Evaluación de la respuesta mecánica de morteros con adición de nanotubos de carbono utilizando la resistividad eléctrica del material
dc.contributor.advisor | Lizarazo Marriaga, Juan Manuel | spa |
dc.contributor.advisor | Zacchei, Enrico | spa |
dc.contributor.author | Bolaños Diaz, Yon Alexander | spa |
dc.contributor.researchgroup | Análisis, Diseño y Materiales Gies | spa |
dc.date.accessioned | 2025-09-10T19:34:38Z | |
dc.date.available | 2025-09-10T19:34:38Z | |
dc.date.issued | 2025-04-21 | |
dc.description | ilustraciones, diagramas, fotografías | spa |
dc.description.abstract | La monitorización de edificios mediante tecnología de sensores promueve la rápida acción ante cualquier perturbación que pueda comprometer la integridad estructural, permitiendo optimizar el mantenimiento, reducir costos operativos y aumentar la seguridad a lo largo de su vida útil. Por esta razón, este trabajo estudia la viabilidad de tres tipos de electrodos embebidos en morteros con adiciones del 0.0 % 0.5 % y 1.0 % de nanotubos de carbono de pared múltiple (MWCNT) como método de evaluación estructural. La presente investigación abarca desde el diseño de las mezclas hasta el establecimiento de la relación entre las propiedades eléctricas bajo cargas mecánicas. En primer lugar, se determinó el método de dispersión de los MWCNT para elaborar las mezclas, siendo el más efectivo el ultrasonido por sonda, además se proporciona un método de ensayo para evaluar la conductividad de soluciones mediante diagramas de Nyquist usando un electrodo serigrafiado. Con la mezcla definida y empleando tres tipos de electrodos (malla de alambre, lámina de acero y electrodo serigrafiado cerámico), se elaboraron diferentes especímenes los cuales a través de un diseño experimental que midió el Cambio Fraccional en la Resistencia (FCR), se correlacionó de manera consistente los valores de impedancia real con los niveles de carga aplicados, obteniendo valores de coeficiente de correlación (R2) muy cercanos a 1. Adicionalmente, se realizó un análisis de reproducibilidad obteniendo coeficientes de variación alrededor de 1 % en los mejores especímenes. Como resultado del estudio se logró identificar los electrodos de lámina de acero como los más funcionales. (Texto tomado de la fuente). | spa |
dc.description.abstract | Monitoring buildings using sensor technology promotes rapid action in the event of any disturbance that could compromise structural integrity, allowing for optimized maintenance, reduced operating costs and increased safety throughout the building's useful life. For this reason, this work studies the viability of three types of electrodes embedded in mortars with additions of 0.0%, 0.5% and 1.0% multi-walled carbon nanotubes (MWCNT) as a method of structural evaluation. The present investigation covers from the design of the mixtures to the establishment of the relationship between electrical and mechanical properties. Firstly, the dispersion method for the MWCNT was determined to prepare the mixtures, with probe ultrasound being the most effective. A test method is also provided to evaluate the conductivity of solutions by means of Nyquist diagrams using a screen-printed electrode. With the mixture defined and using three types of electrodes (wire mesh, steel foil and ceramic screen-printed electrode), different specimens were produced which, through an experimental design that measured the Fractional Change in Resistance (FCR), consistently correlated the real impedance values with the applied load levels, obtaining correlation coefficient (R2) values very close to 1. Additionally, a reproducibility analysis was performed, obtaining coefficients of variation around 1% in the best specimens. As a result of the study, steel foil electrodes were identified as the most functional. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ingeniería – Estructuras | spa |
dc.description.researcharea | Materiales para estructuras | spa |
dc.format.extent | xx, 277 páginas | spa |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88700 | |
dc.language.iso | spa | |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.department | Departamento de ingeniería Agrícola y Civil | spa |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ingeniería - Maestría en Ingeniería - Estructuras | spa |
dc.relation.references | Adhikary, S. K., Rudžionis, Ž., Tučkutė, S., & Ashish, D. K. (2021). Effects of carbon nanotubes on expanded glass and silica aerogel based lightweight concrete. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-81665-y | |
dc.relation.references | Allam, H., Duplan, F., Amziane, S., & Burtschell, Y. (2022). Assessment of manufacturing process efficiency in the dispersion of carbon fibers in smart concrete by measuring AC impedance. Cement and Concrete Composites, 127. https://doi.org/10.1016/j.cemconcomp.2021.104394 | |
dc.relation.references | Almeida Junior, E. F. de, & Martini, S. (2023). Measurements of electrical impedance in cementitious mortars: Influence of electrodes and physical dimensions of specimens. Case Studies in Construction Materials, 18. https://doi.org/10.1016/j.cscm.2023.e01880 | |
dc.relation.references | Alzate López, G. I. (2010). Producción Y Simulación De Nanotubos De Carbono Crecidos Por La Técnica Deposición Química De Vapores Optimizada Por Plasma PE CVD. Universidad Nacional de Colombia. | |
dc.relation.references | Analytik Jena. (2020). Technical Data SPECORD PLUS Series UV/Vis Spectrophotometer. www.analytik-jena.com | |
dc.relation.references | Argos. (2024). Ficha técnica Cemento Estructural Max. www.argos.co | |
dc.relation.references | Arrechea, S., Guerrero-Gutiérrez, E. M. A., Velásquez, L., Cardona, J., Posadas, R., Callejas, K., Torres, S., Díaz, R., Barrientos, C., & García, E. (2020). Effect of additions of multiwall carbon nanotubes (MWCNT, MWCNT-COOH and MWCNT-Thiazol) in mechanical compression properties of a cement-based material. Materialia, 11. https://doi.org/10.1016/j.mtla.2020.100739 | |
dc.relation.references | Asadi, A., Pourfattah, F., Miklós Szilágyi, I., Afrand, M., Żyła, G., Seon Ahn, H., Wongwises, S., Minh Nguyen, H., Arabkoohsar, A., & Mahian, O. (2019). Effect of sonication characteristics on stability, thermophysical properties, and heat transfer of nanofluids: A comprehensive review. Ultrasonics Sonochemistry, 58. https://doi.org/10.1016/j.ultsonch.2019.104701 | |
dc.relation.references | Asociación Colombiana de Ingeniería Sísmica – AIS. (2010). Reglamento Colombiano de Construcción Sismo Resistente NSR-10. | |
dc.relation.references | ASTM International. (1885). ASTM C190 – Standard Test Method for Tensile Strength of Hydraulic Cement Mortars. | |
dc.relation.references | Azhari, F., & Banthia, N. (2012). Cement-based sensors with carbon fibers and carbon nanotubes for piezoresistive sensing. Cement and Concrete Composites, 34(7), 866–873. https://doi.org/10.1016/j.cemconcomp.2012.04.007 | |
dc.relation.references | Batiston, E., Gleize, P. J. P., Mezzomo, P., Pelisser, F., & de Matos, P. R. (2021). Effect of Carbon Nanotubes (CNTs) aspect ratio on the rheology, thermal conductivity and mechanical performance of Portland cement paste. Revista IBRACON de Estruturas e Materiais, 14(5). https://doi.org/10.1590/S1983-41952021000500010 | |
dc.relation.references | BOECO Germany. (2024). Laboratory Equipment. | |
dc.relation.references | Box, G. E. P. (1990). Integration of techniques in process development. Quality Engineering, 3(1), 9–26. https://doi.org/10.1080/08982119008918834 | |
dc.relation.references | Branson Ultrasonics Corporation. (2001). Digital Sonifier ® Models 250 & 450 User’s Manual. | |
dc.relation.references | Branson Ultrasonics Corporation. (2013). Operator’s Manual Ultrasonic Bath Models 1800, 2800, 3800, 5800, 8800. | |
dc.relation.references | Burstein, E. (2003). A major milestone in nanoscale material science: The 2002 Benjamin Franklin Medal in Physics presented to Sumio Iijima. Journal of the Franklin Institute, 340(3–4), 221–242. https://doi.org/10.1016/S0016-0032(03)00041-3 | |
dc.relation.references | Carriço, A., Bogas, J. A., Hawreen, A., & Guedes, M. (2018). Durability of multi-walled carbon nanotube reinforced concrete. Construction and Building Materials, 164, 121–133. https://doi.org/10.1016/j.conbuildmat.2017.12.221 | |
dc.relation.references | Castaneda-Saldarriaga, D., Sierra-Pe´rez, J., & Alvarez-Montoya, J. (2019). Synthesis and characterization of cement/carbon-nanotube composite for structural health monitoring applications. World Congress on Civil, Structural, and Environmental Engineering. https://doi.org/10.11159/icsect19.149 | |
dc.relation.references | Cerro-Prada, E., Pacheco-Torres, R., & Varela, F. (2021). Effect of multi-walled carbon nanotubes on strength and electrical properties of cement mortar. Materials, 14(1), 1–13. https://doi.org/10.3390/ma14010079 | |
dc.relation.references | Chaipanich, A., Nochaiya, T., Wongkeo, W., & Torkittikul, P. (2010). Compressive strength and microstructure of carbon nanotubes-fly ash cement composites. Materials Science and Engineering: A, 527(4–5), 1063–1067. https://doi.org/10.1016/j.msea.2009.09.039 | |
dc.relation.references | Chung, D. D. L., & Ozturk, M. (2024). Spatially resolved capacitance-based stress self-sensing in concrete. ISA Transactions, 152, 299–307. https://doi.org/10.1016/j.isatra.2024.06.034 | |
dc.relation.references | Cía, G. de A. (2024). Ficha Técnica Acero Inoxidable 304 - 304L. https://www.cga.com.co | |
dc.relation.references | Coppola, L., Buoso, A., & Corazza, F. (2013). The influence of AC and DC electrical resistance and piezoresistivity measurements of CNTs/cement composites. The New Boundaries of Structural Concrete. | |
dc.relation.references | D’Alessandro, A., Rallini, M., Ubertini, F., Materazzi, A. L., & Kenny, J. M. (2016). Investigations on scalable fabrication procedures for self-sensing carbon nanotube cement-matrix composites for SHM applications. Cement and Concrete Composites, 65, 200–213. https://doi.org/10.1016/j.cemconcomp.2015.11.001 | |
dc.relation.references | DANE. (2024). Boletín Técnico: Indicadores Económicos Alrededor de la Construcción (IEAC). | |
dc.relation.references | Das, S., & Saha, P. (2018). A review of some advanced sensors used for health diagnosis of civil engineering structures. In Measurement: Journal of the International Measurement Confederation (Vol. 129, pp. 68–90). Elsevier B.V. https://doi.org/10.1016/j.measurement.2018.07.008 | |
dc.relation.references | De Siqueira, J. E. L., & Gleize, P. J. P. (2020). Effect of carbon nanotubes sonication on mechanical properties of cement pastes. Revista IBRACON de Estruturas e Materiais, 13(2), 455–463. https://doi.org/10.1590/S1983-41952020000200013 | |
dc.relation.references | Del, M., & Camacho Ballesta, M. del C. (2013). Desarrollo de materiales cementantes conductores multifuncionales mediante adición de nanotubos de carbono [Tesis Doctoral]. Universidad de Alicante. | |
dc.relation.references | Dong, W., Guo, Y., Sun, Z., Tao, Z., & Li, W. (2021). Development of piezoresistive cement-based sensor using recycled waste glass cullets coated with carbon nanotubes. Journal of Cleaner Production, 314. https://doi.org/10.1016/j.jclepro.2021.127968 | |
dc.relation.references | Ebrahim, A., & Kandasamy, S. (2023). The effect of using multi-walled carbon nanotubes on the mechanical properties of concrete: a review. Innovative Infrastructure Solutions, 8(9). https://doi.org/10.1007/s41062-023-01219-1 | |
dc.relation.references | Echeverry Cardona, L. M. (2020). Energías De Dispersión Y Surfactantes En Una Solución De Nanotubos De Carbono En Agua: Aplicaciones En Pastas De Cemento Portland [Maestria En Ciencias-Fisica ]. Universidad Nacional De Colombia. | |
dc.relation.references | Espinosa, C., Ortiz-Trujillo, I. C., Carlos-Cornelio, J. A., Zapata-Hernández, R. D., & Hoyos-Palacio, L. M. (2017). Dispersión de nanotubos de carbono para aplicaciones in-vitro. DYNA (Colombia), 84(203), 24–30. https://doi.org/10.15446/dyna.v84n203.64132 | |
dc.relation.references | Fan, S., Li, X., & Li, M. (2018). The effects of damage and self-healing on impedance spectroscopy of strain-hardening cementitious materials. Cement and Concrete Research, 106, 77–90. https://doi.org/10.1016/j.cemconres.2018.01.016 | |
dc.relation.references | Farias de Medeiros, M. H., Dranka, F., Mattana, A. J., & Maron da Costa, M. do R. de M. (2015). Compósitos de cimento Portland com adição de nanotubos de carbono (NTC): Propriedades no estado fresco e resistência à compressão. Revista Materia, 20(1), 127–144. https://doi.org/10.1590/S1517-707620150001.0014 | |
dc.relation.references | Ferreira, A. D. B. L., Nóvoa, P. R. O., & Marques, A. T. (2016a). Multifunctional Material Systems: A state-of-the-art review. Composite Structures, 151, 3–35. https://doi.org/10.1016/j.compstruct.2016.01.028 | |
dc.relation.references | Fiore, J. M. (2024). AC Electrical Circuit Analysis AC Electrical Circuit Analysis A Practical Approach A Practical Approach (1.1.11). | |
dc.relation.references | Gamry Instruments. (2022). Reference 600+ Potentiostat/Galvanostat/ZRA Operator’s Manual. www.gamry.com/service-support/ | |
dc.relation.references | Gao, F., Tian, W., Wang, Z., & Wang, F. (2020). Effect of diameter of multi-walled carbon nanotubes on mechanical properties and microstructure of the cement-based materials. Construction and Building Materials, 260. https://doi.org/10.1016/j.conbuildmat.2020.120452 | |
dc.relation.references | Germann Instruments. (2021). PROOVE´it system. https://www.germanninstruments.com/rapid-chloride-permeability-test-prooveit/ | |
dc.relation.references | Han, X., Li, G., Wang, P., Chen, Z., Cui, D., Zhang, H., Tian, L., Zhou, X., Jin, Z., & Zhao, T. (2022). A new method and device for detecting rebars in concrete based on capacitance. Measurement: Journal of the International Measurement Confederation, 202. https://doi.org/10.1016/j.measurement.2022.111721 | |
dc.relation.references | Hawreen, A., & Bogas, J. A. (2019). Creep, shrinkage and mechanical properties of concrete reinforced with different types of carbon nanotubes. Construction and Building Materials, 198, 70–81. https://doi.org/10.1016/j.conbuildmat.2018.11.253 | |
dc.relation.references | Hong, G., Choi, S., Yoo, D. Y., Oh, T., Song, Y., & Yeon, J. H. (2022). Moisture dependence of electrical resistivity in under-percolated cement-based composites with multi-walled carbon nanotubes. Journal of Materials Research and Technology, 16, 47–58. https://doi.org/10.1016/j.jmrt.2021.11.151 | |
dc.relation.references | Huang, B., Wang, J., Piukovics, G., Zabihi, N., Ye, J., Saafi, M., & Ye, J. (2023). Hybrid cement composite-based sensor for in-situ chloride monitoring in concrete structures. Sensors and Actuators B: Chemical, 385. https://doi.org/10.1016/j.snb.2023.133638 | |
dc.relation.references | INCONTEC. (1979). NTC 1522: Suelos. Ensayo para determinar la granulometría por tamizado.(Reaprobación en 2022). | |
dc.relation.references | INCONTEC. (2004). NTC 3329: Concretos. Especificaciones del mortero para unidades de mamposteria. | |
dc.relation.references | INCONTEC. (2008). NTC 5653:Determinación De La Gravedad Específica, Absorción Y Vacíos En El Concreto Endurecido. | |
dc.relation.references | INCONTEC. (2017a). NTC 112: Cementos. Mezcla Mecánica De Pastas Y Morteros De Cemento Hidráulico De Consistencia Plástica. | |
dc.relation.references | INCONTEC. (2017b). NTC 6222: Concretos. Método de ensayo para determinar el potencial de reactividad de los agregados al álcali (método de barras de mortero). | |
dc.relation.references | INCONTEC. (2019). NTC 115: Alambre de acero al carbono para uso general. | |
dc.relation.references | INCONTEC. (2020). NTC 237: Método de ensayo para determinar la densidad relativa (gravedad especifica) y la absorción del agregado fino. | |
dc.relation.references | INCONTEC. (2021). NTC 5784: Cementos. Método de ensayo para determinar la fluidez de morteros de cemento hidráulico. | |
dc.relation.references | INCONTEC. (2022a). NTC 120: Cementos. Método de ensayo para determinar la resistencia a la flexión de morteros de cemento hidráulico. | |
dc.relation.references | INCONTEC. (2022b). NTC 220: Cementos. Determinación de la resistencia de morteros de cemento hidráulico a la compresión, usando cubos de 50 mm o 2 pulgadas de lado. | |
dc.relation.references | INCONTEC. (2022c). NTC 3937: Cementos. Arena normalizada para ensayos de cemento hidráulico. | |
dc.relation.references | INCONTEC. (2022d). NTC 3938: Cementos. Aparatos y equipos para la determinación de cambios de longitud en pasta endurecida de cemento, mortero y concreto. | |
dc.relation.references | INCONTEC. (2023a). NTC 121: Especificación de desempeño para cemento hidráulico (121). Instituto Colombiano de Normas Tecnicas. | |
dc.relation.references | INCONTEC. (2023b). NTC 4024: Muestreo y métodos de ensayo de unidades de mampostería de concreto y unidades relacionadas. | |
dc.relation.references | Instituto del Concreto (Asocreto). (2000). Tecnología y Propiedades (J. Gomez & Sánchez de Guzmán, Eds.; Segunda edición). | |
dc.relation.references | Jung, M., Lee, Y. soon, Hong, S. G., & Moon, J. (2020). Carbon nanotubes (CNTs) in ultra-high performance concrete (UHPC): Dispersion, mechanical properties, and electromagnetic interference (EMI) shielding effectiveness (SE). Cement and Concrete Research, 131. https://doi.org/10.1016/j.cemconres.2020.106017 | |
dc.relation.references | Jung, M., Park, J., Hong, S. gul, & Moon, J. (2022). The critical incorporation concentration (CIC) of dispersed carbon nanotubes for tailoring multifunctional properties of ultra-high performance concrete (UHPC). Journal of Materials Research and Technology, 17, 3361–3370. https://doi.org/10.1016/j.jmrt.2022.02.103 | |
dc.relation.references | Kanagaraj, B., Anand, N., Lubloy, E., & Andrushia A, D. (2024). Influence of Multi-walled Carbon Nanotube (MWCNT) on flexural behavior and microstructure characteristics of geopolymer concrete beams. Case Studies in Construction Materials, 20. https://doi.org/10.1016/j.cscm.2024.e03317 | |
dc.relation.references | Karpova, E., Skripkiūnas, G., Barauskas, I., Barauskienė, I., & Hodul, J. (2021). Influence of carbon nanotubes and polycarboxylate superplasticiser on the Portland cement hydration process. Construction and Building Materials, 304. https://doi.org/10.1016/j.conbuildmat.2021.124648 | |
dc.relation.references | Kim, J., Suryanto, B., & McCarter, W. J. (2019). Conduction, relaxation and complex impedance studies on Portland cement mortars during freezing and thawing. Cold Regions Science and Technology, 166. https://doi.org/10.1016/j.coldregions.2019.102819 | |
dc.relation.references | Kreupl, F., P. Graham, A., Liebau, M., S. Duesberg, G., Seidel, R., & Unger, E. (2004). Carbon Nanotubes for Interconnect Applications. Electron Devices Meeting (IEDM) Technical Digest, 683–686. https://doi.org/10.48550/arXiv.cond-mat/0412537 | |
dc.relation.references | Lariza, M., Cuel, A., Itzel, L., López, L., & Calindo, A. S. (2012). Nanotubos de carbono: funcionalización y aplicaciones biológicas. Revista Mexicana de Ciencias Farmacéuticas , 43. | |
dc.relation.references | Layssi, H., & Alizadeh, A. R. (2015). Electrical Resistivity of Concrete. ACI Concrete International, 37(5). https://www.researchgate.net/publication/282611489 | |
dc.relation.references | Lee, S. H., Kim, S., & Yoo, D. Y. (2018). Hybrid effects of steel fiber and carbon nanotube on self-sensing capability of ultra-high-performance concrete. Construction and Building Materials, 185, 530–544. https://doi.org/10.1016/j.conbuildmat.2018.07.071 | |
dc.relation.references | Lee, S. J., Ahn, D., You, I., Yoo, D. Y., & Kang, Y. S. (2020). Wireless cement-based sensor for self-monitoring of railway concrete infrastructures. Automation in Construction, 119. https://doi.org/10.1016/j.autcon.2020.103323 | |
dc.relation.references | Li, G. Y., Wang, P. M., & Zhao, X. (2005). Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes. Carbon, 43(6), 1239–1245. https://doi.org/10.1016/j.carbon.2004.12.017 | |
dc.relation.references | Li, S., Zhang, Y., Cheng, C., Wei, H., Du, S., & Yan, J. (2021). Surface-treated carbon nanotubes in cement composites: Dispersion, mechanical properties and microstructure. Construction and Building Materials, 310. https://doi.org/10.1016/j.conbuildmat.2021.125262 | |
dc.relation.references | Li, W., Dong, W., Guo, Y., Wang, K., & Shah, S. P. (2022). Advances in multifunctional cementitious composites with conductive carbon nanomaterials for smart infrastructure. Cement and Concrete Composites, 128. https://doi.org/10.1016/j.cemconcomp.2022.104454 | |
dc.relation.references | Lim, M. J., Lee, H. K., Nam, I. W., & Kim, H. K. (2017). Carbon nanotube/cement composites for crack monitoring of concrete structures. Composite Structures, 180, 741–750. https://doi.org/10.1016/j.compstruct.2017.08.042 | |
dc.relation.references | Liu, Y., & Cheng, X. (2022). Effect of Carbon Nanotube Size on Electrical Properties of Cement Mortar under Different Temperatures and Water Content. Geofluids, 2022. https://doi.org/10.1155/2022/7237049 | |
dc.relation.references | Lizarazo-Marriaga, J., & Claisse, P. (2009). Determination of the concrete chloride diffusion coefficient based on an electrochemical test and an optimization model. Materials Chemistry and Physics, 117(2–3), 536–543. https://doi.org/10.1016/j.matchemphys.2009.06.047 | |
dc.relation.references | Lopes, J. P., Ferrari, V. J., Camões, A., Souza, A., & Fangueiro, R. (2022). Influence of carbon nanotubes on the performance of concrete and fiber reinforced concrete (FRC). Revista Materia, 27(2). https://doi.org/10.1590/S1517-707620220002.1397 | |
dc.relation.references | Lu, D., Huo, Y., Jiang, Z., & Zhong, J. (2023). Carbon nanotube polymer nanocomposites coated aggregate enabled highly conductive concrete for structural health monitoring. Carbon, 206, 340–350. https://doi.org/10.1016/j.carbon.2023.02.043 | |
dc.relation.references | Lu, L., Ouyang, D., & Xu, W. (2016). Mechanical properties and durability of ultra high strength concrete incorporating multi-walled carbon nanotubes. Materials, 9(6). https://doi.org/10.3390/ma9060419 | |
dc.relation.references | Mansouri Sarvandani, M., Mahdikhani, M., Aghabarati, H., & Haghparast Fatmehsari, M. (2021). Effect of functionalized multi-walled carbon nanotubes on mechanical properties and durability of cement mortars. Journal of Building Engineering, 41. https://doi.org/10.1016/j.jobe.2021.102407 | |
dc.relation.references | Marcondes, C. G. N., & Medeiros, M. H. F. (2016). Análisis de la dispersión de soluciones conteniendo nanotubos de carbono para su uso en concretos de cemento Portland. Revista ALCONPAT, 6(2), 84–100. https://doi.org/10.21041/ra | |
dc.relation.references | Marcondes, C. G. N., Medeiros, M. H. F., Marques Filho, J., & Helene, P. (2015). Nanotubos de carbono en concreto de cemento Portland. Influencia de la dispersión en las propiedades mecánicas y en la absorción de agua. Revista ALCONPAT , 5(2). | |
dc.relation.references | Masciotta, M. G., Ramos, L. F., & Lourenço, P. B. (2017). The importance of structural monitoring as a diagnosis and control tool in the restoration process of heritage structures: A case study in Portugal. Journal of Cultural Heritage, 27, 36–47. https://doi.org/10.1016/j.culher.2017.04.003 | |
dc.relation.references | Materazzi, A. L., Ubertini, F., & D’Alessandro, A. (2013). Carbon nanotube cement-based transducers for dynamic sensing of strain. Cement and Concrete Composites, 37(1), 2–11. https://doi.org/10.1016/j.cemconcomp.2012.12.013 | |
dc.relation.references | Melo, O. O., López, L. A., & Melo, S. E. (2020). Diseño de Experimentos Métodos y Aplicaciones (Coordinación de publicaciones - Facultad de Ciencias, Ed.; Segunda edición). | |
dc.relation.references | Mendoza, O., Sierra, G., & Tobón, J. I. (2013). Influence of super plasticizer and Ca(OH)2 on the stability of functionalized multi-walled carbon nanotubes dispersions for cement composites applications. Construction and Building Materials, 47, 771–778. https://doi.org/10.1016/j.conbuildmat.2013.05.100 | |
dc.relation.references | Mendoza, O., Sierra, G., & Tobón, J. I. (2014). Effect of the reagglomeration process of multi-walled carbon nanotubes dispersions on the early activity of nanosilica in cement composites. Construction and Building Materials, 54, 550–557. https://doi.org/10.1016/j.conbuildmat.2013.12.084 | |
dc.relation.references | Mendoza Reales, O. A. (2013). Efecto Híbrido De Los Nanotubos De Carbono Y La Nanosílice Sobre Las Propiedades Mineralógicas Y Mecánicas De Morteros De Cemento Pórtland [Universidad Nacional de Colombia]. In Journal of Thermal Analysis and Calorimetry (Vol. 114, Issue 2). https://doi.org/10.1007/s10973-013-2973-y | |
dc.relation.references | Mendoza Reales, O. A., Arias Jaramillo, Y. P., Ochoa Botero, J. C., Delgado, C. A., Quintero, J. H., & Toledo Filho, R. D. (2018). Influence of MWCNT/surfactant dispersions on the rheology of Portland cement pastes. Cement and Concrete Research, 107, 101–109. https://doi.org/10.1016/j.cemconres.2018.02.020 | |
dc.relation.references | Mendoza Reales, O. A., & Dias Toledo Filho, R. (2017). A review on the chemical, mechanical and microstructural characterization of carbon nanotubes-cement based composites. Construction and Building Materials, 154, 697–710. https://doi.org/10.1016/j.conbuildmat.2017.07.232 | |
dc.relation.references | Mendoza Reales, O. A., Ocampo, C., Arias Jaramillo, Y. P., Ochoa Botero, J. C., Quintero, J. H., Silva, E. C. C. M., & Toledo Filho, R. D. (2018). Reinforcing Effect of Carbon Nanotubes/Surfactant Dispersions in Portland Cement Pastes. Advances in Civil Engineering, 2018. https://doi.org/10.1155/2018/2057940 | |
dc.relation.references | MFG Robots. (2024). Propiedades AISI 1006 estirado en frío. https://es.mfgrobots.com/material/metal/1003035893.html | |
dc.relation.references | Miera, P. (2021). Air Content in Fresh Air-Entraining Cement Mortars. IOP Conference Series: Materials Science and Engineering, 1203(3), 032016. https://doi.org/10.1088/1757-899x/1203/3/032016 | |
dc.relation.references | Morris, W., Moreno, E. I., & Sagüés, A. A. (1996). Practical Evaluation Of Resistivity Of Concrete In Test Cylinders Using A Wenner Arra Y Probe. Pergamon Cement and Concrete Research, 26(12), 1779–1787. | |
dc.relation.references | Nazari, G., Takayuki, S., & Date, S. (2020). Evaluation of Mechanical Hardened Properties of Mortar Using Carbon-Free Fly Ash and Normal Fly Ash. IOP Conference Series: Materials Science and Engineering, 829(1). https://doi.org/10.1088/1757-899X/829/1/012016 | |
dc.relation.references | Ocampo Ruiz, E. (2011). Nanotecnología aplicada a la Arquitectura. La investigación arquitectónica de nuevos materiales y sistemas constructivos como detonante en la creación de nuevos nichos laborales para el arquitecto. Nova Scientia, 3, 179–193. | |
dc.relation.references | Pan, H. H., & Huang, M. W. (2020). Piezoelectric cement sensor-based electromechanical impedance technique for the strength monitoring of cement mortar. Construction and Building Materials, 254. https://doi.org/10.1016/j.conbuildmat.2020.119307 | |
dc.relation.references | Park, H. M., Kim, G. M., Lee, S. Y., Jeon, H., Kim, S. Y., Kim, M., Kim, J. W., Jung, Y. C., & Yang, B. J. (2018). Electrical resistivity reduction with pitch-based carbon fiber into multi-walled carbon nanotube (MWCNT)-embedded cement composites. Construction and Building Materials, 165, 484–493. https://doi.org/10.1016/j.conbuildmat.2017.12.205 | |
dc.relation.references | Parvaneh, V., & Khiabani, S. H. (2019). Mechanical and piezoresistive properties of self-sensing smart concretes reinforced by carbon nanotubes. Mechanics of Advanced Materials and Structures, 26(11), 993–1000. https://doi.org/10.1080/15376494.2018.1432789 | |
dc.relation.references | Peñaranda Sanjuán, S. D. (2022). Metodología Para La Medición De La Hidratación Del Cemento Adicionado Con Ceniza Volante A Partir De Impedancia Eléctrica. Universidad Nacional de Colombia. | |
dc.relation.references | Pérez Urbano, W. (2006). Fabricación Y Caracterización De Nanotubos De Carbono De Multicapa Producidos Por Papvd Universidad Nacional De Colombia Sede Manizales Facultad De Ciencias Exactas Y Naturales Departamento De Física Y Química. Universidad Nacional De Colombia Sede Manizales. | |
dc.relation.references | Piro, N. S., Mohammed, A. S., & Hamad, S. M. (2023). Compressive strength and piezoresistivity of smart cement paste modified with waste steel slag. Journal of Building Engineering, 70. https://doi.org/10.1016/j.jobe.2023.106393 | |
dc.relation.references | QSONICA. (2023). OPERATION MANUAL. www.sonicator.com | |
dc.relation.references | Radoeva, M., & Radoev, B. (1995). Ohm resistivity of electroless copper layers as a function of their thicknesses. JOURNAL OF MATERIALS SCIENCE, 30, 2219. | |
dc.relation.references | Ramezani, M., Kim, Y. H., Sun, Z., & Sherif, M. M. (2022). Influence of carbon nanotubes on properties of cement mortars subjected to alkali-silica reaction. Cement and Concrete Composites, 131. https://doi.org/10.1016/j.cemconcomp.2022.104596 | |
dc.relation.references | Ramírez Arrieta, S. S. (2017). Caracterización hidráulica de mezclas asfálticas abiertas mediante la técnica de Espectroscopia de impedancia electroquímica (EIS). Universidad Nacional de Colombia. | |
dc.relation.references | Rana, S., & Fangueiro, R. (2018). Fibrous and Textile Materials for Composite Applications. Springer Singapore. https://doi.org/10.1007/978-981-10-0234-2 | |
dc.relation.references | Rao, R. K., & Sasmal, S. (2020). Smart nano-engineered cementitious composite sensors for vibration-based health monitoring of large structures. Sensors and Actuators, A: Physical, 311. https://doi.org/10.1016/j.sna.2020.112088 | |
dc.relation.references | Rao, R. K., & Sasmal, S. (2022). Electromechanical impedance-based embeddable smart composite for condition-state monitoring. Sensors and Actuators A: Physical, 346. https://doi.org/10.1016/j.sna.2022.113856 | |
dc.relation.references | Reis, E. D., Borges, L. A., Camargos, J. S. F., Gatuingt, F., Poggiali, F. S. J., & Bezerra, A. C. S. (2023). A systematic review on the engineering properties of concrete with carbon nanotubes. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 45(4). https://doi.org/10.1007/s40430-023-04117-w | |
dc.relation.references | Ren, J., Zhang, J., Wang, X., Li, D., Han, N., & Xing, F. (2020). Electrochemical Impedance Spectroscopy: A potential approach for detecting the breakage rate of microcapsules for self-healing cementitious materials. Cement and Concrete Composites, 114. https://doi.org/10.1016/j.cemconcomp.2020.103776 | |
dc.relation.references | Rodríguez, B., Quintero, J. H., Arias, Y. P., Mendoza-Reales, O. A., Ochoa-Botero, J. C., & Toledo-Filho, R. D. (2017). Influence of MWCNT/surfactant dispersions on the mechanical properties of Portland cement pastes. Journal of Physics: Conference Series, 935(1). https://doi.org/10.1088/1742-6596/935/1/012014 | |
dc.relation.references | Ruan, Y., Han, B., Yu, X., Zhang, W., & Wang, D. (2018). Carbon nanotubes reinforced reactive powder concrete. Composites Part A: Applied Science and Manufacturing, 112, 371–382. https://doi.org/10.1016/j.compositesa.2018.06.025 | |
dc.relation.references | Rudyak, V., Pryazhnikov, M., Minakov, A., & Shupik, A. (2024). Electrical conductivity of nanofluids with single- and multi-walled carbon nanotubes. Experimental study. Nano-Structures and Nano-Objects, 38. https://doi.org/10.1016/j.nanoso.2024.101143 | |
dc.relation.references | Sánchez, D., & Martínez, C. (2025). Concretos y morteros Hidráulicos (C. Salazar, Ed.; Primera). Editorial Escuela Colombiana de Ingeniería. | |
dc.relation.references | Sánchez Romate, X. F., Artigas, J., Jiménez-Suárez, A., Sánchez, M., Güemes, A., & Ureña, A. (2019). Critical parameters of carbon nanotube reinforced composites for structural health monitoring applications: Empirical results versus theoretical predictions. Composites Science and Technology, 171, 44–53. https://doi.org/10.1016/j.compscitech.2018.12.010 | |
dc.relation.references | Sánchez-Romate, X. F., García, C., Rams, J., Sánchez, M., & Ureña, A. (2021). Structural health monitoring of a CFRP structural bonded repair by using a carbon nanotube modified adhesive film. Composite Structures, 270. https://doi.org/10.1016/j.compstruct.2021.114091 | |
dc.relation.references | SHIMADZU. (2014). Autograph AG-X plus Series C224-E053C. www.shimadzu.com/an/ | |
dc.relation.references | SI Analytics. (2016). Lab and ProLab Series MEASUREMENT OF pH, ISE, CONDUCTIVITY AND DISSOLVED OXYGEN-ACCURATE, RELIABLE AND SENSITIVE. www.si-analytics.com. | |
dc.relation.references | Siahkouhi, M., Razaqpur, G., Hoult, N. A., Hajmohammadian Baghban, M., & Jing, G. (2021). Utilization of carbon nanotubes (CNTs) in concrete for structural health monitoring (SHM) purposes: A review. Construction and Building Materials, 309, 125137. https://doi.org/10.1016/J.CONBUILDMAT.2021.125137 | |
dc.relation.references | Siddique, R., & Mehta, A. (2014). Effect of carbon nanotubes on properties of cement mortars. Construction and Building Materials, 50, 116–129. https://doi.org/10.1016/j.conbuildmat.2013.09.019 | |
dc.relation.references | Sika Colombia S.A.S. (2025). Hoja de datos del producto Sika® ViscoCrete®-3100. www.col.sika.com | |
dc.relation.references | Silvestro, L., & Jean Paul Gleize, P. (2020). Effect of carbon nanotubes on compressive, flexural and tensile strengths of Portland cement-based materials: A systematic literature review. In Construction and Building Materials (Vol. 264). Elsevier Ltd. https://doi.org/10.1016/j.conbuildmat.2020.120237 | |
dc.relation.references | Sobolkina, A., Mechtcherine, V., Khavrus, V., Maier, D., Mende, M., Ritschel, M., & Leonhardt, A. (2012). Dispersion of carbon nanotubes and its influence on the mechanical properties of the cement matrix. Cement and Concrete Composites, 34(10), 1104–1113. https://doi.org/10.1016/j.cemconcomp.2012.07.008 | |
dc.relation.references | Stutzman, P. E. (2012). Microscopy of clinker and hydraulic cements. Reviews in Mineralogy and Geochemistry, 74, 101–146. https://doi.org/10.2138/rmg.2012.74.3 | |
dc.relation.references | Sulochana, G., Prasad, C. V., Bhatti, S. K., Venu Madhav, V. V., Saxena, K. K., Khan, M. I., Aloui, Z., Prakash, C., & Khan, M. I. (2024). Impact of multi-walled carbon nanotubes (MWCNTs) on hybrid biodiesel blends for cleaner combustion in CI engines. Energy, 303. https://doi.org/10.1016/j.energy.2024.131911 | |
dc.relation.references | Sumio Lijima. (1991). Helical microtubules of graphitic carbon. NATURE, 354. | |
dc.relation.references | Tafesse, M., Lee, N. K., Alemu, A. S., Lee, H. K., Kim, S. W., & Kim, H. K. (2021). Flowability and electrical properties of cement composites with mechanical dispersion of carbon nanotube. Construction and Building Materials, 293. https://doi.org/10.1016/j.conbuildmat.2021.123436 | |
dc.relation.references | Taha, H. M., Ball, R. J., Heath, A., & Paine, K. (2023). Insights into the piezoceramic electromechanical impedance response for monitoring cement mortars during water saturation curing. Construction and Building Materials, 368. https://doi.org/10.1016/j.conbuildmat.2023.130364 | |
dc.relation.references | Triana-Camacho, D. A., Miranda, D. A., García-Macías, E., Mendoza Reales, O. A., & Quintero-Orozco, J. H. (2022). Effective medium electrical response model of carbon nanotubes cement-based composites. Construction and Building Materials, 344. https://doi.org/10.1016/j.conbuildmat.2022.128293 | |
dc.relation.references | Tugelbayev, A., Kim, J. H., Lee, J. U., & Chung, C. W. (2023). The effect of acid treated multi-walled carbon nanotubes on the properties of cement paste prepared by ultrasonication with polycarboxylate ester. Journal of Building Engineering, 64. https://doi.org/10.1016/j.jobe.2022.105638 | |
dc.relation.references | Ubertini, F., Materazzi, A. L., D’Alessandro, A., & Laflamme, S. (2014). Natural frequencies identification of a reinforced concrete beam using carbon nanotube cement-based sensors. Engineering Structures, 60, 265–275. https://doi.org/10.1016/j.engstruct.2013.12.036 | |
dc.relation.references | Vafaeva, K. M., & Zegait, R. (2024). Carbon nanotubes: revolutionizing construction materials for a sustainable future: A review. In Research on Engineering Structures and Materials (Vol. 10, Issue 2, pp. 559–621). MIM RESEARCH GROUP. https://doi.org/10.17515/resm2023.42ma0818rv | |
dc.relation.references | Vesmawala, G. R., Vaghela, A. R., Yadav, K. D., & Patil, Y. (2019). Effectiveness of polycarboxylate as a dispersant of carbon nanotubes in concrete. Materials Today: Proceedings, 28, 1170–1174. https://doi.org/10.1016/j.matpr.2020.01.102 | |
dc.relation.references | Wang, L., & Aslani, F. (2023). Structural performance of reinforced concrete beams with 3D printed cement-based sensor embedded and self-sensing cementitious composites. Engineering Structures, 275. https://doi.org/10.1016/j.engstruct.2022.115266 | |
dc.relation.references | Wang, X., Zhang, J., Han, R., Han, N., & Xing, F. (2019). Evaluation of damage and repair rate of self-healing microcapsule-based cementitious materials using electrochemical impedance spectroscopy. Journal of Cleaner Production, 235, 966–976. https://doi.org/10.1016/j.jclepro.2019.06.294 | |
dc.relation.references | Wansom, S., Kidner, N. J., Woo, L. Y., & Mason, T. O. (2006). AC-impedance response of multi-walled carbon nanotube/cement composites. Cement and Concrete Composites, 28(6), 509–519. https://doi.org/10.1016/j.cemconcomp.2006.01.014 | |
dc.relation.references | Weldcote Metals. (2024). WELDCOTE 95/5 TIN/ANTIMONY SOLDER . https://weldcotemetals.com/dataFiles/specs/techSolder95-5TinAntimony.pdf?utm_source=chatgpt.com | |
dc.relation.references | Yesudhas Jayakumari, B., Nattanmai Swaminathan, E., & Partheeban, P. (2023). A review on characteristics studies on carbon nanotubes-based cement concrete. In Construction and Building Materials (Vol. 367). Elsevier Ltd. https://doi.org/10.1016/j.conbuildmat.2023.130344 | |
dc.relation.references | Yin, T., Xu, J., Wang, Y., & Liu, L. (2020). Increasing self-sensing capability of carbon nanotubes cement-based materials by simultaneous addition of Ni nanofibers with low content. Construction and Building Materials, 254. https://doi.org/10.1016/j.conbuildmat.2020.119306 | |
dc.relation.references | Yoo, D. Y., You, I., & Lee, S. J. (2018). Electrical and piezoresistive sensing capacities of cement paste with multi-walled carbon nanotubes. Archives of Civil and Mechanical Engineering, 18(2), 371–384. https://doi.org/10.1016/j.acme.2017.09.007 | |
dc.relation.references | Yoo, D. Y., You, I., Youn, H., & Lee, S. J. (2018). Electrical and piezoresistive properties of cement composites with carbon nanomaterials. Journal of Composite Materials, 52(24), 3325–3340. https://doi.org/10.1177/0021998318764809 | |
dc.relation.references | Yu, X., Zhang, Z., & Yao, Y. (2024). Water Permeability Monitoring Based on the Electrical Signal Changes of Piezoresistive Cementitious Composites. Journal of Materials in Civil Engineering, 36(11). https://doi.org/10.1061/jmcee7.mteng-18163 | |
dc.relation.references | Zhan, M., Pan, G., Zhou, F., Mi, R., & Shah, S. P. (2020). In situ-grown carbon nanotubes enhanced cement-based materials with multifunctionality. Cement and Concrete Composites, 108. https://doi.org/10.1016/j.cemconcomp.2020.103518 | |
dc.relation.references | Zhang, J., Ke, Y., Zhang, J., Han, Q., & Dong, B. (2020). Cement paste with well-dispersed multi-walled carbon nanotubes: Mechanism and performance. Construction and Building Materials, 262. https://doi.org/10.1016/j.conbuildmat.2020.120746 | |
dc.relation.references | Zhang, L., Ding, S., Han, B., Yu, X., & Ni, Y. Q. (2019). Effect of water content on the piezoresistive property of smart cement-based materials with carbon nanotube/nanocarbon black composite filler. Composites Part A: Applied Science and Manufacturing, 119, 8–20. https://doi.org/10.1016/j.compositesa.2019.01.010 | |
dc.relation.references | Zhu, Y., Zhang, H., Zhang, Z., & Yao, Y. (2017). Electrochemical impedance spectroscopy (EIS) of hydration process and drying shrinkage for cement paste with W/C of 0.25 affected by high range water reducer. Construction and Building Materials, 131, 536–541. https://doi.org/10.1016/j.conbuildmat.2016.08.099 | |
dc.relation.references | Zou, B., Chen, S. J., Korayem, A. H., Collins, F., Wang, C. M., & Duan, W. H. (2015). Effect of ultrasonication energy on engineering properties of carbon nanotube reinforced cement pastes. Carbon, 85, 212–220. https://doi.org/10.1016/j.carbon.2014.12.094 | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::624 - Ingeniería civil | spa |
dc.subject.ddc | 690 - Construcción de edificios::693 - Construcción en tipos específicos de materiales y propósitos específicos | spa |
dc.subject.proposal | MWCNT | eng |
dc.subject.proposal | FCR | eng |
dc.subject.proposal | Dispersión ultrasónica | spa |
dc.subject.proposal | Monitoreo de estructuras | spa |
dc.subject.proposal | Electrodo serigrafiado | spa |
dc.subject.proposal | MWCNT | eng |
dc.subject.proposal | FCR | eng |
dc.subject.proposal | Ultrasonic dispersion | eng |
dc.subject.proposal | Structure monitoring | eng |
dc.subject.proposal | Screenprinted electrode | eng |
dc.subject.unesco | Ingeniería mecánica | spa |
dc.subject.unesco | Mechanical engineering | eng |
dc.subject.unesco | Gestión de riesgos | spa |
dc.subject.unesco | Risk management | eng |
dc.subject.unesco | Materiales de construcción | spa |
dc.subject.unesco | Building materials | eng |
dc.title | Evaluación de la respuesta mecánica de morteros con adición de nanotubos de carbono utilizando la resistividad eléctrica del material | spa |
dc.title.translated | Evaluation of the mechanical response of mortars with the addition of carbon nanotubes using the electrical resistivity of the material | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dcterms.audience.professionaldevelopment | Investigadores | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |