El funtor espectro y su relación con el proceso de adjunción de unidad

dc.contributor.advisorAcosta G., Lorenzospa
dc.contributor.authorRubio Perilla, Ibeth Marcelaspa
dc.date.accessioned2019-06-25T00:02:00Zspa
dc.date.available2019-06-25T00:02:00Zspa
dc.date.issued2012spa
dc.description.abstractSe estudia la relación que existe entre el proceso algebraico de adjuntar unidad a un anillo y el proceso topológico de compactar un espacio. Esta relación se estudia a través del funtor espectro, el cual pone en contacto estos dos ambientes. Se obtiene que en general, si R es una extensión unitaria del anillo S, el espectro primo de R no necesariamente es una compactación del espectro primo de S. Cuando el anillo unitario R es una I-extensión de S, es decir, S es un ideal de R, se encuentra una función que permite ver que el espectro primo de S es un sub-espacio del espectro primo de R. A través de esta observación se tiene naturalmente una compactación de Spec (S) incluida en Spec ( R) y se determina un mecanismo que permite producir dicha compactación directamente como el espectro primo de un cociente particular de R, a la cual llamamos R-nil-compactación de S. Se estudia la relación que existe entre diferentes nil-compactaciones del anillo S, determinadas por sus diferentes I -extensiones y se encuentran condiciones bajo las cuales dos de ellas resultan homeomorfas. Por otra parte, se establece un criterio para determinar cuándo un anillo de von N eumann tiene espectro compacto, el cual generaliza un resultado ya conocido para anillos de Boole. Se estudia el comportamiento de las nil-compactaciones en el caso particular de los anillos de von N eumann y cuando estos son de característica no nula se encuentran características importantes con respecto a sus nil-compactaciones, entre ellas que las nil-compactaciones son compactaciones estelares por finitos puntos, para las cuales es posible establecer el número de puntos adicionales. Finalmente se establecen algunas propiedades de las construcciones realizadas, desde el punto de vista de la teoría de categorías (Texto tomado de la fuente).spa
dc.description.abstractWe study the relationship between the algebraic process of adjoint identity to a ring and the topological process to compactify a topological space. This relationship is studied through the spectrum functor which allows us to put in contact these two environments. We obtain that in general, if R is a unitary extension of the ring S, the prime spectrum of R is not necessarily a compactification of the prime spectrum of S. If the unitary ring R is an I -extension of S, namely, S is an ideal of R, we find a function that shows that the prime spectrum of S is a sub-space of the prime spectrum of R. Through this observation, there is a natural compactification of Spec (S) included in Spec ( R). We establish a mechanism to find this compactification directly as the prime spectrum of a special quotient of R. We call this compactification the R-nil-compactification of S. We study the relationship between different nil-compactifications of the ring S, determinated by different 1 -extensions and we find conditions under which two of them are homeomorphic. On the other hand, we establish a criteria for determining when a von Neumann ring has compact spectrum, which generalizes a result already known for boolean rings. We study the behavior of nil-compactifications in the particular case of von N eumann rings. When these rings are of non zero characteristic, we find important characteristics about its nil-compactifications, between them that its nil-compactifications are star compactifications by finite points, for which is possible to establish the number of additional points. Finally we set sorne properties of these constructions, from the point of view of categories theory.eng
dc.description.degreelevelDoctoradospa
dc.format.mimetypeapplication/pdfspa
dc.identifier.eprintshttp://bdigital.unal.edu.co/8967/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/11533
dc.language.isospaspa
dc.relation.ispartofUniversidad Nacional de Colombia Sede Bogotá Facultad de Ciencias Departamento de Matemáticasspa
dc.relation.ispartofDepartamento de Matemáticasspa
dc.relation.referencesRubio Perilla, Ibeth Marcela (2012) El funtor espectro y su relación con el proceso de adjunción de unidad. Doctorado thesis, Universidad Nacional de Colombia.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc510 Matemáticas / Mathematicsspa
dc.subject.proposalAnillo unitariospa
dc.subject.proposalIdealspa
dc.subject.proposalAdjunción de unidadspa
dc.subject.proposalAnillo regular de von Neumannspa
dc.subject.proposalI–extensiónspa
dc.subject.proposalCompactaciónspa
dc.subject.proposalEspectro primo / Unitary ringspa
dc.subject.proposalIdealspa
dc.subject.proposalAdjunction of identityspa
dc.subject.proposalVon Neumann regular ringspa
dc.subject.proposalI –extensionspa
dc.subject.proposalCompactificationspa
dc.subject.proposalPrime spectrumspa
dc.titleEl funtor espectro y su relación con el proceso de adjunción de unidadspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 4 de 4
Cargando...
Miniatura
Nombre:
Ibethmarcelarubioperilla.2012._Parte_1.pdf
Tamaño:
6.85 MB
Formato:
Adobe Portable Document Format
Cargando...
Miniatura
Nombre:
Ibethmarcelarubioperilla.2012._Parte_3.pdf
Tamaño:
14.61 MB
Formato:
Adobe Portable Document Format
Cargando...
Miniatura
Nombre:
Ibethmarcelarubioperilla.2012._Parte_2.pdf
Tamaño:
13.25 MB
Formato:
Adobe Portable Document Format
Cargando...
Miniatura
Nombre:
Ibethmarcelarubioperilla.2012._Parte_4.pdf
Tamaño:
10.31 MB
Formato:
Adobe Portable Document Format