International Journal of Food Properties, 7(1), 1–13. https://doi.org/10.1081/JFP-120022491spa
dc.relation.referencesSingleton, G., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology And Viticulture, 16(3), 144–158.spa
dc.relation.referencesSrivastava, P., Indrani, D., & Singh, R. P. (2014). Effect of dried pomegranate (Punica granatum) peel powder (DPPP) on textural, organoleptic and nutritional characteristics of biscuits. International Journal of Food Sciences and Nutrition, 65(7), 827–833. https://doi.org/10.3109/09637486.2014.937797spa
dc.relation.referencesThaipong, K., Boonprakob, U., Crosby, K., Cisneros-Zevallos, L., & Hawkins Byrne, D. (2006). Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. Journal of Food Composition and Analysis, 19(6–7), 669–675. https://doi.org/10.1016/j.jfca.2006.01.003spa
dc.relation.referencesTyagi, P., Chauhan, A. K., & Aparna. (2020). Optimization and characterization of functional cookies with addition of Tinospora cordifolia as a source of bioactive phenolic antioxidants. LWT, 130, 109639. https://doi.org/10.1016/j.lwt.2020.109639spa
dc.relation.referencesVallejo, F., Tomás-Barberán, F. A., & García-Viguera, C. (2003). Effect of climatic and sulphur fertilisation conditions, on phenolic compounds and vitamin C, in the inflorescences of eight broccoli cultivars. European Food Research and Technology, 216(5), 395–401. https://doi.org/10.1007/s00217-003-0664-9spa
dc.relation.referencesVoss-Rech, D., Klein, C. S., Techio, V. H., Scheuermann, G. N., Rech, G., & Fiorentin, L. (2011). Antibacterial activity of vegetal extracts against serovars of Salmonella. Ciência Rural, 41(2), 314–320. https://doi.org/10.1590/S0103-84782011000200022spa
dc.relation.referencesZapata, K., Cortes, F. B., & Rojano, B. A. (2013). Polifenoles y Actividad Antioxidante del Fruto de Guayaba Agria (Psidium araca). Informacion Tecnologica, 24(5), 103–112. https://doi.org/10.4067/S0718-07642013000500012spa
dc.relation.referencesZapata, S., Piedrahita, A. M., & Rojano, B. (2014). Capacidad atrapadora de radicales oxígeno (ORAC) y fenoles totales de frutas y hortalizas de Colombia. Perspectivas En Nutrición Humana, 16(1), 25–36.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc660 - Ingeniería química::664 - Tecnología de alimentosspa
dc.subject.lembIndustria alimenticiaspa
dc.subject.lembFood industry and tradeeng
dc.subject.proposalPsidium aracaeng
dc.subject.proposalGuayaba agriaspa
dc.subject.proposalSour guavaeng
dc.subject.proposalAntioxidant activityeng
dc.subject.proposalActividad antioxidantespa
dc.subject.proposalBioactive compoundseng
dc.subject.proposalProducto alimenticio funcionalspa
dc.subject.proposalFunctional food producteng
dc.subject.proposalGalletaspa
dc.subject.proposalBiscuiteng
dc.subject.proposalRelleno de galletaspa
dc.subject.proposalBiscuit fillingeng
dc.subject.proposalCompuestos bioactivosspa
dc.titleElaboración de un producto alimenticio funcional mediante el uso de pulpa liofilizada de guayaba agria (Psidium araca)spa
dc.title.translatedPreparation of a functional food product by using freeze-dried pulp of sour guava (Psidium araca)eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMedios de comunicaciónspa
dcterms.audience.professionaldevelopmentProveedores de ayuda financiera para estudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameLaboratorio Ciencia de los Alimentosspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1040754390.2021.pdf
Tamaño:
956.5 KB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencia y Tecnología de Alimentos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: