Programación de la operación de una microred de prueba minimizando la congestión y el costo de operación mediante algoritmos heurísticos

dc.contributor.advisorRivera Rodríguez, Sergio Raúl
dc.contributor.authorNitola Chaparro, Lizeth Alejandra
dc.contributor.researchgroupGrupo de Investigación EMC-UNspa
dc.date.accessioned2021-06-08T17:13:59Z
dc.date.available2021-06-08T17:13:59Z
dc.date.issued2021
dc.descriptionilustraciones, graficasspa
dc.description.abstractEl presente estudio revisa el impacto que se puede presentar por la inmersión de fuentes de generación a la red de distribución, con un enfoque técnico, operativo y comercial, dadas por las transacciones de energía entre cliente y operador. De esta manera se requiere de un arreglo matemático que permita identificar el balance entre la congestión y el costo de operación de una microred. en el momento de realizar la programación de la operación del sistema en un horizonte de tiempo de 24 horas. Así la investigación se encamina a la solución mediante algoritmos heurísticos, que permiten abordar las restricciones no-covexas del planteamiento del problema propuesto. El algoritmo de optimización propuesto para el análisis esta dado por el método de optimización de enjambre de partículas multiobjetivo (MOPSO), proporcionando un conjunto de soluciones que son conocidas como Pareto óptimo. Este algoritmo se plantea en un sistema IEEE de 141 buses/nodos, el cual consta de una red radial de distribución que considera 141 buses usado como uno de los casos base o caso de estudio en Matpower. Para ello, este sistema fue modificado y enél se incluyeron una serie de inyecciones de generación renovable, sistemas que coordinan vehículos eléctricos, (agregadores), almacenamiento en baterías y el nodo slack se mantuvo igual que el caso base y se asumió que este tiene (generación tradicional). Al final se puede evidenciar que el algoritmo puede aportar soluciones para la planificación de la operación de la red, probar la robustez del sistema y verificar algunas contingencias de forma comparativa. Siempre optimizando el balance entre la congestión y el costo.spa
dc.description.abstractThis study reviews the impact that can be presented by the immersion of generation sources into the distribution network, with a technical, operational and commercial approach, given by the energy transactions between customer and operator. This requires a mathematical arrangement to identify the balance between congestion and the operating cost of a microgrid when it is required the operation scheduling of the system in a day ahead horizon time. Thus, the research is directed to the solution, using heuristic algorithms, since they allow the non-convex constraints of the mathematical proposed problem. The optimization algorithm proposed for the analysis is given by the Multi-Object Particle Swarm Optimization (MOPSO) method, it provides a set of solutions that are known as Optimal Pareto. This algorithm is presented in an IEEE 141-bus system, which consists of a radial distribution network that considers 141 buses used by Matpower, this system was modified and included a series of renewable generation injections, systems that coordinate electric vehicles, battery storage and the slack node was maintained and assumed to have (traditional generation). In the end it can be shown that the algorithm can provide solutions for network operation planning, test system robustness and verify some contingencies comparatively. Always optimizing the balance between congestion and cost.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Ingeniería Eléctricaspa
dc.description.researchareaSistemas de Potenciaspa
dc.description.researchareaSmart Gridsspa
dc.description.researchareaOptimización usando algoritmos heurísticosspa
dc.format.extent1 recurso en linea (121 paginas)spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79615
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Ingeniería Eléctrica y Electrónicaspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Eléctricaspa
dc.relation.references[1] S. Huang, Q. Wu, Z. Liu, and A. H. Nielsen, “Review of congestion management methods for distribution networks with high penetration of distributed energy resources,” in IEEE PES Innovative Smart Grid Technologies Conference Europe, Jan. 2015, vol. 2015-Janua, no. January, doi: 10.1109/ISGTEurope.2014.7028811.spa
dc.relation.references[2] A. Abdolahi, J. Salehi, F. Samadi Gazijahani, and A. Safari, “Probabilistic multi-objective arbitrage of dispersed energy storage systems for optimal congestion management of active distribution networks including solar/wind/CHP hybrid energy system,” J. Renew. Sustain. Energy, vol. 10, no. 4, Jul. 2018, doi: 10.1063/1.5035081.spa
dc.relation.references[3] K. Spiliotis, S. Claeys, A. Ramos Gutierrez, and J. Driesen, “Utilizing Local Energy Storage for Congestion Management and Investment Deferral in Distribution Networks.”spa
dc.relation.references[4] J. M. L. Lezama, “PROPUESTAS ALTERNATIVAS PARA MANEJO DE CONGESTIÓN EN EL MERCADO DE ENERGÍA ELÉCTRICA COLOMBIANO,” 2006.spa
dc.relation.references[5] S. Gope, S. Dawn, R. Mitra, A. K. Goswami, and P. K. Tiwari, “Transmission congestion relief with integration of photovoltaic power using lion optimization algorithm,” in Advances in Intelligent Systems and Computing, 2019, vol. 816, pp. 327–338, doi: 10.1007/978-981-13-1592-3_25.spa
dc.relation.references[6] E. Reihani, P. Siano, and M. Genova, “A new method for peer-to-peer energy exchange in distribution grids,” Energies, vol. 13, no. 4, 2020, doi: 10.3390/en13040799.spa
dc.relation.references[7] K. Vijayakumar, “Multiobjective optimization methods for congestion management in deregulated power systems,” J. Electr. Comput. Eng., 2012, doi: 10.1155/2012/962402.spa
dc.relation.references[8] J. M. L. LEZAMA, “UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MANIZALES DEPARTAMENTO DE INGENIERÍA ELÉCTRICA, ELECTRÓNICA Y COMPUTACIÓN,” Manizalez, 2006.spa
dc.relation.references[9] Institute of Electrical and Electronics Engineers, IEEE Dielectrics and Electrical Insulation Society. Kolkata Chapter, IEEE Power & Energy Society. Kolkata Chapter, Institute of Electrical and Electronics Engineers. Kolkata section, and North Eastern Regional Institute of Science and Technology, 2012 1st International Conference on Power and Energy in NERIST (lCPEN) : proceedings : [held at new seminar hall of North Eastern Regional Institute of Science and Technology] : Nirjuli, Arunachal Pradesh, India : 28-29 December 2012. .spa
dc.relation.references[10] J. Hazra and A. K. Sinha, “Congestion management using multiobjective particle swarm optimization,” IEEE Trans. Power Syst., vol. 22, no. 4, pp. 1726–1734, Nov. 2007, doi: 10.1109/TPWRS.2007.907532.spa
dc.relation.references[11] I. Kalogeropoulos and H. Sarimveis, “Predictive control algorithms for congestion management in electric power distribution grids,” Appl. Math. Model., vol. 77, pp. 635–651, Jan. 2020, doi: 10.1016/j.apm.2019.07.034.spa
dc.relation.references[12] W. Liu, Q. Wu, F. Wen, and J. Ostergaard, “Day-ahead congestion management in distribution systems through household demand response and distribution congestion prices,” IEEE Trans. Smart Grid, vol. 5, no. 6, pp. 2739–2747, 2014, doi: 10.1109/TSG.2014.2336093.spa
dc.relation.references[13] M. Kashyap and S. Kansal, “Hybrid approach for congestion management using optimal placement of distributed generator,” Int. J. Ambient Energy, vol. 39, no. 2, pp. 132–142, 2018, doi: 10.1080/01430750.2016.1269676.spa
dc.relation.references[14] J. Li and F. Li, “A Congestion Index considering the Characteristics of Generators & Networks.”spa
dc.relation.references[15] P. Biswas and B. B. Pal, “A fuzzy goal programming method to solve congestion management problem using genetic algorithm,” Decis. Mak. Appl. Manag. Eng., vol. 2, no. 2, Oct. 2019, doi: 10.31181/dmame1902040b.spa
dc.relation.references[16] S. Patil and N. Asati, “CONGESTION MANAGEMENT USING GENETIC ALGORITHM,” 2019. [Online]. Available: www.irjeas.org,.spa
dc.relation.references[17] H. Khani, M. R. D. Zadeh, and A. H. Hajimiragha, “Transmission Congestion Relief Using Privately Owned Large-Scale Energy Storage Systems in a Competitive Electricity Market,” IEEE Trans. Power Syst., vol. 31, no. 2, pp. 1449–1458, Mar. 2016, doi: 10.1109/TPWRS.2015.2414937.spa
dc.relation.references[18] K. Furusawa, H. Sugihara, K. Tsuji, and Y. Mitani, “A Study on Power Flow Congestion Relief by using Customer-side Energy Storage System,” IEEJ Trans. Power Energy, vol. 125, no. 3, pp. 293–301, 2005, doi: 10.1541/ieejpes.125.293.spa
dc.relation.references[19] F. D’Agostino, S. Massucco, P. Pongiglione, M. Saviozzi, and F. Silvestro, “Optimal der regulation and storage allocation in distribution networks: Volt/Var optimization and congestion relief,” in 2019 IEEE Milan PowerTech, PowerTech 2019, 2019, doi: 10.1109/PTC.2019.8810422.spa
dc.relation.references[20] J. Hazra, M. Padmanaban, F. Zaini, and L. C. De Silva, “Congestion relief using grid scale batteries,” in 2015 IEEE Power and Energy Society Innovative Smart Grid Technologies Conference, ISGT 2015, Jun. 2015, doi: 10.1109/ISGT.2015.7131789.spa
dc.relation.references[21] A. N. M. M. Haque, P. H. Nguyen, W. L. Kling, and F. W. Bliek, “Congestion management in smart distribution network,” in Proceedings of the Universities Power Engineering Conference, Oct. 2014, doi: 10.1109/UPEC.2014.6934751.spa
dc.relation.references[22] R. T. Elliott et al., “Sharing Energy Storage Between Transmission and Distribution,” IEEE Trans. Power Syst., vol. 34, no. 1, pp. 152–162, Jan. 2019, doi: 10.1109/TPWRS.2018.2866420.spa
dc.relation.references[23] G. Koeppel, M. Geidl, G. Andersson, G. Koeppel, M. Geidl, and G. Andersson, “‘Value of Storage Devices in Congestion Constrained Distribution Networks’ Value of Storage Devices in Congestion Constrained Distribution Networks,” 2004.spa
dc.relation.references[24] B. K. Sarkar, A. De, and A. Chakrabarti, “Impact of Distributed Generation for congestion relief in power networks,” in 2012 1st International Conference on Power and Energy in NERIST, ICPEN 2012 - Proceedings, 2012, doi: 10.1109/ICPEN.2012.6492324.spa
dc.relation.references[25] K. Zhang, S. Troitzsch, S. Hanif, and T. Hamacher, “Coordinated Market Design for Peer-to-Peer Energy Trade and Ancillary Services in Distribution Grids Control-oriented Building Model (CoBMo) View project Platform for Interconnected Micro-grid Operation (PRIMO) View project Coordinated Market Design for Peer-to-Peer Energy Trade and Ancillary Services in Distribution Grids.” [Online]. Available: https://www.researchgate.net/publication/338501038.spa
dc.relation.references[26] J. Hu, G. Yang, C. Ziras, and K. Kok, “Aggregator Operation in the Balancing Market Through Network-Constrained Transactive Energy,” IEEE Trans. Power Syst., vol. 34, no. 5, pp. 4071–4080, Sep. 2019, doi: 10.1109/TPWRS.2018.2874255.spa
dc.relation.references[27] J. Zhao, Y. Wang, G. Song, P. Li, C. Wang, and J. Wu, “Congestion Management Method of Low-Voltage Active Distribution Networks Based on Distribution Locational Marginal Price,” IEEE Access, vol. 7, pp. 32240–32255, 2019, doi: 10.1109/ACCESS.2019.2903210.spa
dc.relation.references[28] Carlos Eduardo Barón Moreno, “TESIS Programación de la operación horaria de una microred minimizando el costo de operación usando el algoritmo heurístico DEEPSO (1),” Nacional de Colombia, 2019.spa
dc.relation.references[29] J. Arévalo, F. Santos, and S. Rivera, “Application of Analytical Uncertainty Costs of Solar, Wind and Electric Vehicles in Optimal Power Dispatch,” Ingeniería, vol. 22, no. 3, pp. 324–346, 2017, doi: 10.14483/23448393.11673.spa
dc.relation.references[30] R. S. Wibowo, F. F. Utama, D. F. U. Putra, and N. K. Aryani, “Unit commitment with non-smooth generation cost function using binary particle swarm optimization,” in Proceeding - 2016 International Seminar on Intelligent Technology and Its Application, ISITIA 2016: Recent Trends in Intelligent Computational Technologies for Sustainable Energy, Jan. 2017, pp. 571–576, doi: 10.1109/ISITIA.2016.7828723.spa
dc.relation.references[31] Q. Zhang, Z. Ren, R. Ma, M. Tang, and Z. He, “Research on double-layer optimized configuration of multi-energy storage in regional integrated energy system with connected distributed wind power,” Energies, vol. 12, no. 20, Oct. 2019, doi: 10.3390/en12203964.spa
dc.relation.references[32] C. Baron and S. Rivera, “Mono-objective minimization of operation cost for a microgrid with renewable power generation, energy storage and electric vehicles,” Rev. Int. Métodos Numéricos para Cálculo y Diseño en Ing., vol. 35, no. 3, Jul. 2019, doi: 10.23967/j.rimni.2019.06.005.spa
dc.relation.references[33] J. C. Arevalo, F. Santos, and S. Rivera, “Uncertainty cost functions for solar photovoltaic generation, wind energy generation, and plug-in electric vehicles: Mathematical expected value and verification by Monte Carlo simulation,” Int. J. Power Energy Convers., vol. 10, no. 2, pp. 171–207, 2019, doi: 10.1504/IJPEC.2019.098621.spa
dc.relation.references[34] Z. Xu, Z. Hu, Y. Song, W. Zhao, and Y. Zhang, “Coordination of PEVs charging across multiple aggregators,” Appl. Energy, vol. 136, pp. 582–589, Dec. 2014, doi: 10.1016/j.apenergy.2014.08.116.spa
dc.relation.references[35] A. Serpi and M. Porru, “Modelling and Design of Real-Time Energy Management Systems for Fuel Cell/Battery Electric Vehicles,” Energies, vol. 12, no. 22, p. 4260, Nov. 2019, doi: 10.3390/en12224260.spa
dc.relation.references[36] A. Hussain, V. H. Bui, J. W. Baek, and H. M. Kim, “Stationary energy storage system for fast EV charging stations: Simultaneous sizing of battery and converter,” Energies, vol. 12, no. 23, 2019, doi: 10.3390/en12234516.spa
dc.relation.references[37] R. Dufo-López and J. L. Bernal-Agustín, “Multi-objective design of PV-wind-diesel-hydrogen-battery systems,” Renew. Energy, vol. 33, no. 12, pp. 2559–2572, Dec. 2008, doi: 10.1016/j.renene.2008.02.027.spa
dc.relation.references[38] F. Berglund, S. Zaferanlouei, M. Korpås, and K. Uhlen, “Optimal Operation of Battery Storage for a Subscribed Capacity-Based Power Tariff Prosumer—A Norwegian Case Study,” Energies, vol. 12, no. 23, p. 4450, Nov. 2019, doi: 10.3390/en12234450.spa
dc.relation.references[39] C. Jankowiak, A. Zacharopoulos, C. Brandoni, P. Keatley, P. MacArtain, and N. Hewitt, “The Role of Domestic Integrated Battery Energy Storage Systems for Electricity Network Performance Enhancement,” Energies, vol. 12, no. 20, p. 3954, Oct. 2019, doi: 10.3390/en12203954.spa
dc.relation.references[40] B. Zhao, X. Zhang, J. Chen, C. Wang, and L. Guo, “Operation optimization of standalone microgrids considering lifetime characteristics of battery energy storage system,” IEEE Trans. Sustain. Energy, vol. 4, no. 4, pp. 934–943, 2013, doi: 10.1109/TSTE.2013.2248400.spa
dc.relation.references[41] T. Sikorski et al., “A case study on distributed energy resources and energy-storage systems in a virtual power plant concept: Economic aspects,” Energies, vol. 12, no. 23, 2019, doi: 10.3390/en12234447.spa
dc.relation.references[42] C. A. C. Coello, G. B. Lamont, and D. A. Van Veldhuizen, Evolutionary Algorithms for Solving Multi-Objective Problems. 2007.spa
dc.relation.references[43] and E. M. T. O. R. A. Gallego Rendon, A. H. Escobar Zuluaga, Tecnicas metaheuristicas de optimizacion, Segunda. Pereira, 2008.spa
dc.relation.references[44] M. Vélez Gallego and J. Montoya, “Metaheurísticos: Una alternativa para la solución de problemas combinatorios en administración de operaciones,” Metaheurísticos Una Altern. para la solución Probl. Comb. en Adm. operaciones, vol. 4, no. 8, pp. 99–115, 2007, doi: 10.24050/reia.v4i8.188.spa
dc.relation.references[45] K. A. Dowsland and B. A. Díaz, “Diseño de heurística y fundamentos del recocido simulado,” Intel. Artif. Rev. Iberoam. Intel. Artif., vol. 7, no. 19, p. 0, 2003.spa
dc.relation.references[46] “Optimización por colonia de hormigas: aplicaciones y tendencias,” Ing. Solidar., vol. 6, no. 10, pp. 83–89, 2011.spa
dc.relation.references[47] A. Jonathan, “ALGORITMO CULTURAL Y DE NUBES DE PARTICULAS MULTI-OBJETIVO PARA EVITAR,” 2017, [Online]. Available: http://oa.upm.es/47845/1/TFM_JONATHAN_AGUIRRE_SAMBONI.pdf.spa
dc.relation.references[48] C. Adrián Correa Flórez, R. ANDRÉS BOLAÑOS Ingeniero Electricista Analista Programación Operación, A. MOLINA CABRERA Ingeniero Electricista, and P. Auxiliar, “Septiembre de 2008,” Sci. Tech. Año XIV, vol. 39.spa
dc.relation.references[49] metode penelitian Nursalam, 2016 and A. . Fallis, “ESTUDIO COMPARATIVO DE TÉCNICAS DE OPTIMIZACIÓN MULTIOBJETIVO PARA DETERMINAR LA MÁS ADECUADA EN PROBLEMAS MULTI-CRITERIO,” J. Chem. Inf. Model., vol. 53, no. 9, pp. 1689–1699, 2013.spa
dc.relation.references[50] C. A. Coello Coello and M. S. Lechuga, “MOPSO: A proposal for multiple objective particle swarm optimization,” Proc. 2002 Congr. Evol. Comput. CEC 2002, vol. 2, pp. 1051–1056, 2002, doi: 10.1109/CEC.2002.1004388.spa
dc.relation.references[51] J. Yang, J. Zhou, L. Liu, and Y. Li, “A novel strategy of pareto-optimal solution searching in multi-objective particle swarm optimization (MOPSO),” Comput. Math. with Appl., vol. 57, no. 11–12, pp. 1995–2000, Jun. 2009, doi: 10.1016/j.camwa.2008.10.009.spa
dc.relation.references[52] H. M. Khodr, F. G. Olsina, P. M. D. O. De Jesus, and J. M. Yusta, “Maximum savings approach for location and sizing of capacitors in distribution systems,” Electr. Power Syst. Res., vol. 78, no. 7, pp. 1192–1203, 2008, doi: 10.1016/j.epsr.2007.10.002.spa
dc.relation.references[53] S. Bhullar and S. Ghosh, “Optimal integration of multi distributed generation sources in radial distribution networks using a hybrid algorithm,” Energies, vol. 11, no. 3, 2018, doi: 10.3390/en11030628.spa
dc.relation.references[54] A. Chaouachi, R. M. Kamel, R. Andoulsi, and K. Nagasaka, “Multiobjective Intelligent Energy Management for a Microgrid _ Aymen Chaouachi - Academia,” IEEE Trans. Ind. Electron., vol. 60, no. 4, pp. 1688–1699, 2013, doi: 10.1109/TIE.2012.2188873.spa
dc.relation.references[55] U.S. Energy Information Administration (EIA), “Annual Energy Outlook 2013 with projections to 2040.” Washington, DC, p. 244, 2013.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc110 - Metafísica::118 - Fuerza y energíaspa
dc.subject.proposalCongestiónspa
dc.subject.proposalCosto de operaciónspa
dc.subject.proposalOptimización multiobjetivospa
dc.subject.proposalMOPSOspa
dc.subject.proposalPareto óptimospa
dc.subject.proposalMicroredspa
dc.subject.proposalEnergías renovablesspa
dc.subject.proposalCongestioneng
dc.subject.proposalCost of operationeng
dc.subject.proposalMulti-object optimizationeng
dc.subject.proposalOptimal paretoeng
dc.subject.proposalMicrogrideng
dc.subject.proposalRenewable energieseng
dc.titleProgramación de la operación de una microred de prueba minimizando la congestión y el costo de operación mediante algoritmos heurísticosspa
dc.title.translatedProgramming the operation of a test microgrid minimizing congestion and operating cost through heuristic algorithmseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
TesisAleja_Aceptado 26_05_2021_Final.pdf
Tamaño:
2.47 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería Eléctrica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: