Modos cuasinormales de un agujero negro AdS con carga eléctrica en la gravedad de Einstein-Gauss-Bonnet 4D

dc.contributor.advisorLarrañaga Rubio, Eduard Alexis
dc.contributor.authorLadino Mendez, Jose Miguel
dc.contributor.googlescholarhttps://scholar.google.com/citations?hl=en&user=ETGdXGgAAAAJ&view_op=list_works&gmla=AJsN-F7THeorVOkAORGgF1eSwTsqDx29mm7znFeRLG0KU3nqtHSZr9BjrnlB-LAd_OXQC7w_OvzZwBvEiFopnl1KFS2rf5LtOwspa
dc.contributor.orcidhttps://orcid.org/0000-0001-9812-4949spa
dc.contributor.researchgatehttps://www.researchgate.net/profile/Jose-Ladinospa
dc.contributor.researchgroupAstronomía, Astrofísica y Cosmologiaspa
dc.date.accessioned2023-03-29T20:03:09Z
dc.date.available2023-03-29T20:03:09Z
dc.date.issued2022-10-31
dc.description.abstractLas ondas de las perturbaciones de los agujeros negros dependen de los parámetros geométricos del espacio-tiempo que los describe. En este trabajo se investigan las perturbaciones en campos escalares y electromagnéticos sobre la geometría de un agujero negro AdS cargado eléctricamente en la gravedad de Einstein-Gauss-Bonnet 4D, mostrando la deducción de las ecuaciones de campo modificadas, los comportamientos de las principales propiedades de este agujero negro y su relación con sus casos limite particulares y con otras teorías de gravedad. Se derivan a las ecuaciones maestras y a los potenciales que describen a las perturbaciones y se discuten los métodos para encontrar las frecuencias de los modos cuasinormales, explorando principalmente al formalismo del método de la aproximación WKB, discutiendo sus fundamentos y algunas de sus restricciones y mejoras. Se calculan numéricamente, mediante el uso de los métodos semi-analíticos del potencial de Pöschl-Teller y de la aproximación WKB, a las frecuencias de los modos cuasinormales del campo escalar (con y sin masa) y del campo electromagnético alrededor de un agujero negro AdS con carga eléctrica y en la gravedad de Einstein-Gauss-Bonnet 4D y de sus casos limite particulares, encontrando destacados resultados, como el hecho de que este agujero negro es mejor oscilador que los agujeros negros de Schwarzschild, de Reissner–Nordström, de Einstein-Gauss-Bonnet 4D y de Einstein-Gauss-Bonnet 4D con carga eléctrica y por ende posee una sombra más pequeña. También se describen los efectos de los parámetros geométricos sobre las frecuencias calculadas, encontrando destacadas consistencias en los resultados obtenidos comparados entre si y con los ya publicados por otros autores. (Texto tomado de la fuente)spa
dc.description.abstractThe waves of black hole perturbations depend on the geometric parameters of space-time that describe them. In this work we investigate the perturbations in scalar and electromagnetic fields on the geometry of an electrically charged AdS black hole in Einstein-Gauss-Bonnet 4D gravity, showing the deduction of the modified field equations, the behavior of the main properties of this black hole and its relationship with its particular limit cases and with other gravity theories. The master equations and potentials describing the perturbations are derived and methods for finding the frequencies of Quasinormal Modes are discussed, mainly exploring the formalism of the WKB approximation method, discussing its fundamentals and some of its restrictions and enhancements. They are calculated numerically, using the semi-analytic methods of the Pöschl-Teller potential and the WKB approximation, the frequencies of the Quasinormal Modes of the scalar field (with and without mass) and the electromagnetic field around an electrically charged AdS black hole in the Einstein-Gauss-Bonnet 4D gravity and its particular limit cases, finding outstanding results, such as the fact that this black hole is a better oscillator than the Schwarzschild, Reissner–Nordström, Einstein-Gauss-Bonnet 4D and Einstein-Gauss-Bonnet 4D black holes with electric charge and therefore it has a smaller shadow. The effects of the geometric parameters on the calculated frequencies are also described, finding outstanding consistency in the results obtained compared with each other and with those already published by other authors.eng
dc.description.degreelevelMaestríaspa
dc.description.researchareaRelatividad General y Agujeros Negrosspa
dc.format.extent138 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83673
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá,Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Astronomíaspa
dc.relation.referencesS. Norbert. General Relativyty, Second Edition. Springer, 2013.spa
dc.relation.referencesB. P. Abbott. et al. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett., 116:061102, Feb 2016spa
dc.relation.referencesM. Maggiore. Gravitational Waves, Volume 2: Astrophysics and Cosmology. Oxford University Press, 2018.spa
dc.relation.referencesR. Kumar y S. G. Ghosh. Rotating black holes in 4d einstein-gauss-bonnet gravity and its shadow. Journal of Cosmology and Astroparticle Physics, 2020(07):053–053, jul 2020.spa
dc.relation.referencesC. Bambi. Black Holes: A Laboratory for Testing Strong Gravity. Springer, 2017.spa
dc.relation.referencesP. G. S. Fernandes. Charged black holes in ads spaces in 4d einstein gauss-bonnet gravity. Physics Letters B, 805:135468, Jun 2020.spa
dc.relation.referencesB. Eslam Panah, Kh. Jafarzade y S. H. Hendi. Charged 4d einstein-gauss-bonnet- ads black holes: Shadow, energy emission, deflection angle and heat engine. Nu- clear Physics B, 961:115269, 2020.spa
dc.relation.referencesM. Bousder y M. Bennai. Charged 4d einstein-gauss-bonnet-ads black hole in iso- baric process: Thermal conduction, compressibility and bose einstein distribution. Nuclear Physics B, 969:115476, 2021.spa
dc.relation.referencesM. Bousder, K. El Bourakadi y M. Bennai. Charged 4d einstein-gauss-bonnet black hole: Vacuum solutions, cauchy horizon, thermodynamics. Physics of the Dark Uni- verse, 32:100839, May 2021.spa
dc.relation.referencesM. S. Churilova. Quasinormal modes of the test fields in the consistent 4d einstein–gauss-bonnet–(anti)de sitter gravity. Annals of Physics, 427:168425, 2021.spa
dc.relation.referencesS. Devi, R. Roy y S. Chakrabarti. Quasinormal modes and greybody factors of the novel four dimensional gauss–bonnet black holes in asymptotically de sitter spa- ce time: scalar, electromagnetic and dirac perturbations. The European Physical Journal C, 80(8):760, Aug 2020.spa
dc.relation.referencesM. S. Churilova. Quasinormal modes of the test fields in the novel 4d einstein- gauss-bonnet-de sitter gravity, 2020.spa
dc.relation.referencesR. A. Konoplya y A. F. Zinhailo. Quasinormal modes, stability and shadows of a black hole in the 4d einstein–gauss–bonnet gravity. The European Physical Journal C, 80(11), Nov 2020.spa
dc.relation.referencesE. W. Leaver. Quasinormal modes of reissner-nordstr ̈om black holes. Phys. Rev. D, 41:2986–2997, May 1990.spa
dc.relation.referencesD. Yoshida y J. Soda. Quasinormal modes of black holes in lovelock gravity. Physical Review D, 93(4), Feb 2016.spa
dc.relation.referencesB. Wang, C.-Y. Lin y E. Abdalla. Quasinormal modes of reissner-nordstr ̈om anti-de sitter black holes. Physics Letters B, 481(1):79–88, 2000.spa
dc.relation.referencesY. Hatsuda. Quasinormal modes of black holes and borel summation. Phys. Rev. D, 101:024008, Jan 2020.spa
dc.relation.referencesH. Onozawa. Detailed study of quasinormal frequencies of the kerr black hole. Physical Review D, 55(6):3593–3602, Mar 1997.spa
dc.relation.referencesH. Onozawa. et al. Quasinormal modes of maximally charged black holes. Phys. Rev. D, 53:7033–7040, Jun 1996.spa
dc.relation.referencesR. Aros. et al. Quasinormal modes for massless topological black holes. Phys. Rev. D, 67:044014, Feb 2003.spa
dc.relation.referencesJ. Matyjasek y M. Opala. Quasinormal modes of black holes: The improved semi- analytic approach. Phys. Rev. D, 96:024011, Jul 2017.spa
dc.relation.referencesR. A. Konoplya y A. Zhidenko. Quasinormal modes of black holes: From astrophy- sics to string theory. Rev. Mod. Phys., 83:793–836, Jul 2011.spa
dc.relation.referencesE. Berti, V. Cardoso y A. O. Starinets. Quasinormal modes of black holes and black branes. Classical and Quantum Gravity, 26(16):163001, jul 2009.spa
dc.relation.referencesE. Berti. Black hole perturbation theory, 2016.spa
dc.relation.referencesR. A. Konoplya. Quasinormal behavior of the d-dimensional schwarzschild black hole and the higher order wkb approach. Phys. Rev. D, 68:024018, Jul 2003.spa
dc.relation.referencesE. Berti y K. D. Kokkotas. Asymptotic quasinormal modes of reissner-nordstr ̈om and kerr black holes. Phys. Rev. D, 68:044027, Aug 2003.spa
dc.relation.referencesE. Berti y K. D. Kokkotas. Quasinormal modes of reissner–nordstr ̈om–anti-de sitter black holes: Scalar, electromagnetic, and gravitational perturbations. Phys. Rev. D, 67:064020, Mar 2003.spa
dc.relation.referencesP. Kanjanaphomchom y S. Musiri. Quasinormal modes of the electric potential in the 4 dimensional anti de sitter reissner-norst ̈om black hole spacetime with scalar hair. Journal of Physics: Conference Series, 1719(1):012039, jan 2021.spa
dc.relation.referencesL. A. Oliveira, L. C. B. Crispino y A. Higuchi. Scalar radiation from a radially infalling source into a schwarzschild black hole in the framework of quantum field theory. The European Physical Journal C, 78(2):133, Feb 2018.spa
dc.relation.referencesJ. Matyjasek y M. Telecka. Quasinormal modes of black holes. ii. pad ́e summation of the higher-order wkb terms. Phys. Rev. D, 100:124006, Dec 2019.spa
dc.relation.referencesV. Cardoso, R. Konoplya y J. P. S. Lemos. Quasinormal frequencies of schwarzs- child black holes in anti–de sitter spacetimes: A complete study of the overtone asymptotic behavior. Phys. Rev. D, 68:044024, Aug 2003.spa
dc.relation.referencesS. Hod. Quasinormal spectrum and quantization of charged black holes. Classical and Quantum Gravity, 23(4):L23–L27, feb 2006.spa
dc.relation.referencesE. N. Dorband. et al. Numerical study of the quasinormal mode excitation of kerr black holes. Phys. Rev. D, 74:084028, Oct 2006.spa
dc.relation.referencesM. Giammatteo y I. G. Moss. Gravitational quasinormal modes for kerr anti-de sitter black holes. Classical and Quantum Gravity, 22(9):1803–1824, apr 2005.spa
dc.relation.referencesE. Berti y K. D. Kokkotas. Quasinormal modes of kerr-newman black holes: Coupling of electromagnetic and gravitational perturbations. Phys. Rev. D, 71:124008, Jun 2005.spa
dc.relation.referencesM. S. Churilova. Analytical quasinormal modes of spherically symmetric black holes in the eikonal regime. The European Physical Journal C, 79(7):629, Jul 2019.spa
dc.relation.referencesA. S. Miranda, J. Morgan y V. T. Zanchin. Quasinormal modes of plane-symmetric black holes according to the AdS/CFT correspondence. Journal of High Energy Physics, 2008(11):030–030, nov 2008.spa
dc.relation.referencesM. Ghasemi-Nodehi. et al. Shadow, quasinormal modes, and quasiperiodic oscilla- tions of rotating kaluza-klein black holes. Phys. Rev. D, 102:104032, Nov 2020.spa
dc.relation.referencesA. Rincón y G. Panotopoulos. Quasinormal modes of an improved schwarzschild black hole. Physics of the Dark Universe, 30:100639, 2020.spa
dc.relation.referencesC. Molina. Quasinormal modes of d-dimensional spherical black holes with a near extreme cosmological constant. Phys. Rev. D, 68:064007, Sep 2003.spa
dc.relation.referencesH.-P. Nollert y B. G. Schmidt. Quasinormal modes of schwarzschild black holes: Defined and calculated via laplace transformation. Phys. Rev. D, 45:2617–2627, Apr 1992.spa
dc.relation.referencesV. Ferrari y B. Mashhoon. New approach to the quasinormal modes of a black hole. Phys. Rev. D, 30:295–304, Jul 1984.spa
dc.relation.referencesS. Chakrabarti. Quasinormal modes for tensor and vector type perturbation of gauss bonnet black hole using third order wkb approach. General Relativity and Gravita- tion, 39:567–582, 05 2007.spa
dc.relation.referencesS. Iyer. Black-hole normal modes: A wkb approach. ii. schwarzschild black holes. Phys. Rev. D, 35:3632–3636, Jun 1987.spa
dc.relation.referencesS. Iyer y W. M. Clifford. Black-hole normal modes: A wkb approach. i. foundations and application of a higher-order wkb analysis of potential-barrier scattering. Phys. Rev. D, 35:3621–3631, Jun 1987.spa
dc.relation.referencesH.-P. Nollert. Quasinormal modes of schwarzschild black holes: The determination of quasinormal frequencies with very large imaginary parts. Phys. Rev. D, 47:5253– 5258, Jun 1993.spa
dc.relation.referencesR. A. Konoplya. Decay of a charged scalar field around a black hole: Quasinormal modes of rn, rnads, and dilaton black holes. Phys. Rev. D, 66:084007, Oct 2002.spa
dc.relation.referencesY. S. Myung y D.-C. Zou. Quasinormal modes of scalarized black holes in the eins- tein–maxwell–scalar theory. Physics Letters B, 790:400–407, 2019.spa
dc.relation.referencesA. Aragón. et al. Quasinormal modes and their anomalous behavior for black holes in f(r) gravity. The European Physical Journal C, 81(5), May 2021.spa
dc.relation.referencesK. Glampedakis y H. O. Silva. Eikonal quasinormal modes of black holes beyond general relativity. Phys. Rev. D, 100:044040, Aug 2019.spa
dc.relation.referencesR. A. Konoplya y R. D. B. Fontana. Quasinormal modes of black holes immersed in a strong magnetic field. Physics Letters B, 659(1):375–379, 2008.spa
dc.relation.referencesK. Lin, J. Li y S. Yang. Quasinormal modes of hayward regular black hole. Interna- tional Journal of Theoretical Physics, 52(10):3771–3778, Oct 2013.spa
dc.relation.referencesB. Toshmatov. et al. Quasinormal modes of test fields around regular black holes. Physical Review D, 91(8), Apr 2015.spa
dc.relation.referencesR. A. Konoplya, A. F. Zinhailo y Z. Stuchlik. Quasinormal modes and hawking radia- tion of black holes in cubic gravity. Phys. Rev. D, 102:044023, Aug 2020.spa
dc.relation.referencesM. Richartz. Quasinormal modes of extremal black holes. Phys. Rev. D, 93:064062, Mar 2016.spa
dc.relation.referencesR. A. Konoplya y A. V. Zhidenko. Stability and quasinormal modes of the massive scalar field around kerr black holes. Phys. Rev. D, 73:124040, Jun 2006.spa
dc.relation.referencesJ. L. Blázquez-Salcedo, F. S. Khoo y J. Kunz. Quasinormal modes of einstein- gauss-bonnet-dilaton black holes. Phys. Rev. D, 96:064008, Sep 2017.spa
dc.relation.referencesM. Momennia, S. H. Hendi y F. Soltani-Bidgoli. Stability and quasinormal modes of black holes in conformal weyl gravity. Physics Letters B, 813:136028, 2021.spa
dc.relation.referencesA. Aragón. et al. Perturbative and nonperturbative quasinormal modes of 4d einstein-gauss-bonnet black holes, 2020.spa
dc.relation.referencesT.-T. Liu. et al. Double shadow of a 4d einstein–gauss–bonnet black hole and the connection between them with quasinormal modes. Modern Physics Letters A, 37(24):2250154, 2022.spa
dc.relation.referencesC.-Y. Zhang. et al. Superradiance and stability of the regularized 4d charged einstein-gauss-bonnet black hole. Journal of High Energy Physics, 2020(8):105, Aug 2020.spa
dc.relation.referencesD. Chen. et al. The correspondence between shadow and test field in a four- dimensional charged Einstein–Gauss–Bonnet black hole. Eur. Phys. J. C, 81(8):700, 2021.spa
dc.relation.referencesA. K. Mishra. Quasinormal modes and strong cosmic censorship in the regularised 4d einstein–gauss–bonnet gravity. General Relativity and Gravitation, 52(11), Nov 2020.spa
dc.relation.referencesC. Glavan, D. y Lin. Einstein-gauss-bonnet gravity in four-dimensional spacetime. Physical Review Letters, 124(8), Feb 2020.spa
dc.relation.referencesM. Gurses, T. C. Sisman, B. Tekin. Is there a novel einstein–gauss–bonnet theory in four dimensions? The European Physical Journal C, 80(7), jul 2020.spa
dc.relation.referencesM. Gurses, T. C. Sisman, B. Tekin. Comment on “einstein- gauss-bonnet gravity in four-dimensional spacetime”. Phys. Rev. Lett., 125:149001, Sep 2020.spa
dc.relation.referencesJ. Arrechea, A. Delhom, and A. Jiménez-Cano. Comment on “einstein- gauss-bonnet gravity in four-dimensional spacetime”. Phys. Rev. Lett., 125:149002, Sep 2020.spa
dc.relation.referencesP. G S Fernandes, Pedro Carrilho, Timothy Clifton, and David J Mulryne. The 4d einstein–gauss–bonnet theory of gravity: a review. Classical and Quantum Gravity, 39(6):063001, feb 2022.spa
dc.relation.referencesRong-Gen Cai, Li-Ming Cao, and Nobuyoshi Ohta. Black holes in gravity with con- formal anomaly and logarithmic term in black hole entropy. Journal of High Energy Physics, 2010(4), apr 2010.spa
dc.relation.referencesRong-Gen Cai. Thermodynamics of conformal anomaly corrected black holes in AdS space. Physics Letters B, 733:183–189, jun 2014.spa
dc.relation.referencesH. L ̈u and Yi Pang. Horndeski gravity as d → 4 limit of gauss-bonnet. Physics Letters B, 809:135717, oct 2020.spa
dc.relation.referencesRobie A. Hennigar, David Kubiz ˇn ́ak, Robert B. Mann, and Christopher Pollack. On taking the d → 4 limit of gauss-bonnet gravity: theory and solutions. Journal of High Energy Physics, 2020(7), jul 2020.spa
dc.relation.referencesPedro G. S. Fernandes, Pedro Carrilho, Timothy Clifton, and David J. Mulryne. De- rivation of regularized field equations for the einstein-gauss-bonnet theory in four dimensions. Physical Review D, 102(2), jul 2020.spa
dc.relation.referencesA. Katsuki, M. A. Gorji y S. Mukohyama. A consistent theory of d → 4 einstein- gauss-bonnet gravity. Physics Letters B, 810:135843, nov 2020.spa
dc.relation.referencesS. G. Ghosh. et al. Phase transition of ads black holes in 4d egb gravity coupled to nonlinear electrodynamics. Annals of Physics, 424:168347, 2021.spa
dc.relation.referencesK. Yang. et al. Born–infeld black holes in 4d einstein–gauss–bonnet gravity. The European Physical Journal C, 80(7):662, Jul 2020.spa
dc.relation.referencesD. G. Boulware y S. Deser. String-generated gravity models. Phys. Rev. Lett., 55:2656–2660, Dec 1985.spa
dc.relation.referencesR. A. Konoplya y A. Zhidenko. (in)stability of black holes in the 4d eins- tein–gauss–bonnet and einstein–lovelock gravities. Physics of the Dark Universe, 30:100697, Dec 2020.spa
dc.relation.referencesS. G. Ghosh y R. Kumar. Generating black holes in 4d einstein–gauss–bonnet gravity. Classical and Quantum Gravity, 37(24):245008, nov 2020.spa
dc.relation.referencesR. A. Konoplya y A. Zhidenko. Black holes in the four-dimensional einstein-lovelock gravity. Phys. Rev. D, 101:084038, Apr 2020.spa
dc.relation.referencesA. Kumar, D. Baboolal y S. G. Ghosh. Nonsingular black holes in 4d eins- tein–gauss–bonnet gravity. Universe, 8(4):244, apr 2022.spa
dc.relation.referencesR. Kumar, S. U. Islam y S. G. Ghosh. Gravitational lensing by charged black hole in regularized 4d einstein–gauss–bonnet gravity. The European Physical Journal C, 80(12), Dec 2020.spa
dc.relation.referencesK. Jusufi. Nonlinear magnetically charged black holes in 4d einstein–gauss–bonnet gravity. Annals of Physics, 421:168285, 2020.spa
dc.relation.referencesY. Tomozawa. Quantum corrections to gravity, 2011.spa
dc.relation.referencesG. Cognola. et al. Einstein gravity with gauss-bonnet entropic corrections. Physical Review D, 88(2), jul 2013.spa
dc.relation.referencesA. Kumar, R. Kumar y S. G. Ghosh. Bardeen black holes in the regularized 4d einstein–gauss–bonnet gravity. Universe, 8(4):232, apr 2022.spa
dc.relation.referencesR.-G. Cai. Gauss-bonnet black holes in ads spaces. Phys. Rev. D, 65:084014, Mar 2002.spa
dc.relation.referencesT. Liko y I. Booth. Isolated horizons in higher dimensional einstein–gauss–bonnet gravity. Classical and Quantum Gravity, 24(14):3769–3782, jul 2007.spa
dc.relation.referencesD. V. Singh y S. Siwach. Thermodynamics and p-v criticality of bardeen-ads black hole in 4d einstein-gauss-bonnet gravity. Physics Letters B, 808:135658, 2020.spa
dc.relation.referencesB. F. Schutz y M. W. Clifford. Black hole normal modes - a semianalytic approach. The Astrophysical Journal, 291, 1985.spa
dc.relation.referencesS. Carroll. Spacetime and geometry: an introduction to general relativity; Internatio- nal ed. Pearson Education, Essex, Aug 2013.spa
dc.relation.referencesK. Schwarzschild. ̈Uber das Gravitationsfeld eines Massenpunktes nach der Eins- teinschen Theorie. Sitzungsberichte der K ̈oniglich Preußischen Akademie der Wis- senschaften (Berlin, pages 189–196, January 1916.spa
dc.relation.referencesH. Reissner. ̈Uber die Eigengravitation des elektrischen Feldes nach der Einsteins- chen Theorie. Annalen der Physik, 355(9):106–120, January 1916.spa
dc.relation.referencesG. Nordstr ̈om. On the Energy of the Gravitation field in Einstein’s Theory. Konin- klijke Nederlandse Akademie van Wetenschappen Proceedings Series B Physical Sciences, 20:1238–1245, January 1918.spa
dc.relation.referencesS. Weinberg. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. Wiley, New York, NY, 1972.spa
dc.relation.referencesS. W. Hawking and G. F. R. Ellis. The Large Scale Structure of Space-Time. Cam- bridge Monographs on Mathematical Physics. Cambridge University Press, 1973.spa
dc.relation.referencesW. de Sitter. Einstein’s theory of gravitation and its astronomical consequences. Third paper. mnras, 78:3–28, November 1917.spa
dc.relation.referencesD. Kubiz ˇn ́ak y F. Simovic. Thermodynamics of horizons: de sitter black holes and reentrant phase transitions. Classical and Quantum Gravity, 33(24):245001, nov 2016.spa
dc.relation.referencesJ. Maldacena. The large-n limit of superconformal field theories and supergravity. International Journal of Theoretical Physics, 38(4):1113–1133, Apr 1999.spa
dc.relation.referencesJ. Sorce. Holographic entanglement entropy is cutoff-covariant. Journal of High Energy Physics, 2019(10), oct 2019.spa
dc.relation.referencesM. Rangamani y T. Takayanagi. Holographic Entanglement Entropy. Springer Inter- national Publishing, 2017.spa
dc.relation.referencesD. Lovelock. The einstein tensor and its generalizations. Journal of Mathematical Physics, 12(3):498–501, 1971.spa
dc.relation.referencesB. Zwiebach. Curvature squared terms and string theories. Physics Letters B, 156(5):315–317, 1985.spa
dc.relation.referencesT. Padmanabhan. Gravitation: Foundations and Frontiers. Cambridge University Press, 2010.spa
dc.relation.referencesA. Mukhopadhyay y T. Padmanabhan. Holography of gravitational action functionals. Phys. Rev. D, 74:124023, Dec 2006.spa
dc.relation.referencesS. Kolekar y T. Padmanabhan. Holography in action. Phys. Rev. D, 82:024036, Jul 2010.spa
dc.relation.referencesE. Howard. Geometric aspects of extremal kerr black hole entropy. Journal of Modern Physics, 04(03):357–363, 2013.spa
dc.relation.referencesJ. Percival. Classical and quantum bosonic fields on the spacetimes of black holes and stars. PhD thesis, University of Sheffield, January 2022.spa
dc.relation.referencesS. W. Hawking. Black hole explosions? Nature, 248(5443):30–31, Mar 1974.spa
dc.relation.referencesS. W. Hawking. Particle creation by black holes. Communications in Mathematical Physics, 43(3):199–220, Aug 1975.spa
dc.relation.referencesR. A. Breuer. et al. Geodesic synchrotron radiation. Phys. Rev. D, 8:4309–4319, Dec 1973.spa
dc.relation.referencesG. E. Harmsen. Quasi-normal modes for spin-3/2 fields. Journal of Physics: Confe- rence Series, 645(1):012003, sep 2015.spa
dc.relation.referencesW. H. Press. Long Wave Trains of Gravitational Waves from a Vibrating Black Hole. apjl, 170:L105, December 1971.spa
dc.relation.referencesC. Bender y S. Orszag. Advanced Mathematical Methods for Scientists and Engi- neers: Asymptotic Methods and Perturbation Theory, volume 1. Springer, 01 1999.spa
dc.relation.referencesR. A. Konoplya, A. Zhidenko y A. F. Zinhailo. Higher order WKB formula for quasi- normal modes and grey-body factors: recipes for quick and accurate calculations. Classical and Quantum Gravity, 36(15):155002, jul 2019.spa
dc.relation.referencesA. Jansen. Overdamped modes in schwarzschild-de sitter and a mathematica pac- kage for the numerical computation of quasinormal modes, 2017.spa
dc.relation.referencesA. ̈Ovg ̈un, I. Sakallı y H. Mutuk. Quasinormal modes of ds and ads black holes: Feedforward neural network method. International Journal of Geometric Methods in Modern Physics, 18(10):2150154, 2021.spa
dc.relation.referencesL. E. Simone y C. M. Will. Massive scalar quasi-normal modes of schwarzschild and kerr black holes. Classical and Quantum Gravity, 9(4):963, apr 1992.spa
dc.relation.referencesA. Ohashi y M.-A. Sakagami. Massive quasi-normal mode. Classical and Quantum Gravity, 21(16):3973, aug 2004.spa
dc.relation.referencesS. Fernando y J. Correa. Quasinormal modes of the bardeen black hole: Scalar perturbations. Phys. Rev. D, 86:064039, Sep 2012.spa
dc.relation.referencesE. Berti. Ringdown. https://pages.jh.edu/eberti2/ringdown/, 2022.spa
dc.relation.referencesG. Panotopoulos y A. Rinc ́on. Quasinormal modes of black holes in einstein-power- maxwell theory. International Journal of Modern Physics D, 27(03):1850034, feb 2018.spa
dc.relation.referencesP. Boonserm, T. Ngampitipan y P. Wongjun. Greybody factor for black holes in drgt massive gravity. The European Physical Journal C, 78(6):492, Jun 2018.spa
dc.relation.referencesC. D. Haroldo. et al. 4d einstein-gauss-bonnet gravity: Massless particles and ab- sorption of planar spin-0 waves. Physics Letters B, 811:135921, 2020.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.lembAstrofísicaspa
dc.subject.lembAstrophysicseng
dc.subject.lembFísica cósmicaspa
dc.subject.lembCosmic physicseng
dc.subject.proposalRelatividad Generalspa
dc.subject.proposalAgujeros Negrosspa
dc.subject.proposalGravedad Modificadaspa
dc.subject.proposalModos Cuasinormalesspa
dc.subject.proposalGeneral Relativityeng
dc.subject.proposalBlack Holeseng
dc.subject.proposalModified Gravityeng
dc.subject.proposalQuasinormal Modeseng
dc.titleModos cuasinormales de un agujero negro AdS con carga eléctrica en la gravedad de Einstein-Gauss-Bonnet 4Dspa
dc.title.translatedQuasinormal modes of an electrically charged AdS black hole in 4D Einstein-Gauss-Bonnet gravityeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1033793194.2023.pdf
Tamaño:
2.39 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Astronomía

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: