Evaluación del efecto o relación entre algunas coberturas vegetales y usos de la tierra del contexto rural andino colombiano y el régimen de caudales mínimos y medios a escala de microcuenca

dc.contributor.advisorVélez Upegui, Jaime Ignacio
dc.contributor.authorGarzón Sánchez, Henry
dc.contributor.researchgroupPosgrado en Aprovechamiento de Recursos Hidráulicosspa
dc.date.accessioned2021-06-21T16:53:50Z
dc.date.available2021-06-21T16:53:50Z
dc.date.issued2020-09-16
dc.descriptionilustraciones, mapasspa
dc.description.abstractEl comportamiento espacio temporal de la precipitación, evapotranspiración, humedad del suelo y caudal que explican la respuesta hidrológica, objetivo central de esta investigación, se conoce poco a nivel de microcuencas. Se establecieron 6 microcuencas experimentales: Santa Lucia1-SL1 en bosque, Santa Lucia2-SL2 en pasto, Mojarra-MOJ en mixtocafé, en Cay, cuenca río Combeima, Tolima, y Faro-FO en bosque, Cristo ReyCR en pasto y Farito-FTO en mixtocafé en Cabuyal, cuenca río Cali, Valle del Cauca. Valores ligeramente mayores de Humedad Volumétrica del Suelo-HVS, se presentaron en SL2 - 64%, seguido por SL1 - 62.5% y MOJ- 60.5%; valores mayores en FO – 58.5%, CR – 54.5% y similares en FTO – 54.3%. El Indice de Humedad Topográfico-IWT en FO, CR y FTO fluctuó entre 2.0 y 4.0 con pocos valores cercanos a 5.0 y entre 4.0 y 7.0 en SL1, SL2 y MOJ. El caudal medio diario observado fue mayor en SL1, seguido por SL2 y menor en MOJ. Los caudales mínimos fueron mayores en SL1, seguidos en SL2 y menores en MOJ; mientras en FO fueron mayores comparados con CR y menores en FTO. Por permancer el suelo con un contenido alto de humedad la mayor parte del año, siempre se tiene suficiente volumen de humedad que alimenta flujos subsuperficilaes y mínimos que garantizan la permanencia de estos como lo indicaron valores mas altos tanto de los Indices de Retención y Regulación Hidrica-IRH y Flujo Base-IFB en bosque y mixtocafé. (Tomado de la fuente)spa
dc.description.abstractThe spatiotemporal behavior of precipitation, evapotranspiration, soil moisture and flow that explain the hydrological response, the main objective of this research, is poorly understood at the microcatchment level. Six experimental microcatchments were established: Santa Lucia1-SL1 in forest, Santa Lucia2-SL2 in pasture, Mojarra-MOJ in mixed-coffee, in Cay, Combeima river basin, Tolima, and Faro-FO in forest, Cristo ReyCR in pasture and Farito-FTO in mixed-coffee in Cabuyal, Cali river basin, Valle del Cauca. Slightly higher values of Volumetric Soil Moisture-HVS, were presented in SL2 - 64%, followed by SL1 - 62.5% and MOJ- 60.5%; higher values in FO - 58.5%, CR - 54.5% and similar in FTO - 54.3%. The Topographic Wetness Index-IWT in FO, CR and FTO fluctuated between 2.0 and 4.0 with few values close to 5.0 and between 4.0 and 7.0 in SL1, SL2 and MOJ. The observed mean daily flow was highest in SL1, followed by SL2 and lowest in MOJ. Minimum flows were higher in SL1, followed by SL2 and lower in MOJ; while in FO they were higher compared to CR and lower in FTO. As the soil remains with a high moisture content most of the year, there is always enough moisture volume to feed subsurface and minimum flows that guarantee their permanence, as indicated by higher values of both the Hydric Retention and Regulation Index-IRH and Baseflow-IFB in forest and mixed coffee. (Tomado de la fuemte)eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingenieríaspa
dc.description.researchareaSistemas Hidrológicosspa
dc.format.extent205 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79658
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de Geociencias y Medo Ambientespa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellínspa
dc.publisher.programMedellín - Minas - Doctorado en Ingeniería - Recursos Hidráulicosspa
dc.relation.referencesAndréassian, V. (2004). Waters and forests: From historical controversy to scientific debate. Journal of Hydrology, 291(1–2), 1–27. Https://doi.org/10.1016/j.jhydrol.2003.12.015spa
dc.relation.referencesAndrew, R. M., & Dymond, J. R. (2007). A distributed model of water balance in the Motueka catchment, New Zealand. Environmental Modelling and Software, 22(10), 1519–1528. Https://doi.org/10.1016/j.envsoft.2006.10.006spa
dc.relation.referencesArango, C., Dorado, J., Guzmán, D., & Ruíz, J. (2012). Variabilidad climática de la precipitación en Colombia asociada al ciclo El Niño, La Niña- Oscilación del Sur (ENSO). Ideam, 33. Recuperado de http://www.ideam.gov.co/documents/21021/21789/Variabilidad+Climatica+Trimestral+Precipitacion+%28Ruiz%2C+Guzman%2C+Arango%2C+Dorado%29.pdf/eec9752d-05ac-43f5-913c-4a3c7adc7860spa
dc.relation.referencesAristizabal B., J., Loaiza U., J. C., Poch i C., R., & Casamitjana C., M. (s. f.). Modelos hidrológicos en zonas de montaña en la predicción del comportamiento de la humedad del suelo. libro movimiento en masas, Medellin. pp. 285–308.spa
dc.relation.referencesAristizabal murillo, V., Botero Hernandez, B., & Velez Upegui, J. (2012). manual de Hidrologia para obras viales basado en el uso de sistemas de información geográfica. Manizales: Universidad Nacional de Colombia - facultad de Ingenieria y Arquitectura.spa
dc.relation.referencesArroyave, C. T., & Gonzaga, L. (1997). Estudio del balance hidrico de las microcuencas la Beta y la Cubero de Piedras Blancas, Antioquia. Cronica Forestal y del Medio Ambiente, 12(1), 1–15.spa
dc.relation.referencesAsdak, C., Jarvis, P. G., Van Gardingen, P., & Fraser, A. (1998). Rainfall interception loss in unlogged and logged forest areas of Central Kalimantan, Indonesia. Journal of Hydrology, 206(3–4), 237–244. Https://doi.org/10.1016/S0022-1694(98)00108-5spa
dc.relation.referencesBathurst, J. C., Ewen, J., Parkin, G., O’Connell, P. E., & Cooper, J. D. (2004). Validation of catchment models for predicting land-use and climate change impacts. 3. Blind validation for internal and outlet responses. Journal of Hydrology, 287(1–4), 74–94. https://doi.org/10.1016/j.jhydrol.2003.09.021spa
dc.relation.referencesBeven, K. J. (1996). A Discussion of Distributed Hydrological Modelling. En K. P. Academic (Ed.), distributed hidrological modelling (1a ed., p. 278). https://doi.org/10.1007/978-94-009-0257-2_13spa
dc.relation.referencesBocco, G. (2002). Modelamiento hidrológico espacialmente distribuido : una revisión de sus componentes , niveles de inte- gración e implicaciones en la estimación de procesos hidrológicos en cuencas no instrumentadas Spatially distributed hydrological modeling : a review o. 36–58.spa
dc.relation.referencesBond, B. (2003). Hydrology and ecology meet?and the meeting is good. Hydrological Processes, 17(10), 2087–2089. https://doi.org/10.1002/hyp.5133spa
dc.relation.referencesBonell, M., Purandara, B. K., Venkatesh, B., Krishnaswamy, J., Acharya, H. A. K., Singh, U. V. Chappell, N. (2010). The impact of forest use and reforestation on soil hydraulic conductivity in the Western Ghats of India: Implications for surface and sub-surface hydrology. Journal of Hydrology, 391(1–2), 47–62. Https://doi.org/10.1016/j.jhydrol.2010.07.004spa
dc.relation.referencesBosch, J. M., & Hewlett, J. D. (1982). A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration. Journal of Hydrology, 55(1–4), 3–23. Https://doi.org/10.1016/0022-1694(82)90117-2spa
dc.relation.referencesBren, L., & Hopmans, P. (2007). Paired catchments observations on the water yield of mature eucalypt and immature radiata pine plantations in Victoria, Australia. Journal of Hydrology, 336(3–4), 416–429. Https://doi.org/10.1016/j.jhydrol.2007.01.018spa
dc.relation.referencesBrown, A., Zhang, L., mcmahon, T., Western, A., & Vertessy, R. (2005). A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation. Journal of Hydrology, 310(1–4), 28–61. Https://doi.org/10.1016/j.jhydrol.2004.12.010spa
dc.relation.referencesBruijnzeel, L. A. (2004). Hydrological functions of tropical forests: Not seeing the soil for the trees? En Agriculture, Ecosystems and Environment (Vol. 104). Https://doi.org/10.1016/j.agee.2004.01.015spa
dc.relation.referencesBruijnzeel, L. A. S. (1997). Hidrologia De Las Plantaciones Forestales En Los Tropicos. En E. K. S. N. And A. G. Brown. Canberra Australia.: CSIRO.spa
dc.relation.referencesCalder, I. R. (2007). Forests and water-Ensuring forest benefits outweigh water costs. Forest Ecology and Management, 251(1–2), 110–120. Https://doi.org/10.1016/j.foreco.2007.06.015spa
dc.relation.referencesCortés Cortés, A. C. (2010). Análisis De La Variabilidad Espacial Y Temporal De La Precipitación En Una Ciudad De Media Montaña Andina Caso De Estudio: Manizales. 20–22.spa
dc.relation.referencesDe las Salas, G., & Garcia, C. (2000). Balance hídrico bajo tres coberturas vegetales contrastantes en la cuenca del río San Cristóbal, Bogotá. Rev. Acad. Colomb. Cienc., Vol. 24, pp. 205–218.spa
dc.relation.referencesDelgado, J., Llorens, P., Nord, G., Calder, I. R., & Gallart, F. (2010). Modelling the hydrological response of a Mediterranean medium-sized headwater basin subject to land cover change: The Cardener River basin (NE Spain). Journal of Hydrology, 383(1–2), 125–134. Https://doi.org/10.1016/j.jhydrol.2009.07.024spa
dc.relation.referencesDubrin, A. J. (1998). Determinación de caudales de crecida para la cuenca del rio morochata mediante el modelo hidrológico HEC-HMS.spa
dc.relation.referencesElfert, S., & Bormann, H. (2010). Simulated impact of past and possible future land use changes on the hydrological response of the Northern German lowland “Hunte” catchment. Journal of Hydrology, 383(3–4), 245–255. https://doi.org/10.1016/j.jhydrol.2009.12.040spa
dc.relation.referencesFahey, B., & Jackson, R. (1997). Hydrological impacts of converting native forests and grasslands to pine plantations, South Island, New Zealand. Agricultural and Forest Meteorology, 84(1–2), 69–82. Https://doi.org/10.1016/S0168-1923(96)02376-3spa
dc.relation.referencesFurey, P. R., & Gupta, V. K. (2001). A physically based filter for separating base flow from streamflow time series. Water Resources Research, 37(11), 2709–2722. https://doi.org/10.1029/2001WR000243spa
dc.relation.referencesGerrits, A. M. J. (2005). Hydrological modelling of the Zambezi catchment for gravity measurements. Thesis, (February), 200.spa
dc.relation.referencesGerrits, A. M. J., Savenije, H. H. G., Hoffmann, L., & Pflster, L. (2007). New technique to measure forest floor interception - An application in a beech forest in Luxembourg. Hydrology and Earth System Sciences, 11(2), 695–701. Https://doi.org/10.5194/hess-11-695-2007spa
dc.relation.referencesGómez-Delgado, F., Roupsard, O., Le Maire, G., Taugourdeau, S., Pérez, A., Van Oijen, M. Moussa, R. (2011). Modelling the hydrological behaviour of a coffee agroforestry basin in Costa Rica. Hydrology and Earth System Sciences, 15(1), 369–392. Https://doi.org/10.5194/hess-15-369-2011spa
dc.relation.referencesGusev, Ye M., Busarova, O. Y., & Nasonova, O. N. (1998). Modelling soil water dynamics and evapotranspiration for heterogeneous surfaces of the steppe and forest-steppe zones on a regional scale. Journal of Hydrology, 206(3–4), 281–297. https://doi.org/10.1016/S0022-1694(98)00101-2spa
dc.relation.referencesGusev, Yeugeniy M., & Nasonova, O. N. (2003). The simulation of heat and water exchange in the boreal spruce forest by the land-surf ace model SWAP. Journal of Hydrology, 280(1–4), 162–191. https://doi.org/10.1016/S0022-1694(03)00221-Xspa
dc.relation.referencesGuzman, D., Ruiz, J., & Cadena, M. (2014). Regionalización de Colombbia según la estacionalidad de la precipitación media mensual, a través del analisis de componentes principales (ACP). Grupo de Modelamiento de Tiempo, Clima y Escenarios de Cambio Climático, p. 54. https://doi.org/10.1038/132817a0spa
dc.relation.referencesHe, H., Zhou, J., & Zhang, W. (2008). Modelling the impacts of environmental changes on hydrological regimes in the Hei River Watershed, China. Global and Planetary Change, 61(3–4), 175–193. https://doi.org/10.1016/j.gloplacha.2007.08.012spa
dc.relation.referencesHibbert, A. R. (1967). Forest Treatment Effects on Water Yield. International Symposium For Hydrology, 527–543.spa
dc.relation.referencesHincapié Gómez, E. (2011). Estudio y modelación del movimiento del agua en suelos volcánicos de ladera Estudio y modelación del movimiento del agua en suelos volcánicos de ladera. 63–111. Recuperado de http://bdigital.unal.edu.co/6142/1/9005502.2011.pdfspa
dc.relation.referencesHincapié-Gómez, E., & Tobón, C. (2012). Dinámica del Agua en Andisoles Bajo Condiciones de Ladera. Rev.Fac.Nal.Agr.Medellín, 65(2), 6765–6777.spa
dc.relation.referencesHodnett, M. G., Pimentel da Silva, L., da Rocha, H. R., & Cruz Senna, R. (1995). Seasonal soil water storage changes beneath central Amazonian rainforest and pasture. Journal of Hydrology, 170(1–4), 233–254. Https://doi.org/10.1016/0022-1694(94)02672-Xspa
dc.relation.referencesHopp, L., Harman, C., Desilets, S., Graham, C., McDonnell, J., & Troch, P. (2009). Hillslope hydrology under glass: confronting fundamental questions of soil-water-biota co-evolution at Biosphere 2. Hydrology and Earth System Sciences Discussions, 6(3), 4411–4448. https://doi.org/10.5194/hessd-6-4411-2009spa
dc.relation.referencesHoyos, N., Waylen, P. R., & Jaramillo, Á. (2005). Seasonal and spatial patterns of erosivity in a tropical watershed of the Colombian Andes. Journal of Hydrology, 314(1–4), 177–191. https://doi.org/10.1016/j.jhydrol.2005.03.014spa
dc.relation.referencesHuaxing, B., LIU, B., WU, J., YUN, L., CHEN, Z., & CUI, Z. (2009). Effects of precipitation and landuse on runoff during the past 50 years in a typical watershed in Loess Plateau, China. International Journal of Sediment Research, 24(3), 352–364. Https://doi.org/10.1016/S1001-6279(10)60009-1spa
dc.relation.referencesHundecha, Y., & Bárdossy, A. (2004). Modeling of the effect of land use changes on the runoff generation of a river basin through parameter regionalization of a watershed model. Journal of Hydrology, 292(1–4), 281–295. https://doi.org/10.1016/j.jhydrol.2004.01.002spa
dc.relation.referencesJanisch, J. E., Foster, A. D., & Ehinger, W. J. (2011). Characteristics of small headwater wetlands in second-growth forests of Washington, USA. Forest Ecology and Management, 261(7), 1265–1274. https://doi.org/10.1016/j.foreco.2011.01.005spa
dc.relation.referencesJaramillo, Á., & Chaves, B. (2000). Distribución de la precipitación en Colombia analizada mediante conglomeración estadística. Cenicafé, 51(2), 102–113.spa
dc.relation.referencesJaramillo-Robledo, Á. (2005). Lluvias Máximas En 24 Horas Para La Región Andina De Colombia. Cenicafé, 56(3), 250–268. Recuperado de https://www.cenicafe.org/es/publications/arc056%2803%29250-268.pdfspa
dc.relation.referencesKalmanovitz, S. (2007). Colombia en las dos fases de globalización. Revista de Economía Institucional, 9(17), 43–74.spa
dc.relation.referencesLai, X., Liao, K., Feng, H., & Zhu, Q. (2016). Responses of soil water percolation to dynamic interactions among rainfall, antecedent moisture and season in a forest site. Journal of Hydrology, 540, 565–573. https://doi.org/10.1016/j.jhydrol.2016.06.038spa
dc.relation.referencesLi, Z., Liu, W. Zhao, Zhang, X. Chang, & Zheng, F. Li. (2009). Impacts of land use change and climate variability on hydrology in an agricultural catchment on the Loess Plateau of China. Journal of Hydrology, 377(1–2), 35–42. Https://doi.org/10.1016/j.jhydrol.2009.08.007spa
dc.relation.referencesLlorens, P., & Gallart, F. (2000). A simplified method for forest water storage capacity measurement. Journal of Hydrology, 240(1–2), 131–144. https://doi.org/10.1016/S0022-1694(00)00339-5spa
dc.relation.referencesLlorens, P., Latron, J., & Gallart, F. (2003). Dinámica espacio-temporal de la humedad del suelo en un área de montaña mediterránea. Cuencas experimentales de Vallcebre (Alto Llobregat). Estudios de la Zona No Saturada del Suelo, VI (1), 71–76. https://doi.org/10.1109/TGRS.2011.2120615spa
dc.relation.referencesLoaiza Usuga, J. C., & Pauwels, V. R. N. (2008). Calibration and multiple data set-based validation of a land surface model in a mountainous Mediterranean study area. Journal of Hydrology, 356(1–2), 223–233. https://doi.org/10.1016/j.jhydrol.2008.04.018spa
dc.relation.referencesLópez-Moreno, J. I., Vicente-Serrano, S. M., Moran-Tejeda, E., Zabalza, J., Lorenzo-Lacruz, J., & García-Ruiz, J. M. (2011). Impact of climate evolution and land use changes on water yield in the ebro basin. Hydrology and Earth System Sciences, 15(1), 311–322. Https://doi.org/10.5194/hess-15-311-2011spa
dc.relation.referencesLudovic, O., VazkenAndréassian, Lerat, J., & Michel, C. (2008). Has land cover a significant impact on mean annual streamflow? An international assessment using 1508 catchments. Journal of Hydrology, 357, 303–316. https://doi.org/10.1016/j.jhydrol.2008.05.021spa
dc.relation.referencesMedici, C., Butturini, A., Bernal, S., Vázquez, E., Sabater, F., Vélez, J. I., & Francés, F. (2008). Modelling the non-linear hydrological behaviour of a small Mediterranean forested catchment. Hydrological Processes, 22(18), 3814–3828. https://doi.org/10.1002/hyp.6991spa
dc.relation.referencesMendoza, M., Bocco, G., Bravo, M., Siabe, C., & Ortiz, M. (2002). Modelamiento hidrológico espacialmente distribuido : una revisión de sus componentes , niveles de inte- gración e implicaciones en la estimación de procesos hidrológicos en cuencas no instrumentadas Spatially distributed hydrological modeling : a review o. Investigacioes Geograficas, Boletin del Instituto de Geografia UNAM, 36–58.spa
dc.relation.referencesMesa, O., Poveda, G., Vélez, J. I., Barco, J., Botero, B., Cuartas, A., … Montoya, M. (2000). Balances hidrológicos de Colombia. Seminario Internacional Oferta y Demanda del Recurso Hídrico, 26.spa
dc.relation.referencesMontealegre Bocanegra, J. E. (2009). Estudio de la variabilidad climática de la precipitación en Colombia asociada a procesos oceánicos y atmosféricos de meso y gran escala. Ideam, 54.spa
dc.relation.referencesMuma, M., Assani, A. A., Landry, R., Quessy, J. F., & Mesfioui, M. (2011). Effects of the change from forest to agriculture land use on the spatial variability of summer extreme daily flow characteristics in southern Quebec (Canada). Journal of Hydrology, 407(1–4), 153–163. Https://doi.org/10.1016/j.jhydrol.2011.07.020spa
dc.relation.referencesMuñoz Villers, L. (2008). Efecto del cambio en el uso de suelo sobre la dinamica hidrológica y calidad de agua en el tropico humedo del centro de veracruz, Mexico (Universidad Autonoma Metropolitana). Https://doi.org/10.1017/CBO9781107415324.004spa
dc.relation.referencesMuñoz-Villers, L. E., Holwerda, F., Gómez-Cárdenas, M., Equihua, M., Asbjornsen, H., Bruijnzeel, L. A., Tobón, C. (2012). Water balances of old-growth and regenerating montane cloud forests in central Veracruz, Mexico. Journal of Hydrology, 462–463, 53–66. https://doi.org/10.1016/j.jhydrol.2011.01.062spa
dc.relation.referencesNunes, A. N., de Almeida, A. C., & Coelho, C. O. A. (2011). Impacts of land use and cover type on runoff and soil erosion in a marginal area of Portugal. Applied Geography, 31(2), 687–699. https://doi.org/10.1016/j.apgeog.2010.12.006spa
dc.relation.referencesOrtiz, E. (2011). Memoria-informe sobre modelos de previsión hidrológica empleados en otras organizaciones. 189.spa
dc.relation.referencesPiñol, J., Lledó, M. J., & Escarré, A. (1991). Bilan hydrologique de deux bassins-versants mediterranéens forestiers (prades, nord est de l’espagne). Hydrological Sciences Journal, 36(2), 95–107. https://doi.org/10.1080/02626669109492492spa
dc.relation.referencesPizarro T, R., Benitez g, A., Farias d, C., Jordan d, C., Sabtibañez Q, F., Sanguesa P, C., Roman A, L. (2005). Influencia de las masas boscosas en el régimen hídrico de una cuenca semiárida, Chile. Bosque (Valdivia), 26(1), 77–91. Https://doi.org/10.4067/s0717-92002005000100008spa
dc.relation.referencesPoveda, G. (2004). Caudales minimos en Colombia: Relaciones macroclimaticas, escalonamiento y balances hidrologicos. Seminario internacional sobre eventos extremos mínimos en regímenes de caudales: diagnóstico, modelamiento y análisis. Medellin: Universidad Nacional de Colombia -.spa
dc.relation.referencesPoveda, G., Vélez, J., & Mesa, O. (2009). HidroSIG Java: Una herramienta para la estimación del balance hidríco de largo plazo y de caudales extremos en la red hidrografica Colombiana. Seminario Internacional: La Hidroinformática en la Gestión Integrada de los Recursos Hídricos, 6, 177–186.spa
dc.relation.referencesPoveda, Germán, Ramírez, J. M., & Jaramillo, A. (2001). Modelación estocástica de la variabilidad anual e interanual de la humedad del suelo en Colombia bajo diferente cobertura vegetal. IX Congreso Latinoamericano e Ibérico de Meteorología y VIII Congreso Argentino de Meteorología, (1), 10. Recuperado de http://www.bdigital.unal.edu.co/4411/spa
dc.relation.referencesRamírez Builes, V. H., Jaramillo Robledo, Á., & Arcila Pulgarin, J. (2010). Índices Para Evaluar El Estado Hídrico En Los Cafetales. Cenicafé, 61(1), 55–66spa
dc.relation.referencesRamírez, B. H., Teuling, A. J., Ganzeveld, L., Hegger, Z., & Leemans, R. (2017). Tropical Montane Cloud Forests: Hydrometeorological variability in three neighbouring catchments with different forest cover. Journal of Hydrology, 552, 151–167. Https://doi.org/10.1016/j.jhydrol.2017.06.023spa
dc.relation.referencesRidolfi, L., D’Odorico, P., Laio, F., Tamea, S., & Rodriguez-Iturbe, I. (2008). Coupled stochastic dynamics of water table and soil moisture in bare soil conditions. Water Resources Research, 44(1), 1–11. Https://doi.org/10.1029/2007WR006707spa
dc.relation.referencesRoa García, M., Brown, S., Schreier, H., & Lavkulich, L. (2011). The role of land use and soils in regulating water flow in small headwater catchments of the Andes. Water Resources Research, 47(5). Https://doi.org/10.1029/2010WR009582spa
dc.relation.referencesRobinson, M., Cognard-Plancq, A. L., Cosandey, C., David, J., Durand, P., Führer, H. W., Zollner, A. (2003). Studies of the impact of forests on peak flows and baseflows: A European perspective. Forest Ecology and Management, 186(1–3), 85–97. Https://doi.org/10.1016/S0378-1127(03)00238-Xspa
dc.relation.referencesRodriguez Vagaria, A., & Gaspari, F. (2010). GeoQ: herramienta para la determinación del número de curva y escorrentía bajo entorno SIG IDRISI ANDES. Revista Internacional de Ciencia y Tecnologia de la Información Geografica, 10(9), 11–26. https://doi.org/10.1017/CBO9781107415324.004spa
dc.relation.referencesRodriguez-Iturbe, I. (2000). Ecohydrology: A hydrologic perspective of climate-soil-vegetation dynamics. Water Resources Research, 36(1), 3–9. Https://doi.org/10.1029/1999WR900210spa
dc.relation.referencesSalamanca, A., & Siavosh, S. (2005). La densidad aparente y su relación con otras propiedades en suelos de la zona cafetera Colombiana. Cenicafé, 56(4), 381–397. Recuperado de http://orton.catie.ac.cr/cgi-bin/wxis.exe/?IsisScript=ORTON.xis&method=post&formato=2&cantidad=1&expresion=mfn=084455spa
dc.relation.referencesSalazar, J. (2016). Una metodología para la estimación de curvas de duración de caudales (cdc) en cuencas no instrumentadas. Caso de aplicación para Colombia en los departamentos de Santander y norte de Santander. (Cdc), 155.spa
dc.relation.referencesSentís, I., & Sulbarán, S. (2001). Impacts of Mechanization on Surface Erosion and Mass Movements in Vineyards of the Anoia-Alt-Penedés Area (Catalonia-Spain). Sustaining the Global Farm, 812–816. Recuperado de http://topsoil.nserl.purdue.edu/nserlweb-old/isco99/pdf/ISCOdisc/SustainingTheGlobalFarm/P085-Sentis.pdfspa
dc.relation.referencesSmakhtin, V. U. (2001). Smakhtin 2010- Low flow hydrology.pdf. Journal of HydrologyJournal of Hydrology, 240, 147–186. https://doi.org/10.1016/S0022-1694(00)00340-1spa
dc.relation.referencesSong, S., & Wang, W. (2019). Impacts of antecedent soil moisture on the rainfall- runoff transformation process based on high- resolution observations in soil tank experiments. Water (Switzerland), 11(2), 15–20. https://doi.org/10.3390/w11020296spa
dc.relation.referencesStahl, C., Hérault, B., Rossi, V., Burban, B., Bréchet, C., & Bonal, D. (2013). Depth of soil water uptake by tropical rainforest trees during dry periods: Does tree dimension matter? Oecologia, 173(4), 1191–1201. https://doi.org/10.1007/s00442-013-2724-6spa
dc.relation.referencesSun, G., Zhou, G., Zhang, Z., Wei, X., mcnulty, S. G., & Vose, J. M. (2006). Potential water yield reduction due to forestation across China. Journal of Hydrology, 328(3–4), 548–558. Https://doi.org/10.1016/j.jhydrol.2005.12.013spa
dc.relation.referencesTallaksen, L. (1995). A review of baseflow recession analysis. Journal of Hydrology, 165(1–4), 349–370. https://doi.org/10.1016/0022-1694(95)92779-dspa
dc.relation.referencesTarboton, D. G. (2003). Simulation of Runoff Generation in Hydrologic Models. Rainfall-Runoff Processes. https://doi.org/10.1111/jeb.12320spa
dc.relation.referencesThanapakpawin, P., Richey, J., Thomas, D., Rodda, S., Campbell, B., & Logsdon, M. (2007). Effects of landuse change on the hydrologic regime of the Mae Chaem river basin, NW Thailand. Journal of Hydrology, 334(1–2), 215–230. Https://doi.org/10.1016/j.jhydrol.2006.10.012spa
dc.relation.referencesUber, M., Vandervaere, J. P., Zin, I., Braud, I., Heistermann, M., Legoût, C., … Nord, G. (2018). How does initial soil moisture influence the hydrological response? A case study from southern France. Hydrology and Earth System Sciences, 22(12), 6127–6146. https://doi.org/10.5194/hess-22-6127-2018spa
dc.relation.referencesUijlenhoet, R., & Stricker, J. N. M. (1999). Dependence of rainfall interception on drop size - A comment. Journal of Hydrology, 217(1–2), 157–163. https://doi.org/10.1016/S0022-1694(99)00004-9spa
dc.relation.referencesVan Dijk, A. I. J. M., & Keenan, R. J. (2007). Planted forests and water in perspective. Forest Ecology and Management, 251(1–2), 1–9. Https://doi.org/10.1016/j.foreco.2007.06.010spa
dc.relation.referencesVásquez, G. (2016). Influencia del uso de la tierra en la respuesta hidrológica de cuencas de cabecera en Los Andes centrales de Colombia. 147. Recuperado de https://www.researchgate.net/profile/Guillermo_Vasquez-Velasquez/publication/311813767_influencia_del_uso_de_la_tierra_en_la_respuesta_hidrologica_de_cuencas_de_cabecera_en_los_andes_centrales_de_colombia_Influence_of_Land_Use_in_the_in_the_Hydrological_Rspa
dc.relation.referencesVelez Upegui, J. I. (2000). Desarrollo de un modelo hidrologico conceptual y distribuido orientado a la simulación de las crecidas. Universidad Politécnica de Valencia.spa
dc.relation.referencesVélez, J. I. (2013). Geología Estrategia De Simulación Hidrológica Distribuida : Integración Conceptual De Hidrología , Hidráulica Y Geomorfología Hydrological Distributed Simulation Strategy : a Conceptual Integration of Hydrology , Hydraulics and Geomorphology. Revista Academica Colombiana de Ciencas, 37(144), 393–409. Recuperado de http://www.scielo.org.co/pdf/racefn/v37n144/v37n144a09.pdfspa
dc.relation.referencesVélez, J. J., Vélez, J. I., Francés, F. 2002b. Modelo distribuido para la si- mulación hidrológica de crecidas en grandes cuencas. XX Congreso Latinoamericano de Hidráulica. La Habana, Cuba.spa
dc.relation.referencesVenkatesh, B., Lakshman, N., Purandara, B. K., & Reddy, V. B. (2011). Analysis of observed soil moisture patterns under different land covers in Western Ghats, India. Journal of Hydrology, 397(3–4), 281–294. https://doi.org/10.1016/j.jhydrol.2010.12.006spa
dc.relation.referencesWijesekara, G. N., Gupta, A., Valeo, C., Hasbani, J. G., Qiao, Y., Delaney, P., & Marceau, D. J. (2012). Assessing the impact of future land-use changes on hydrological processes in the Elbow River watershed in southern Alberta, Canada. Journal of Hydrology, 412–413, 220–232. Https://doi.org/10.1016/j.jhydrol.2011.04.018spa
dc.relation.referencesXie, F., Flanagan, B. M., Li, M., Sangwan, P., Truss, R. W., Halley, P. J., … McNally, T. (2014). Characteristics of starch-based films plasticised by glycerol and by the ionic liquid 1-ethyl-3-methylimidazolium acetate: A comparative study. Carbohydrate Polymers, 111, 841–848. https://doi.org/10.1016/j.carbpol.2014.05.058spa
dc.relation.referencesYao, H., Hashino, M., & Yoshida, H. (1996). Modeling energy and water cycle in a forested headwater basin. Journal of Hydrology, 174(3–4), 221–234. https://doi.org/10.1016/0022-1694(95)02766-1spa
dc.relation.referencesZhan, T. L. T., Qiu, Q. W., & Xu, W. J. (2016). Analytical solution for infiltration and deep percolation of rainwater into a monolithic cover subjected to different patterns of rainfall. Computers and Geotechnics, 77, 1–10. https://doi.org/10.1016/j.compgeo.2016.03.008spa
dc.relation.referencesZhang, H., & Hiscock, K. M. (2010). Modelling the impact of forest cover on groundwater resources: A case study of the Sherwood Sandstone aquifer in the East Midlands, UK. Journal of Hydrology, 392(3–4), 136–149. https://doi.org/10.1016/j.jhydrol.2010.08.002spa
dc.relation.referencesZimmermann, B., Elsenbeer, H., & De Moraes, J. M. (2006). The influence of land-use changes on soil hydraulic properties: Implications for runoff generation. Forest Ecology and Management, 222(1–3), 29–38. Https://doi.org/10.1016/j.foreco.2005.10.070spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc550 - Ciencias de la tierraspa
dc.subject.ddc620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulicaspa
dc.subject.lembCuencas hidrográficas - Colombia
dc.subject.lembHumedad de suelos
dc.subject.proposalUsos del suelospa
dc.subject.proposalHumedad en suelospa
dc.subject.proposalMicrocuencaspa
dc.subject.proposalRespuesta hidrológicaspa
dc.subject.proposalModelación hidrológicaspa
dc.subject.proposalBalance hídricospa
dc.subject.proposalLand useeng
dc.subject.proposalSoil moistureeng
dc.subject.proposalMicrocatchmenteng
dc.subject.proposalHydrologic Responseeng
dc.subject.proposalHydrologic Modelingeng
dc.subject.proposalWater balanceeng
dc.titleEvaluación del efecto o relación entre algunas coberturas vegetales y usos de la tierra del contexto rural andino colombiano y el régimen de caudales mínimos y medios a escala de microcuencaspa
dc.title.translatedEvaluation of the relationship between some vegetation cover and/or land uses in the rural andean context of colombia and the minimum and average flow regime at the microcatchment scaleeng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
5937178.2020.pdf
Tamaño:
4.07 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis Doctorado en Ingeniería - Recursos Hidráulicos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: