Probabilidades de máquina y aplicaciones al caso de default en portafolios de crédito

dc.contributor.advisorGiraldo Gomez, Norman Diego
dc.contributor.authorMiranda Bolaños, Bryan Alexander
dc.date.accessioned2022-03-23T15:18:59Z
dc.date.available2022-03-23T15:18:59Z
dc.date.issued2021-12
dc.descriptionilustraciones, diagramas, tablasspa
dc.description.abstractEste trabajo final de maestría, modalidad de profundización, consiste en la elaboración de un problema de simulación de carteras de crédito utilizando distribuciones de probabilidad aplicadas a conceptos de matemática financiera, con ello se busca estimar probabilidades de incumplimiento por medio de modelos de probabilidades de maquina como son k-NN, bosques aleatorios y máquinas de soporte vectorial. El trabajo pretende comparar los resultados de cada modelo a través de la optimización de los puntajes de corte pb(0)j, el cálculo de medidas de precisión que evalúen el rendimiento y el valor de las provisiones calculadas usando la cuantificación del riesgo de crédito por medio del Valor en Riesgo (VaR). Así mismo se quiere ilustrar: (1) Los efectos econ+omicos y monetarios derivados de la estimación de probabilidades de incumplimiento incorrecta, (2) las implicaciones de la optimalidad de pb(0)j y (3) el comportamiento de los costos totales o agregados (S) de la cartera de crédito simulada. (Texto tomado de la fuente)spa
dc.description.abstractThis final master’s work, deepening modality, consists of the elaboration of a simulation problem of loan portfolios using probability distributions applied to financial mathematics concepts with this aim to estimate default probabilities using machine probability models such as k-NN, random forests, and vector support machines. The work intends to compare the results of each model through the optimization of the cutoff scores pb(0)j, the calculation of precision measures that evaluate the performance and the value of the provisions calculated using the quantification of credit risk through Value at Risk (V aR). Likewise, we want to illustrate: (1) The economic and monetary effects derived from estimating the probability of incorrect default, (2) the implications of the optimization of pb(0)j and (3) the behavior of the total or aggregate costs (S) of the simulated loan portfolioeng
dc.description.curricularareaÁrea Curricular Estadísticaspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Estadísticaspa
dc.format.extent62 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81325
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentEscuela de estadísticaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias - Maestría en Ciencias - Estadísticaspa
dc.relation.referencesBauer, E. & Kohavi, R. (1999), ‘An empirical comparison of voting classification algorithms: Bagging, boosting, and variants’, Machine learning 36(1-2), 105–139spa
dc.relation.referencesBeling, P., Covaliu, Z. & Oliver, R. (2005), ‘Optimal scoring cutoff policies and efficient frontiers’, Journal of the Operational Research Society 56(9), 1016–1029.spa
dc.relation.referencesBlank, L. T., Tarquin, A. J. & B., C. F. M. (2012), Ingenier´ıa econ´omica, number 658.15/B64eE, McGraw-Hill.spa
dc.relation.referencesBlock, S. B., Hirt, G. A. & Gómez Mont Araiza, J. T. (2013), Fundamentos de administración financiera., McGraw-Hillspa
dc.relation.referencesBrasil, P. (2010), ‘Diagnosismed: Diagnostic test accuracy evaluation for medical professionals’, R package version 0.2 3, 837–845.spa
dc.relation.referencesBreiman, L. (1996), ‘Bagging predictors’, Machine learning 24(2), 123–140.spa
dc.relation.referencesBreiman, L. (2001), ‘Random forests’, Machine learning 45(1), 5–32.spa
dc.relation.referencesBrémaud, P. (2013), Markov chains: Gibbs fields, Monte Carlo simulation, and queues, Vol. 31, Springer Science & Business Media.spa
dc.relation.referencesCarstensen, B., Plummer, M., Laara, E., Hills, M. & Carstensen, M. B. (2019), ‘Package epi’.spa
dc.relation.referencesDaykin, C. D., Pentikainen, T. & Pesonen, M. (1993), Practical risk theory for actuaries, CRC Press.spa
dc.relation.referencesDutang, C., Goulet, V., Pigeon, M. et al. (2008), ‘actuar: An r package for actuarial science’, Journal of Statistical software 25(7), 1–37.spa
dc.relation.referencesEfron, B. & Tibshirani, R. J. (1994), An introduction to the bootstrap, CRC pressspa
dc.relation.referencesEveritt, B. (2013), Finite mixture distributions, Springer Science & Business Media.spa
dc.relation.referencesFerrari, S. & Cribari-Neto, F. (2004), ‘Beta regression for modelling rates and proportions’, Journal of applied statistics 31(7), 799–815.spa
dc.relation.referencesFix, E. & Hodges Jr, J. L. (1951), Discriminatory analysis-nonparametric discrimination: consistency properties, Technical report, California Univ Berkeley.spa
dc.relation.referencesFluss, R., Faraggi, D. & Reiser, B. (2005), ‘Estimation of the youden index and its associated cutoff point’, Biometrical Journal: Journal of Mathematical Methods in Biosciences 47(4), 458–472.spa
dc.relation.referencesFreeman, E. (2007), ‘Presenceabsence: an r package for presence-absence model evaluation’, USDA Forest Service, Rocky Mountain Research Station 507.spa
dc.relation.referencesHastie, T., Tibshirani, R. & Friedman, J. (2009), The elements of statistical learning: data mining, inference, and prediction, Springer Science & Business Mediaspa
dc.relation.referencesHogg, R. V. & Klugman, S. A. (2009), Loss distributions, Vol. 249, John Wiley & Sons.spa
dc.relation.referencesKaas, R., Goovaerts, M., Dhaene, J. & Denuit, M. (2008), Modern actuarial risk theory: using R, Vol. 128, Springer Science & Business Media.spa
dc.relation.referencesKaratzoglou, A., Smola, A., Hornik, K. & Zeileis, A. (2004), ‘kernlab-an s4 package for kernel methods in r’, Journal of statistical software 11(9), 1–20.spa
dc.relation.referencesKhan, M. R. A. A. (2019), ‘Rocit-an r package for performance assessment of binary classifier with visualization’.spa
dc.relation.referencesKruppa, J., Liu, Y., Biau, G., Kohler, M., K¨onig, I. R., Malley, J. D. & Ziegler, A. (2014a), ‘Probability estimation with machine learning methods for dichotomous and multicategory outcome: Theory’, Biometrical Journal 56(4), 534–563.spa
dc.relation.referencesKruppa, J., Liu, Y., Diener, H.-C., Holste, T., Weimar, C., K¨onig, I. R. & Ziegler, A. (2014b), ‘Probability estimation with machine learning methods for dichotomous and multicategory outcome: Applications’, Biometrical Journal 56(4), 564–583.spa
dc.relation.referencesKruppa, J., Schwarz, A., Arminger, G. & Ziegler, A. (2013), ‘Consumer credit risk: Individual probability estimates using machine learning’, Expert Systems with Applications 40(13), 5125–5131.spa
dc.relation.referencesKuhn, M. (2009), ‘The caret package’, Journal of Statistical Software 28(5).spa
dc.relation.referencesLiaw, A., Wiener, M. et al. (2002), ‘Classification and regression by randomforest’, R news 2(3), 18–22.spa
dc.relation.referencesLien, D., Stroud, C. & Ye, K. (2016), ‘Comparing var approximation methods that use the first four moments as inputs’, communications in Statistics-Simulation and Computation 45(2), 491–503.spa
dc.relation.referencesLópez-Ratón, M., Rodríguez-Alvarez, M. X., Cadarso-Suárez, C., Gude-Sampedro, F. et al. (2014), ‘Optimalcutpoints: an r package for selecting optimal cutpoints in diagnostic tests’, J Stat Softw 61(8), 1–36.spa
dc.relation.referencesLouzada, F., Ara, A. & Fernandes, G. B. (2016), ‘Classification methods applied to credit scoring: Systematic review and overall comparison’, Surveys in Operations Research and Management Science 21(2), 117–134spa
dc.relation.referencesNovomestky, F., Nadarajah, S. & Novomestky, M. F. (2016), ‘Package ‘truncdist”.spa
dc.relation.referencesPalomares, J. & Peset, M. (2015), Estados financieros Interpretación y an´alisis, España: Pirámide (Grupo Anaya, SA).spa
dc.relation.referencesRamsay, C. M. (1991), ‘A note of the normal power approximation’, ASTIN Bulletin: The Journal of the IAA 21(1), 147–150.spa
dc.relation.referencesRipley, B., Venables, W. & Ripley, M. B. (2019), ‘Package class’.spa
dc.relation.referencesRobin, X., Turck, N., Hainard, A., Tiberti, N., Lisacek, F., Sanchez, J.-C., M¨uller, M., Siegert, S., Doering, M. & Robin, M. X. (2021), Package ‘proc’, Technical report, 2012-09-10 09: 34.spa
dc.relation.referencesRolski, T., Schmidli, H., Schmidt, V. & Teugels, J. L. (2009), Stochastic processes for insurance and finance, Vol. 505, John Wiley & Sonsspa
dc.relation.referencesRoss, S. A., Westerfield, R., Jordan, B. D. & Biktimirov, E. N. (2016), Essentials of corporate finance, McGraw-Hill/Irwin.spa
dc.relation.referencesSing, T., Sander, O., Beerenwinkel, N. & Lengauer, T. (2005), ‘Rocr: visualizing classifier performance in r’, Bioinformatics 21(20), 3940–3941.spa
dc.relation.referencesSpedicato, G. A. (2017), ‘Discrete time markov chains with r’, The R Journal . R package version 0.6.9.7. URL: https://journal.r-project.org/archive/2017/RJ-2017-036/index.htmlspa
dc.relation.referencesThiele, C. (2018), ‘Cutpointr: Determine and evaluate optimal cutpoints in binary classification tasks’.spa
dc.relation.referencesThomopoulos, N. T. (2012), Essentials of Monte Carlo simulation: Statistical methods for building simulation models, Springer Science & Business Mediaspa
dc.relation.referencesTse, Y.-K. (2009), Nonlife actuarial models: theory, methods and evaluation, Cambridge University Press.spa
dc.relation.referencesWright, M. N. & Ziegler, A. (2015), ‘ranger: A fast implementation of random forests for high dimensional data in c++ and r’, arXiv preprint arXiv:1508.04409 .spa
dc.relation.referencesZeileis, A., Cribari-Neto, F., Gr¨un, B. & Kos-midis, I. (2010), ‘Beta regression in r’, Journal of statistical software 34(2), 1–24.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc330 - Economía::332 - Economía financieraspa
dc.subject.ddc510 - Matemáticas::519 - Probabilidades y matemáticas aplicadasspa
dc.subject.lembAccounts receivable
dc.subject.lembCuentas por cobrar
dc.subject.proposalCartera de créditospa
dc.subject.proposalAmortizaciónspa
dc.subject.proposalModelo de Mezclas Bernoullispa
dc.subject.proposalValor en Riesgospa
dc.subject.proposalSimulación de variablesspa
dc.subject.proposalCadenas de Markovspa
dc.subject.proposalRegresión Betaspa
dc.subject.proposalProbabilidades de incumplimientospa
dc.subject.proposalModelo de probabilidades de máquinaspa
dc.subject.proposalPuntaje de cortespa
dc.subject.proposalLoan portfolioeng
dc.subject.proposalVariable simulationeng
dc.subject.proposalMarkov chainseng
dc.subject.proposalAmortizationeng
dc.subject.proposalBeta regressioneng
dc.subject.proposalDefault probabilitieseng
dc.subject.proposalMachine probability modeleng
dc.subject.proposalBernoulli Mixtures Modeleng
dc.subject.proposalCut-off score and Value at Riskeng
dc.titleProbabilidades de máquina y aplicaciones al caso de default en portafolios de créditospa
dc.title.translatedMachine probabilities and applications to the case of default in credit portfolioseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1085326267.2022.pdf
Tamaño:
758.48 KB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Estadística

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: