Producción y caracterización de propiedades anticorrosivas del recubrimiento TiAlSiN depositadas con el sistema de sputtering reactivo

dc.contributor.advisorJhon Jairo, Olaya Florez
dc.contributor.advisorLuis Camilo, Jimenez Borrego
dc.contributor.authorCañon Tafur, Luis Alejandro
dc.contributor.researchgroupGRUPO DE INVESTIGACIÓN AFIS (ANÁLISIS DE FALLAS, INTEGRIDAD Y SUPERFICIES)spa
dc.date.accessioned2021-05-04T21:41:33Z
dc.date.available2021-05-04T21:41:33Z
dc.date.issued2017
dc.descriptionilustraciones, graficas, tablasspa
dc.description.abstractEn este trabajo se elaboraron recubrimientos nano-estructuradas de TiAlSiN sobre sustratos de acero 316l, mediante la técnica sputtering magnetrón reactivo, se evaluó su Microdureza, rugosidad, adherencia, resistencia a la corrosión y al desgaste. La micro estructura de los recubrimientos se analizó por medio de Difracción de rayos x por medio de la técnica Bragg- Bretano, Microscopio electrónica de barrido, Microscopia de fuerza atómica, y interferómetro. Los recubrimientos obtenidos poseen una superficie de muy baja rugosidad, esta magnitud disminuye con un aumento de la cantidad de silicio sobre el recubrimiento y además factores como la cantidad de nitrógeno y potencia tienen un mayor efecto sobre la morfología de la superficie, esta relación se establece de acuerdo al diseño de experimentos factorial fraccionado establecido para este trabajo. Los recubrimientos se realizaron en una atmosfera reactiva 40%N y 60%Ar, con una potencia de 150 W durante 30 minutos sobre sustratos de acero 316l y silicio con orientación preferencial (100). De la caracterización electroquímica, los recubrimientos disminuyeron la velocidad de corrosión del sustrato cerca a los 2 órdenes de magnitud, a la pruebas de impedancia electroquímica se en diferentes intervalos de tiempo (0h, 24h, 48h, 72h, y 168h)muestran una variación de tipo farádico, controlado por elementos capacitores y fue representado por un circuito equivalente que se ajusta a los resultados de la respuesta según el diagrama de bode y al ajuste Kramers Kroning, la resistencia a la corrosión para los recubrimientos obtenidos no depende de la cantidad de silicio de los recubrimientos, pero se relaciona con el espesor. Los recubrimientos obtenidos muestran que la resistencia al desgaste depende de la dureza del recubrimiento y la rugosidad, en nuestro sistema estos parámetros se controlaron con la cantidad de silicio que fueron agregados al blanco durante la deposición.spa
dc.description.abstractIn this work, nano-structured TiAlSiN coatings on 316l steel substrates were prepared using the reactive magnetron sputtering technique. Their microhardness, roughness, adhesion, corrosion resistance and wear were evaluated. The microstructure of the coatings was analyzed by X-ray diffraction using the Bragg-Bretano technique, scanning electron microscope, atomic force microscopy, and interferometer. The obtained coatings have a surface of very low roughness, this quantity decreases with an increase of the amount of silicon on the coating and also factors like the quantity of nitrogen and power have a greater effect on the surface morphology, this relation is established According to the design of fractional factorial experiments established for this work. The coatings were made in a 40% N and 60% Ar reactive atmosphere, with a power of 150 W for 30 minutes on substrates of 316l steel and silicon with preferential orientation (100). From the electrochemical characterization, the coatings decreased the corrosion rate of the substrate near 2 orders of magnitude, the tests of electrochemical impedance at different time intervals (0h, 24h, 48h, 72h, and 168h) show a variation of Faronic type, controlled by capacitors and was represented by an equivalent circuit that conforms to the results of the response according to the bode diagram and the Kramers Kroning setting, the corrosion resistance for the coatings obtained does not depend on the amount of silicon Of the coatings, but is related to the thickness. The obtained coatings show that the resistance to the wear depends on the hardness of the coating and the roughness, in our system these parameters were controlled with the amount of silicon that were added to the target during the deposition.eng
dc.description.degreelevelMaestríaspa
dc.description.researchareaIngeniería de Superficies Corrosiónspa
dc.format.extent1 recurso en linea (208 paginas)spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79475
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotáspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Materiales y Procesosspa
dc.relation.references[1] V. K. Sarin, Comprehensive Hard Materials Vol I, Elsevier. Boston, MA: 2014, 2014.spa
dc.relation.references[2] H. C. B. Ã, B. Deepthi, and K. S. Rajam, “Deposition and characterization of TiAlN / Si 3 N 4 superhard nanocomposite coatings prepared by reactive direct current unbalanced magnetron sputtering,” vol. 81, pp. 479–488, 2006.spa
dc.relation.references[3] J. C. Oliveira, A. Manaia, and A. Cavaleiro, “Hard amorphous Ti-Al-N coatings deposited by sputtering,” Thin Solid Films, vol. 516, no. 15, pp. 5032–5038, 2008.spa
dc.relation.references[4] S. po Wam, “Struture Characterization and Mechanical Properties of Industrial PVD-TiAlN Coatings,” Run Run Shaw Libr. Copyr., p. 269, 2005.spa
dc.relation.references[5] L. Velasco, J. J. Olaya, and S. E. Rodil, “Effect of Si addition on the structure and corrosion behavior of NbN thin films deposited by unbalanced magnetron sputtering,” Appl. Phys. A Mater. Sci. Process., vol. 122, no. 2, pp. 1–10, 2016.spa
dc.relation.references[6] A. Miletić, P. Panjan, B. Škorić, M. Čekada, G. Dražič, and J. Kovač, “Microstructure and mechanical properties of nanostructured Ti-Al-Si-N coatings deposited by magnetron sputtering,” Surf. Coatings Technol., vol. 241, pp. 105–111, 2014.spa
dc.relation.references[7] Y. H. Yoo, D. P. Le, J. G. Kim, S. K. Kim, and P. Van Vinh, “Corrosion behavior of TiN, TiAlN, TiAlSiN thin films deposited on tool steel in the 3.5 wt.% NaCl solution,” Thin Solid Films, vol. 516, no. 11, pp. 3544–3548, 2008.spa
dc.relation.references[8] S. Q. Wang et al., “Effect of Si addition on microstructure and mechanical properties of Ti-Al-N coating,” Int. J. Refract. Met. Hard Mater., vol. 28, no. 5, pp. 593–596, 2010.spa
dc.relation.references[9] K. A. Kuptsov, P. V Kiryukhantsev-korneev, A. N. Sheveyko, and D. V Shtansky, “Surface & Coatings Technology Comparative study of electrochemical and impact wear behavior of TiCN , TiSiCN , TiCrSiCN , and TiAlSiCN coatings,” Surf. Coat. Technol., vol. 216, pp. 273–281, 2013.spa
dc.relation.references[10] M. Pfeiler, J. Zechner, M. Penoy, C. Michotte, C. Mitterer, and M. Kathrein, “Improved oxidation resistance of TiAlN coatings by doping with Si or B,” Surf. Coatings Technol., vol. 203, no. 20–21, pp. 3104–3110, 2009.spa
dc.relation.references[11] D. M. Devia Narvaez, H. Duque-Sanchez, and F. Mesa, “Behavior of coated forming tools with TiAlN coatings grown by Triode Magnetron Sputtering,” Dyna,spa
dc.relation.references[12] J. J. Olaya, D. M. Marulanda, S. E. Rodil, and B. Bhushan, “Propiedades mecánicas de nitruros metálicos depositados con UBM: Tecnología eficiente y ambientalmente limpia,” Rev. Mex. Fis., vol. 55, no. 6, pp. 425–431, 2009.spa
dc.relation.referencesD. Garcia, U. Piratoba, and A. Mariño, “Recubrimientos de (Ti,Al)N sobre Acero AISI 4140 por Sputtering Reactivo,” Dyna, no. 152, p. 181, 182, 183, 184 y 185, 2007.spa
dc.relation.references[14] F. Correa, C. A. Rincon, and J. C. Caicedo, “Faber Correa 1 , Carlos A. Rincon 2 , Gilberto Bejarano G 3 ., J. C. Caicedo 3,” vol. 39, no. 2, pp. 597–601, 2007.spa
dc.relation.references[15] Y. Lizbeth, C. Godoy, S. Elizabeth, and R. Posada, “Corrosion resistance of transition metal nitride films deposited on AISI M2 steel,” no. June 2012, 2014.spa
dc.relation.references[16] F. Quesada and Á. Mariño, “Recubrimientos de TiAlN sobre acero ASTM A36 por el proceso de sputtering reactivo RF TiAlN films on ASTM A36 steel for sputtering reactive process RF,” pp. 107–114, 2006spa
dc.relation.references[17] J. J. Olaya, U. Piratoba, and S. E. Rodil, “RESISTENCIA A LA CORROSIÓN DE RECUBRIMIENTOS DE CrN DEPOSITADOS POR PVD CON UBM: TECNOLOGÍA EFICIENTE Y AMBIENTALMENTE LIMPIA,” vol. 31, no. 1, pp. 44–51, 2011spa
dc.relation.references[18] A. Trujillo, O; Arango, Y; Devia, “REVISTA COLOMBIANA DE FÍSICA, VOL. 39, No. 1, 2007 DEPOSICION Y CARACTERIZACION DE PELICULAS DE TiZrN MEDIANTE LA TECNICA DE ARCO PULSADO O. Trujillo, Y. C. Arango, A. Devia.,” Rev. Colomb. Fis., vol. 39, no. 1, pp. 135–139, 2007spa
dc.relation.references[19] L. Hultman et al., “Transmission electron microscopy studies of microstructural evolution, defect structure, and phase transitions in polycrystalline and epitaxial Ti1−xAlxN and TiN films grown by reactive magnetron sputter deposition,” Thin Solid Films, vol. 205, no. 2, pp. 153–164, 1991spa
dc.relation.references[20] T. Ikeda and S. Satoh, “Phase formation and characterization of hard coatings in the Ti-Al-N system prepared by the cathodic arc ion plating method,” Thin Solid Films, vol. 195, no. 1–2, pp. 99–110, 1991spa
dc.relation.references[21] A. L. Ivanwsky and U. Branch, “INTERATOMIC INTERACTIONS AND ELECTRONIC PROPERTIES OF NaCI-TYPE TixAl1-xNy,” pp. 2–5, 1993spa
dc.relation.references[22] O. Knotek, M. Atzor, A. Barimani, and F. Jungblut, “Development of low temperature ternary coatings for high wear resistance,” Surf. Coat. Technol., vol. 42, no. 1, pp. 21–28, 1990.spa
dc.relation.references[23] T. Leyendecker, O. Lemmer, S. Esser, and J. Ebberink, “The development of the PVD coating TiAlN as a commercial coating for cutting tools,” Surf. Coatings Technol., vol. 48, no. 2, pp. 175–178, 1991spa
dc.relation.references[24] S. Sobue et al., Metastable Phase Formation in Al alloy/TiN/Ti/Si Systems. Elsevier. B.V., 1994.spa
dc.relation.references[25] F. C. Stedile, F. L. Freire Jr, W. H. Schreiner, and I. J. R. Baumvol, “Characterisation of titanium-aluminium nitride thin films by ion beam techniques and X-ray diffraction,” Vacuum, vol. 45, no. 4, pp. 441–446, 1994.spa
dc.relation.references[26] B. Shew and J. Huang, “The effects of nitrogen flow on reactively sputtered Ti-A1-N films,” Surf. Coatings Technol., vol. 71, pp. 30–36, 1995.spa
dc.relation.references[27] E. J. Bienk, H. Reitz, and N. J. Mikkelsen, “Wear and friction properties of hard PVD coatings,” Surf. Coatings Technol., vol. 76–77, pp. 475–480, 1995.spa
dc.relation.references[28] J. Musil, “Hard nanostructured and nanocomposite thin films,” 3rd Mikkeli Int. Ind. Coatings Semin., no. i, 2006.spa
dc.relation.references[29] P. Karvankova, M. G. J. Veprek-Heijman, D. Azinovic, and S. Veprek, “Properties of superhard nc-TiN/a-BN and nc-TiN/a-BN/a-TiB2 nanocomposite coatings prepared by plasma induced chemical vapor deposition,” Surf. Coatings Technol., vol. 200, no. 9, pp. 2978–2989, 2006.spa
dc.relation.references[30] L. Chen, Y. Du, S. Q. Wang, A. J. Wang, and H. H. Xu, “Mechanical properties and microstructural evolution of TiN coatings alloyed with Al and Si,” Mater. Sci. Eng. A, vol. 502, no. 1–2, pp. 139–143, 2009.spa
dc.relation.references[31] I. Bertóti, “Characterization of nitride coatings by XPS,” Surf. Coatings Technol., vol. 151–152, pp. 194–203, 2002spa
dc.relation.references[32] S. Carvalho et al., “Microstructure, mechanical properties and cutting performance of superhard (Ti,Si,Al)N nanocomposite films grown by d.c. reactive magnetron sputtering,” Surf. Coatings Technol., vol. 177–178, pp. 459–468, 2004spa
dc.relation.references[33] S. Veprek, H. D. Männling, M. Jilek, and P. Holubar, “Avoiding the high-temperature decomposition and softening of (Al1-xTix)N coatings by the formation of stable superhard nc-(Al1-xTix)N/a-Si3 N4 nanocomposite,” Mater. Sci. Eng. A, vol. 366, no. 1, pp. 202–205, 2004.spa
dc.relation.references[34] I. W. Park, S. R. Choi, J. H. Suh, C. G. Park, and K. H. Kim, “Deposition and mechanical evaluation of superhard Ti-Al-Si-N nanocomposite films by a hybrid coating system,” Thin Solid Films, vol. 447–448, no. 3, pp. 443–448, 2004spa
dc.relation.references[35] J. Musil and H. Hruby, “Superhard nanocomposite Ti 1 2 x Al x N ® lms prepared by magnetron sputtering,” vol. 365, pp. 104–109, 2000spa
dc.relation.references[36] L. Chen, Y. Du, A. J. Wang, S. Q. Wang, and S. Z. Zhou, “Int . Journal of Refractory Metals & Hard Materials Effect of Al content on microstructure and mechanical properties of Ti – Al – Si – N nanocomposite coatings,” Int. J. Refract. Met. Hard Mater., vol. 27, no. 4, pp. 718–721, 2009spa
dc.relation.references[37] N. Jiang, Y. G. Shen, H. J. Zhang, S. N. Bao, and X. Y. Hou, “Superhard nanocomposite Ti-Al-Si-N films deposited by reactive unbalanced magnetron sputtering,” Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., vol. 135, no. 1, ppspa
dc.relation.references[38] H. Gleiter, “Nanocrystalline materials,” Prog. Mater. Sci., vol. 33, no. 4, pp. 223–315, 1989.spa
dc.relation.references[39] K. A. Kuptsov, P. V. Kiryukhantsev-Korneev, A. N. Sheveyko, and D. V. Shtansky, “Structural transformations in TiAlSiCN coatings in the temperature range 900-1600 ??c,” Acta Mater., vol. 83, pp. 408–418, 2015.spa
dc.relation.references[40] P. H. Mayrhofer et al., “Self-organized nanostructures in the Ti-Al-N system,” Appl. Phys. Lett., vol. 83, no. 10, pp. 2049–2051, 2003.spa
dc.relation.references[41] H. C. Barshilia, M. Ghosh, Shashidhara, R. Ramakrishna, and K. S. Rajam, “Deposition and characterization of TiAlSiN nanocomposite coatings prepared by reactive pulsed direct current unbalanced magnetron sputtering,” Appl. Surf. Sci., vol. 256, no. 21, pp. 6420–6426, 2010.spa
dc.relation.references[42] S. Veprek and M. J. G. Veprek-Heijman, “Industrial applications of superhard nanocomposite coatings,” Surf. Coatings Technol., vol. 202, no. 21, pp. 5063–5073, 2008.spa
dc.relation.references[43] S. Wilson and A. T. Alpas, “Tribo-layer formation during sliding wear of TiN coatings,” vol. 245, no. November 1999, pp. 223–229, 2000.spa
dc.relation.references[44] J. Takadoum and D. Mairey, “The Wear Characteristics of Silicon Nitride,” vol. 18, pp. 553–556, 1998.spa
dc.relation.references[45] C. Chang, W. Chen, P. Tsai, W. Ho, and D. Wang, “Characteristics and performance of TiSiN / TiAlN multilayers coating synthesized by cathodic arc plasma evaporation,” vol. 202, pp. 987–992, 2007spa
dc.relation.references[46] N. D. Nam, M. Vaka, and N. Tran Hung, “Corrosion behavior of TiN, TiAlN, TiAlSiN-coated 316L stainless steel in simulated proton exchange membrane fuel cell environment,” J. Power Sources, vol. 268, pp. 240–245, 2014.spa
dc.relation.references[47] Y. C. Chan, H. W. Chen, P. S. Chao, J. G. Duh, and J. W. Lee, “Microstructure control in TiAlN/SiNx multilayers with appropriate thickness ratios for improvement of hardness and anti-corrosion characteristics,” Vacuum, vol. 87, pp. 195–199, 2013.spa
dc.relation.references[48] D. Turcio-Ortega, S. E. Rodil, and S. Muhl, “Corrosion behavior of amorphous carbon deposit in 0.89% NaCl by electrochemical impedance spectroscopy,” Diam. Relat. Mater., vol. 18, no. 11, pp. 1360–1368, 2009.spa
dc.relation.references[49] M. Flores, S. Muhl, and E. Andrade, “The relation between the plasma characteristic and the corrosion properties of TiN/Ti multilayers deposited by unbalanced magnetron sputtering,” Thin Solid Films, vol. 433, no. 1–2 SPEC., pp. 217–223, 2003.spa
dc.relation.references[50] J. M. Albella, Laminas Delgadas Y Recubrimientos Preparacion, propiedades y aplicaciones. Madrid 2003: CSIC, 2003.spa
dc.relation.references[51] K. Holmberg and A. Mathews, “Coatings tribology: a concept, critical aspects and future directions,” Thin Solid Films, vol. 253, no. 1–2, pp. 173–178, 1994.spa
dc.relation.references[52] C. Brechinac, Nanomaterials and Nanochemistry, Springer. Paris: Springer.spa
dc.relation.references[53] H. Holleck, “Basic principles of specific applications of ceramic materials as protective layers,” Surf. Coatings Technol., vol. 43–44, no. PART 1, pp. 245–258, 1990.spa
dc.relation.references[54] H. Holleck, “Material selection for hard coatings,” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., vol. 4, no. 6, p. 2661, 1986.spa
dc.relation.references[55] B. R. Riedel and R. Riedel, “Materials harder than diamond?,” Adv. Mater., vol. 4, no. 11, pp. 759–761, 1992.spa
dc.relation.references[56] J. Patscheider, “Nanocomposite Hard Coatings for Wear Protection,” MRS Bull., vol. 28, no. 3, pp. 180–183, 2003.spa
dc.relation.references[57] A. Bogaerts, E. Neyts, R. Gijbels, and J. Van der Mullen, “Gas discharge plasmas and their applications,” Spectrochimica Acta - Part B Atomic Spectroscopy, vol. 57, no. 4. pp. 609–658, 2002.spa
dc.relation.references[58] E. Bultinck and P. D. A. Bogaerts, “Numerical simulation of a magnetron discharge utilized for the reactive sputter deposition of titanium nitride and oxide layers,” Dep. Chemie, vol. PhD, pp. 1–203, 2009.spa
dc.relation.references[59] P. Kofstad and R. Bredesen, “High temperature corrosion in SOFC environments,” Solid State Ionics, vol. 52, no. 1–3, pp. 69–75, 1992.spa
dc.relation.references[60] E. Barsoukov and J. R. Macdonald, Impedance Spectroscopy. 2005.spa
dc.relation.references[61] R. O. Kuehl, Diseños con superficie de respuesta. 2001.spa
dc.relation.references[62] P. Marcus, Corrosion Mechanisms in Theory and Practice. 2011.spa
dc.relation.references[63] M. Fontana, Corrsion engineering, Tercera., vol. 1. Ohio, 1978.spa
dc.relation.references[64] J. J. D. G. fonso José Vázquez Vaamonde, J. J. de Damborenea, Ciencia e ingeniería de la superficie de los materiales metálicos, CSIC. Madrid: RAYCAR impresores, 2001.spa
dc.relation.references[65] Q. P. Nayuri and R. Peláez, ““ EVALUACIÓN ELECTROQUÍMICA DE RECUBRIMIENTOS BIOCOMPATIBLES “,” 2015.spa
dc.relation.references[66] A. Lasia, Electrochemical Impedance Spectroscopy and its Applications. 2002.spa
dc.relation.references[67] J. Vasquez, “EMPLEO DE LA TÉCNICA DE ESPECTROSCOPÍA DE IMPEDANCIAS ELECTROQUÍMICAS PARA LA CARACTERIZACIÓN DE BIOMATERIALES. APLICACIÓN A UNA ALEACIÓN BIOMÉDICA DE Co-Cr-Mo.” Universidad Politecnica de Valencia, Valencia, 2007.spa
dc.relation.references[68] N. Sekar and R. P. Ramasamy, “Electrochemical Impedance Spectroscopy for Microbial Fuel Cell Characterization,” J. Microb. Biochem. Technol., vol. S6, no. July 2013, pp. 1–14, 2013.spa
dc.relation.references[69] K. Jüttner, “Electrochemical impedance spectroscopy (EIS) of corrosion processes on inhomogeneous surfaces,” Electrochim. Acta, vol. 35, no. 10, pp. 1501–1508, 1990.spa
dc.relation.references[70] C. D. E. P. Em and C. E. Engenharia, “Estudos Eletroquímicos do aço AISI 403 em meios salinos simulando a Corrosão em Palhetas de Turbinas a Vapor DENISE SANTANA PACHECO,” 2008.spa
dc.relation.references[71] A. John R. Scully, David C. Silverman and M. W. Kendig, Electrochemical Impedance: Analysis and Interpretation, no. January 1993. 1993.spa
dc.relation.references[72] J. J. Olaya, Y. Chipatecua, and S. Rodil, “Resistencia a la Corrosión de Recubrimientos de Nitruros Metálicos Depositados sobre Acero AISI M2,” Ing. y Desarro., vol. 30, no. 1, p. 63 y 64, 2012.spa
dc.relation.references[73] A. Rizzo et al., Corrosion Mechanisms in Theory and Practice, Springer., vol. 18, no. November. Ohio: Springer, 2011.spa
dc.relation.references[75] J. V. Koleske, “Mechanical Properties of Solid Coatings,” Encycl. Anal. Chem., pp. 1–15, 2001.spa
dc.relation.references[76] R. F. Bunshah, HANDBOOK OF HARD COATINGS Deposition Technologies , Properties and. 2001.spa
dc.relation.references[77] S. H. Materials, Comprenhensive Hard Materials Vol III, Elsevier. Boston, MA, 2014.spa
dc.relation.references[78] a O. Sergici and X. N. Randall, “Scratch Testing of Coatings.(TECH SPOTLIGHT),” Adv. Mater. Process., no. April, pp. 41–43, 2006.spa
dc.relation.references[79] J.Schmit, “An introduction to non-contact surface metrology,” 2013.spa
dc.relation.references[80] “bragg @ hyperphysics.phy-astr.gsu.edu.”spa
dc.relation.references[81] J. Jimenez, “Diseños experimentales,” Model. Exp., p. 4, 2012.spa
dc.relation.references[82] D. C. Montgomery, “Diseño Y Analisis de Experimentos.” Editorial Limusa, Arizona, p. 692, 2004.spa
dc.relation.references[83] O. Castejón, Diseño y análisis de experimentos con statistix. 2011.spa
dc.relation.references[84] R. Zas, “Autocorrelación espacial y el diseño y análisis de experimentos,” Introd. al Análisis Espac. Datos en Ecol. y Ciencias Ambient. Métodos y Apl., pp. 541–590, 2008.spa
dc.relation.references[85] A. . Fallis, Elementos de diseño de experimentos, vol. 53, no. 9. 2013.spa
dc.relation.references[86] R. Zas, “Consecuencias de la estructura espacial de los datos en el diseño y análisis de experimentos en campo,” Ecosistemas, vol. 3, no. 3, pp. 1–8, 2006.spa
dc.relation.references[87] D. Monzón and D. Monzón Paiva, “Introducción al diseño de experimentos,” Rev. la Fac. Agron. la Univ. Cent. Venez., no. Alcance 34, p. 167 p., 1992.spa
dc.relation.references[88] “e2ccf15e9c64f8a044f3f4f10e3d82e2a6ff8be5 @ support.minitab.com.”spa
dc.relation.references[89] J. Melorose et al., “Los Cuadros Más Importantes Y Significativos,” Statew. Agric. L. Use Baseline 2015, vol. 1, p. 1–20;Creación:2010;Recuperado:10 mayo 2015, 2015.spa
dc.relation.references[90] “cap4-7 @ www.ub.edu.” .spa
dc.relation.references[91] D. Sodio, D. Sodio, and M. Base, “Aleación 316-317,” vol. 56, no. 2.spa
dc.relation.references[92] “monocristalino @ autosolar.es.” .spa
dc.relation.references[93] K. J. Lesker Company, “Practical Process Tips - Sputtering,” Lesker Tech, vol. 7, pp. 1–4, 2010.spa
dc.relation.references[94] B.-Y. Shew, J.-L. Huang, and D.-F. Lii, “Effects of r.f. bias and nitrogen flow rates on the reactive sputtering of TiA1N films,” Thin Solid Films, vol. 293, no. 1–2, pp. 212–219, 1997.spa
dc.relation.references[95] J. T. Chen et al., “Characterization and temperature controlling property of TiAlN coatings deposited by reactive magnetron co-sputtering,” vol. 472, pp. 91–96, 2009.spa
dc.relation.references[96] L. Marques, S. Carvalho, F. Vaz, M. M. D. Ramos, and L. Rebouta, “ab-initio Study of the properties of Ti 1 À x À y Si x Al y N solid solution,” Vaccum, vol. 83, no. 10, pp. 1240–1243, 2009.spa
dc.relation.references[97] S. Carvalho, L. Rebouta, a Cavaleiro, L. a Rocha, J. Gomes, and E. Alves, “Microstructure and mechanical properties of nanocomposite ( Ti , Si , Al ) N coatings,” Thin Solid Films, vol. 399, pp. 391–396, 2001.spa
dc.relation.references[98] A. M. Baró et al., “Characterization of surface roughness in titanium dental implants measured with scanning tunnelling microscopy at atmospheric pressure,” Biomaterials, vol. 7, no. 6, pp. 463–466, 1986.spa
dc.relation.references[99] O. Instructions, “Nanosurf Easyscan 2 AFM.”spa
dc.relation.references[100] S. R. Bradbury et al., “Response surface application for estimating failure time and other creep properties using the Small Punch Creep Test,” Eng. Fail. Anal., vol. 45, no. 1–2, pp. 49–58, 2014.spa
dc.relation.references[101] R. Wuhrer, W. Y. Yeung, M. R. Phillips, and G. McCredie, “Study on d.c. magnetron sputter deposition of titanium aluminium nitride thin films: effect of aluminium content on coating,” Thin Solid Films, vol. 290–291, no. 1996, pp. 339–342, 1996.spa
dc.relation.references[102] L. A. A. Rodríguez, J. J. O. Flórez, and J. M. A. Osorio, “Resistencia a la corrosión de recubrimientos de NbC sobre acero AISI 316L depositados por UMB/Corrosion resistance of NbC coatings on AISI 316L steel deposited with UBM,” Ingeniare Rev. Chil. Ing., vol. 22, no. 3, pp. 445–454, 2014.spa
dc.relation.references[103] Y. Zhong et al., “Additive manufacturing of 316L stainless steel by electron beam melting for nuclear fusion applications,” J. Nucl. Mater., vol. 486, no. January, pp. 234–245, 2017.spa
dc.relation.references[104] A. Dudek, A. Wronska, and L. Adamczyk, “Surface remelting of 316 L + 434 L sintered steel: microstructure and corrosion resistance,” J. Solid State Electrochem., vol. 18, no. May, pp. 2973–2981, 2014.spa
dc.relation.references[105] E. K. Tentardini, C. Kwietniewski, F. Perini, E. Blando, R. Hübler, and I. J. R. Baumvol, “Surface & Coatings Technology Deposition and characterization of non-isostructural,” Surf. Coat. Technol., vol. 203, no. 9, pp. 1176–1181, 2009.spa
dc.relation.references[106] C. Fernandes et al., “Effect of the microstructure on the cutting performance of superhard (Ti,Si,Al)N nanocomposite films,” Vacuum, vol. 82, no. 12, pp. 1470–1474, 2008.spa
dc.relation.references[107] R. Manaila et al., “Ti nitride phases in thin films deposited by DC magnetron sputtering,” Appl. Surf. Sci., vol. 91, no. 1–4, pp. 295–302, 1995.spa
dc.relation.references[108] N. Coatings and D. Version, “University of Groningen Galileo Comes to the Surface! de Hosson, J.T.M.; Cavaleiro, Albano,” 2006.spa
dc.relation.references[109] G. C. Psarras, “Composite coatings and their performance in corrosive environment,” vol. 34, no. 4, pp. 267–272, 1999.spa
dc.relation.references[110] J. Gallardo, A. Durán, and J. J. de Damborenea, “Electrochemical and in vitro behaviour of sol-gel coated 316L stainless steel,” Corros. Sci., vol. 46, no. 4, pp. 795–806, 2004.spa
dc.relation.references[111] V. Upadhyay and D. Battocchi, “Progress in Organic Coatings Localized electrochemical characterization of organic coatings : A brief review,” Prog. Org. Coatings, vol. 99, pp. 365–377, 2016.spa
dc.relation.references[112] S. B. Lyon, R. Bingham, and D. J. Mills, “Progress in Organic Coatings Advances in corrosion protection by organic coatings : What we know and what we would like to know,” Prog. Org. Coatings, vol. 102, pp. 2–7, 2017.spa
dc.relation.references[113] J. M. Sykes, E. P. Whyte, X. Yu, and Z. S. Sahir, “Progress in Organic Coatings Does ‘ coating resistance ’ control corrosion ?,” vol. 102, pp. 82–87, 2017.spa
dc.relation.references[114] R. V Lakshmi, S. T. Aruna, C. Anandan, P. Bera, and S. Sampath, “Surface & Coatings Technology EIS and XPS studies on the self-healing properties of Ce-modi fi ed silica-alumina hybrid coatings : Evidence for Ce ( III ) migration,” SCT, vol. 309, pp. 363–370, 2017.spa
dc.relation.references[115] M. F. Montemor, “Surface & Coatings Technology Functional and smart coatings for corrosion protection : A review of recent advances,” Surf. Coat. Technol., vol. 258, pp. 17–37, 2014.spa
dc.relation.references[116] E. Of, B. Biofilm, S. S. Corrosionnatural, and S. By, “Effect of bacterial biofilm on 205 ss corrosion in natural seawater by eis.”spa
dc.relation.references[117] C. Liu, “An electrochemical impedance spectroscopy study of the corrosion behaviour of PVD coated steels in 0 . 5 N NaCl aqueous solution : Part II . EIS interpretation of corrosion behaviour,” vol. 45, pp. 1257–1273, 2003.spa
dc.relation.references[118] C. Liu, “An electrochemical impedance spectroscopy study of the corrosion behaviour of PVD coated steels in 0 . 5 N NaCl aqueous solution : Part I . Establishment of equivalent circuits for EIS data modelling,” vol. 45, pp. 1243–1256, 2003.spa
dc.relation.references[119] G. Itings, S. F. Hhfc, C. Liu, A. Leyland, S. Lyon, and A. Matthews, “Electrochemical impedance spectroscopy of PVD-TiN coatings on mild steel and AISI316 substrates,” vol. 77, pp. 615–622, 1995.spa
dc.relation.references[120] A. D. U. R. An, “Bioactive and Protective Sol-Gel Coatings on Metals for Orthopaedic Prostheses,” pp. 65–74, 2001.spa
dc.relation.references[121] I. Epelboin, M. Keddam, and J. C. Lestrade, “Faradaic Impedances and Intermediates in Electrochemical,” pp. 264–275, 1973.spa
dc.relation.references[122] L. Velasco Estrada, “Producción, Caracterizacion Microestructural y Estudio de la Resistencia a la Corrosión de Recubrimientos Nanoestructurados de NbxSiyNz Depositados con el Sistema de UBM.,” p. 198, 2011.spa
dc.relation.references[123] A. U. Paladines, W. Aperador, and F. Sequeda, “Evaluación de las propiedades tribológicas y corrosión del Sistema CrN/Cr depositado sobre acero AISI 304, 4140, 1075 por la técnica Magnetron Sputtering Reactivo DC,” vol. 13, no. 2010, pp. 61–70, 2011.spa
dc.relation.references[124] P. Limitations, R. Documents, and O. Standards, “Standard Test Method for Adhesion Strength and Mechanical Failure Modes of,” vol. 5, no. June 2005, pp. 1–29, 2009.spa
dc.relation.references[125] W. Tillmann and M. Dildrop, “Influence of Si content on mechanical and tribological properties of TiAlSiN PVD coatings at elevated temperatures,” Surf. Coatings Technol., vol. 321, pp. 448–454, 2017.spa
dc.relation.references[126] K. Zhang et al., “Structure and mechanical properties of TiAlSiN/Si3N4 multilayer coatings,” Surf. Coatings Technol., vol. 205, no. 12, pp. 3588–3595, 2011.spa
dc.relation.references[127] M. Diserens, J. Patscheider, and F. Lévy, “Improving the properties of titanium nitride by incorporation of silicon,” Surf. Coatings Technol., vol. 108–109, pp. 241–246, 1998.spa
dc.relation.references[128] L. Chen et al., “Machining performance of Ti-Al-Si-N coated inserts,” Surf. Coatings Technol., vol. 205, no. 2, pp. 582–586, 2010.spa
dc.relation.references[129] D. Philippon, V. Godinho, P. M. Nagy, M. P. Delplancke-Ogletree, and A. Fern??ndez, “Endurance of TiAlSiN coatings: Effect of Si and bias on wear and adhesion,” Wear, vol. 270, no. 7–8, pp. 541–549, 2011.spa
dc.relation.references[130] C. Feng et al., “Effects of Si content on microstructure and mechanical properties of TiAlN/Si3N4-Cu nanocomposite coatings,” Appl. Surf. Sci., vol. 320, pp. 689–698, 2014.spa
dc.relation.references[131] L. Chen, K. K. Chang, Y. Du, J. R. Li, and M. J. Wu, “A comparative research on magnetron sputtering and arc evaporation deposition of Ti – Al – N coatings,” Thin Solid Films, vol. 519, no. 11, pp. 3762–3767, 2011.spa
dc.relation.references[132] G99-05, “Standard Test Method for Wear Testing with a Pin-on- Disk Apparatus,” vol. 5, no. 2016, pp. 1–6, 2010.spa
dc.relation.references[133] N. Axén, S. Hogmark, and S. Jacobson, “Friction and Wear Measurement Techniques,” Mod. Tribol. Handb., vol. 1, no. 1987, pp. 493–510, 2000.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/spa
dc.subject.ddc670 - Manufactura::671 - Proceso de metalurgia y productos metálicos primariosspa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.proposalRecubrimientospa
dc.subject.proposalTiAlSiNspa
dc.subject.proposalSputteringspa
dc.subject.proposalMagnetrónspa
dc.subject.proposalCorrosiónspa
dc.subject.proposalMicrodurezaspa
dc.subject.proposalDesgastespa
dc.subject.proposalFactorialspa
dc.subject.proposalFraccionadospa
dc.subject.proposalTiAlSiN Coatingeng
dc.subject.proposalSputtering Magnetroneng
dc.subject.proposalCorrosioneng
dc.subject.proposalMicrohardnesseng
dc.subject.proposalWeareng
dc.subject.proposalFractional Factorial Designeng
dc.subject.unescoCorrosión
dc.subject.unescoCorrosion
dc.titleProducción y caracterización de propiedades anticorrosivas del recubrimiento TiAlSiN depositadas con el sistema de sputtering reactivospa
dc.title.translatedProduction and characterization of anticorrosive properties of the TiAlSiN coating deposited with the reactive sputtering systemeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032399108.2018.pdf
Tamaño:
5.26 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Materiales y Procesos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: