Control secundario de voltaje en sistemas eléctricos de potencia: una aproximación usando control predictivo distribuido basado en modelo con Control de zonas

dc.contributor.advisorEspinosa Oviedo, Jairo Joséspa
dc.contributor.authorViana Villa, Juan Pablospa
dc.contributor.corporatenameUniversidad Nacional de Colombia - Sede Medellínspa
dc.contributor.researchgroupGAUNALspa
dc.date.accessioned2020-08-27T22:50:16Zspa
dc.date.available2020-08-27T22:50:16Zspa
dc.date.issued2020-08spa
dc.description.abstractIn this thesis a power system secondary voltage control scheme based on distributed model predictive control with zone control (DMPC-ZC) is proposed. The mathematical framework of the proposed strategy is developed step by step from a simple classical formulation to the final proposal. Sufficient conditions to guarantee closed-loop stability are stated and applied. A platform for dynamic simulation of power system is implemented from scratch using the scripting programming language Python. The performance is compared to a well known open-source toolbox, obtaining satisfactory results. The methods for linearizing and discretizing dynamic systems in order to obtain suitable prediction models are described and validated. Additionally, a power system influence-based partitioning method is proposed. The buses are grouped according to their voltage sensitivity to the reactive power injected by controllable devices using a hierarchical clustering method for that purpose. The performance of the proposed methodology is illustrated in two stages. In the first stage a centralized version is applied to the IEEE 9 Bus - 3 Unit test system and the performance after the disconnection of a transmission line is compared to a classic SVR based on PI controllers and a scheme based on MPC without zone control. The scheme based on MPC-ZC was able to keep voltages close to the set-point values without violating operational constraints and with lower reactive power requirements than the scheme based on MPC. In the second stage the proposed distributed SVR based on MPC-ZC was applied to the New England 10 Units - 39 Bus test system and the performance is compared to a classic SVR based on PI controllers after the disconnection of transmission lines. The proposed scheme was able to reduce the violation of operational constraints and minimize the average deviation at load buses while keeping an acceptable performance at the pilot buses.spa
dc.description.abstractEn esta tesis se propone un esquema de control de voltaje secundario del sistema eléctrico empleando control predictivo basado en modelo distribuido con control de zona (DMPC-ZC). El marco matemático necesario para la estrategia propuesta se desarrolla paso a paso desde una simple formulación clásica hasta la propuesta final. Se establecen y aplican condiciones suficientes para garantizar la estabilidad en circuito cerrado. Una plataforma para la simulación dinámica de sistemas de potencia se implementa desde cero utilizando el lenguaje de programación Python. El desempeño se compara con un conocido paquete de simulación de código abierto, obteniendo resultados satisfactorios. Se describen y validan los métodos de linealización y discretización de sistemas dinámicos con el fin de obtener modelos de predicción adecuados. Además, se propone un método de partición de sistemas de potencia basado en la influencia de los elementos controlables. Los buses se agrupan según su sensibilidad de voltaje a la potencia reactiva inyectada por dispositivos controlables utilizando un método de agrupamiento jerárquico para tal fin. El desempeño de la metodología propuesta se ilustra en dos etapas. En una primera etapa se aplica una versión centralizada al sistema de prueba IEEE 9 Bus - 3 Unidades y se compara el rendimiento después de la desconexión de una línea de transmisión con un SVR clásico basado en controladores PI y un esquema basado en MPC sin control de zona. El esquema basado en MPC-ZC fue capaz de mantener los voltajes cercanos a los valores del punto de ajuste sin violar las restricciones operativas y con menores requisitos de potencia reactiva que el esquema basado en MPC. En la segunda etapa se aplicó el SVR distribuido propuesto basado en MPC-ZC al sistema de prueba New England 39 Buses - 10 Unidades y se comparó el desempeño con un SVR clásico basado en controladores PI después de la ocurrencia de un evento de desconexión de línea de transmisión. El esquema propuesto pudo reducir la violación de las restricciones operativas y minimizar la desviación promedio en los buses de carga, manteniendo un rendimiento aceptable en los buses piloto.spa
dc.description.degreelevelMaestríaspa
dc.description.sponsorshipEstrategia de transformación del sector energético Colombiano en el horizonte de 2030 - convocatoria 778 de Colciencias Ecosistema Científico - Contrato FP44842-210-2018spa
dc.format.extent133spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78301
dc.language.isoengspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de Ingeniería Eléctrica y Automáticaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Ingeniería Eléctricaspa
dc.relation.references[Abur and Exposito, 2004] Abur, A. and Exposito, A. G. (2004). Power System State Estimation: Theory and Implementation. CRC Press.spa
dc.relation.references[Alvarez et al., 2018] Alvarez, S. R., Mazo, E. H. L., and Oviedo, J. E. (2018). Evaluation of power system partitioning methods for secondary voltage regulation application. In 2017 IEEE 3rd Colombian Conference on Automatic Control, CCAC 2017 - Conference Proceedings, volume 2018-Janua, pages 1–6. IEEE.spa
dc.relation.references[Arcidiacono et al., 1990] Arcidiacono, V., Corsi, S., Natale, A., and Raffaelli, C. (1990). New developments in the application of ENEL transmission system voltage and reactive power automatic control. CIGRE Session - Paris.spa
dc.relation.references[Bellman, 1957] Bellman, R. (1957). Dynamic Programming. PRINCETON UNIVERSITY PRESS.spa
dc.relation.references[Boyce and DiPrima, 2012] Boyce, W. E. and DiPrima, R. C. (2012). Elementary Differential Equations and Boundary Value Problems, 10th Edition. Wiley Global Education.spa
dc.relation.references[Boyd and Vandenberghe, 2004] Boyd, S. and Vandenberghe, L. (2004). Convex Optimization. Cambridge University Press.spa
dc.relation.references[Byrd et al., 1999] Byrd, R. H., Hribar, M. E., and Nocedal, J. (1999). An interior point algorithm for large-scale nonlinear programming. SIAM Journal on Optimization, 9(4):877–900.spa
dc.relation.references[Camacho and Bordons, 2007] Camacho, E. F. and Bordons, C. (2007). Model Predictive control. Advanced Textbooks in Control and Signal Processing. Springer London, London.spa
dc.relation.references[CND, 2017] CND (2017). Documento xm cnd 2017 - 048 - propuesta de requerimientos tEcnicos para la integraciOn de fuentes de generaci On no s Incrona al sin.spa
dc.relation.references[Conejo et al., 1993] Conejo, A., Gomez, T., and de la Fuente, J. I. (1993). Pilot-bus selection for secondary voltage control. European Transactions on Electrical Power, 3(5):359–366.spa
dc.relation.references[Corsi, 2015] Corsi, S. (2015). Voltage Control and Protection in Electrical Power Systems. Advances in Industrial Control. Springer London, London.spa
dc.relation.references[Corsi et al., 2004] Corsi, S., Pozzi, M., Sabelli, C., and Serrani, A. (2004). The Coordinated Automatic Voltage Control of the Italian Transmission Grid—Part I: Reasons of the Choice and Overview of the Consolidated Hierarchical System. IEEE Transactions on Power Systems, 19(4):1723–1732.spa
dc.relation.references[CREG, 2018] CREG (2018). Documento creg - 018 - gestion del flujo de potencia reactiva.spa
dc.relation.references[Frias et al., 2006] Frias, P., Gomez, T., and Soler, D. (2006). Voltage Control and Reactive Power Support in the Spanish Transmission Network. In MELECON 2006 - 2006 IEEE Mediterranean Electrotechnical Conference, pages 916–919. IEEE.spa
dc.relation.references[Geidl, 2010] Geidl, M. (2010). Implementation of coordinated voltage control for the Swiss transmission system. In Melecon 2010 - 2010 15th IEEE Mediterranean Electrotechnical Conference, pages 230–236. IEEE.spa
dc.relation.references[Gomez-Exposito et al., 2010] Gomez-Exposito, A., De La Villa Jaen, A., Gomez-Quiles, C., Rousseaux, P., and Cutsem, T. V. (2010). A taxonomy of multi-area state estimation methods. Electric Power Systems Research, 81:1060–1069.spa
dc.relation.references[Grainger and Stevenson, 1994] Grainger, J. J. and Stevenson, W. D. (1994). Power System Analysis. McGraw-Hill.spa
dc.relation.references[GREG, 1999] GREG (1999). Resolucion no. 080 de 1999 - por la cual se reglamentan las funciones de planeacion, coordinacion supervision y control entre el centro nacional de despacho (cnd) y los agentes del sin.spa
dc.relation.references[Hu et al., 2010] Hu, Z., Wang, X., and Taylor, G. (2010). Stochastic optimal reactive power dispatch: Formulation and solution method. International Journal of Electrical Power & Energy Systems, 32(6):615–621.spa
dc.relation.references[Jin et al., 2010] Jin, L., Kumar, R., and Elia, N. (2010). Model Predictive Control-Based RealTime Power System Protection Schemes. IEEE Transactions on Power Systems, 25(2):988–998. [Khalil and Grizzle, 2002] Khalil, H. K. and Grizzle, J. W. (2002). Nonlinear systems, volume 3. Prentice hall Upper Saddle River, NJ.spa
dc.relation.references[Kraft et al., 1988] Kraft, D. et al. (1988). A software package for sequential quadratic programming.spa
dc.relation.references[Kundur et al., 1994] Kundur, P. P., Balu, N. J., and Lauby, M. G. (1994). Power system stability and control. McGraw-Hill.spa
dc.relation.references[Kwon and Han, 2005] Kwon, W. H. and Han, S. (2005). Receding horizon control: Model predictive control for state models. In Advanced Textbooks in Control and Signal Processing, number 9781846280245, pages 323–380. Springer.spa
dc.relation.references[Larsson et al., 2002] Larsson, M., Hill, D. J., and Olsson, G. (2002). Emergency voltage control using search and predictive control. International Journal of Electrical Power and Energy Systems, 24(2):121–130.spa
dc.relation.references[Larsson and Karlsson, 2003] Larsson, M. and Karlsson, D. (2003). Coordinated system protection scheme against voltage collapse using heuristic search and predictive control. IEEE Transactions on Power Systems, 18(3):1001–1006.spa
dc.relation.references[Lefebvre et al., 2000] Lefebvre, H., Fragnier, D., Boussion, J., Mallet, P., and Bulot, M. (2000). Secondary coordinated voltage control system: feedback of EDF. In 2000 Power Engineering Society Summer Meeting (Cat. No.00CH37134), volume 1, pages 290–295. IEEE.spa
dc.relation.references[Lopera-Mazo and Espinosa, 2018] Lopera-Mazo, E. H. and Espinosa, J. (2018). Secondary voltage regulation based on average voltage control. TecnoLogicas, 21(42):63–78.spa
dc.relation.references[Loureiro de Oliveira, 1996] Loureiro de Oliveira, S. (1996). MODEL PREDICTIVE CONTROL (MPC) FOR CONSTRAINED NONLINEAR SYSTEMS. PhD thesis, California Institute of Technology.spa
dc.relation.references[Machowski et al., 2013] Machowski, J., Bumby, J., and Bialek, J. (2013). Power system dynamics : stability and control. Wiley.spa
dc.relation.references[Maciejowski, 2002] Maciejowski, J. M. (2002). Predictive control: with constraints. Pearson education.spa
dc.relation.references[Maestre and Negenborn, 2014] Maestre, J. M. and Negenborn, R. R. (2014). Distributed Model Predictive Control Made Easy. Intelligent Systems, Control and Automation: Science and Engineering, 69.spa
dc.relation.references[Marquez et al., 2013] Marquez, A., Gomez, C., Deossa, P., and Espinosa, J. J. (2013). Hierarchical control of large scale systems: A zone control approach. In IFAC Proceedings Volumes (IFACPapersOnline), volume 13, pages 438–443. Elsevier.spa
dc.relation.references[Martins and Corsi, 2007] Martins, N. and Corsi, S. (2007). Technical Brochure 310 - Coordinated Voltage Control in Transmission Networks. Technical report, CIGRE.spa
dc.relation.references[Martins et al., 2001] Martins, N., Ferraz, J. C., Gomes, S., Quintao, P. E., and Passos, J. A. (2001). A demonstration example of secondary voltage regulation: Dynamic simulation and continuation power flow results. In Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference, volume 2, pages 791–796.spa
dc.relation.references[Mayne et al., 2000] Mayne, D., Rawlings, J., Rao, C., and Scokaert, P. (2000). Constrained model predictive control: Stability and optimality. Automatica, 36(6):789–814.spa
dc.relation.references[Mazo, 2018] Mazo, E. H. L. (2018). Voltaje/VAR, Esquemas de Control de Control, Jerarquicos basados en Predictivo. PhD thesis, Universidad Nacional de Colombia.spa
dc.relation.references[Milano, 2005] Milano, F. (2005). An Open Source Power System Analysis Toolbox. IEEE Transactions on Power Systems, 20(3):1199–1206.spa
dc.relation.references[Milano, 2008] Milano, F. (2008). PSAT - Documentation for PSAT version 2.0.0.spa
dc.relation.references[Milano, 2010] Milano, F. (2010). Power system modelling and scripting. Springer.spa
dc.relation.references[Moradzadeh, 2012] Moradzadeh, M. (2012). Voltage coordination in multi-area power systems via distributed model predictive control. Master’s thesis, Ghent University.spa
dc.relation.references[Morattab, 2018] Morattab, A. (2018). Decentralized multi-agent coordinated secondary voltage control of power systems. PhD thesis, Ecole de technologie superieure.spa
dc.relation.references[Morattab et al., 2017] Morattab, A., Akhrif, O., and Saad, M. (2017). Decentralised coordinated secondary voltage control of multi-area power grids using model predictive control. IET Generation, Transmission & Distribution, 11(18):4546–4555.spa
dc.relation.references[Negenborn et al., 2009] Negenborn, R., Leirens, S., De Schutter, B., and Hellendoorn, J. (2009). Supervisory nonlinear MPC for emergency voltage control using pattern search. Control Engineering Practice, 17(7):841–848.spa
dc.relation.references[Negenborn et al., 2007] Negenborn, R. R., Beccuti, A. G., Demiray, T., Leirens, S., Damm, G., De Schutter, B., and Morari, M. (2007). Supervisory hybrid model predictive control for voltage stability of power networks. In Proceedings of the American Control Conference, pages 5444– 5449. IEEE.spa
dc.relation.references[Negenborn and Maestre, 2014] Negenborn, R. R. and Maestre, J. M. (2014). Distributed model predictive control: An overview and roadmap of future research opportunities. IEEE Control Systems, 34(4):87–97.spa
dc.relation.references[Nuthalapati, 2018] Nuthalapati, S. (2018). Power System Grid Operation Using Synchrophasor Technology. Power Electronics and Power Systems. Springer International Publishing.spa
dc.relation.references[Ogata, 1997] Ogata, K. (1997). Modern Control Engineering. Prentice Hall.spa
dc.relation.references[Pai, 1989] Pai, M. A. (1989). Energy Function Analysis for Power System Stability. Springer US, first edition.spa
dc.relation.references[Paul et al., 1987] Paul, J. P., Leost, J. Y., and Tesseron, J. M. (1987). Survey of the Secondary Voltage Control in France : Present Realization and Investigations. IEEE Transactions on Power Systems, 2(2):505–511.spa
dc.relation.references[Pedregosa et al., 2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830.spa
dc.relation.references[Qin, 2018] Qin, N. (2018). Voltage Control in the Future Power Transmission Systems. Springer, first edition.spa
dc.relation.references[Rawlings and Muske, 1993] Rawlings, J. B. and Muske, K. R. (1993). The stability of constrained receding horizon control. IEEE Transactions on Automatic Control, 38(10):1512–1516.spa
dc.relation.references[Rossiter, 2003] Rossiter, J. A. (2003). Model- Based Predictive Control - A practical approach.spa
dc.relation.references[Rueda Acosta, 2015] Rueda Acosta, L. M. (2015). Verificacion de los controles VQC instalados en la subestaciones Virginia y San Marcos. Master’s thesis, Universidad Pontificia Bolivariana.spa
dc.relation.references[Stellato et al., 2017] Stellato, B., Banjac, G., Goulart, P., Bemporad, A., and Boyd, S. (2017). OSQP: An operator splitting solver for quadratic programs. ArXiv e-prints.spa
dc.relation.references[Stellato et al., 2020] Stellato, B., Banjac, G., Goulart, P., Bemporad, A., and Boyd, S. (2020). Osqp: An operator splitting solver for quadratic programs. Mathematical Programming Computation, pages 1–36.spa
dc.relation.references[Sun et al., 2013] Sun, H., Guo, Q., Zhang, B., Wu, W., and Wang, B. (2013). An Adaptive Zone-Division-Based Automatic Voltage Control System With Applications in China. IEEE Transactions on Power Systems, 28(2):1816–1828.spa
dc.relation.references[Van Loan, 1978] Van Loan, C. (1978). Computing integrals involving the matrix exponential. IEEE Transactions on Automatic Control, 23(3):395–404.spa
dc.relation.references[Vandenberghe, 2010] Vandenberghe, L. (2010). The cvxopt linear and quadratic cone program solvers. Online: http://cvxopt. org/documentation/coneprog. pdf.spa
dc.relation.references[Viana and Arboleda, 2020] Viana, J. and Arboleda, B. (2020). Pypowersystems. https:// github.com/jpvianav/pypowersystem.spa
dc.relation.references[Viana et al., 2019] Viana, J. P., Palacios, V., Sanchez, M., and Espinosa, J. (2019). Multiarea secondary voltage regulation with optimal shunt elements coordinated maneuvers. In 4th IEEE Colombian Conference on Automatic Control: Automatic Control as Key Support of Industrial Productivity, CCAC 2019 - Proceedings. Institute of Electrical and Electronics Engineers Inc.spa
dc.relation.references[Yan et al., 2015] Yan, W., Cui, W., Lee, W.-J., Yu, J., and Zhao, X. (2015). Pilot-bus-centered automatic voltage control with high penetration level of wind generation. In 2015 IEEE Industry Applications Society Annual Meeting, pages 1–8. IEEE.spa
dc.relation.references[Zimmerman et al., 2011] Zimmerman, R. D., Murillo-Sanchez, C. E., and Thomas, R. J. (2011). MATPOWER: Steady-State Operations, Planning, and Analysis Tools for Power Systems Research and Education. IEEE Transactions on Power Systems, 26(1):12–19.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-SinDerivadas 4.0 Internacionalspa
dc.rights.licenseAtribución-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::621 - Física aplicadaspa
dc.subject.proposalControl Secundario de Voltajespa
dc.subject.proposalSecondary Voltage Controleng
dc.subject.proposalSimulación Dinámicaspa
dc.subject.proposalDistributed Model Predictive Control with Zone Controleng
dc.subject.proposalDynamic simulationeng
dc.subject.proposalAnálisis transitoriospa
dc.subject.proposalControl predictivo distribuido basado en modelo con control de zonasspa
dc.subject.proposalTransient Analysiseng
dc.subject.proposalMPCeng
dc.subject.proposalMPCspa
dc.subject.proposalDMPCspa
dc.subject.proposalDMPCeng
dc.titleControl secundario de voltaje en sistemas eléctricos de potencia: una aproximación usando control predictivo distribuido basado en modelo con Control de zonasspa
dc.title.alternativePower systems secondary voltage control: an approach using distributed model predictive control with zone controlspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1152194997.pdf
Tamaño:
2.1 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis Maestría en Ingeniería - Ingeniería Eléctrica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.8 KB
Formato:
Item-specific license agreed upon to submission
Descripción: