En 5 día(s), 9 hora(s) y 51 minuto(s): El Repositorio Institucional UNAL informa a la comunidad universitaria que, con motivo del periodo de vacaciones colectivas, el servicio de publicación estará suspendido: Periodo de cierre: Del 20 de diciembre al 18 de enero de 2026. Sobre los depósitos: Durante este tiempo, los usuarios podrán continuar realizando el depósito respectivo de sus trabajos en la plataforma. Reanudación: Una vez reiniciadas las actividades administrativas, los documentos serán revisados y publicados en orden de llegada.

Producción de recubrimientos de TiO2 mediante oxidación electrolítica por plasma (PEO), para posibles aplicaciones tecnológicas

dc.contributor.advisorRestrepo-Parra, Elisabethspa
dc.contributor.advisorOspina-Ospina, Rogeliospa
dc.contributor.authorTorres-Cerón, Darwin Augustospa
dc.contributor.researchgroupLaboratorio de Física del Plasmaspa
dc.date.accessioned2020-05-27T20:10:41Zspa
dc.date.available2020-05-27T20:10:41Zspa
dc.date.issued2020spa
dc.description.abstractLa oxidación electrolítica por plasma es una técnica utilizada para la formación de recubrimientos cerámicos de tipo óxido, la cual es económica y amigable con el medio ambiente, ya que no genera residuos tóxicos. En este trabajo, se realizó la síntesis de TiO2/P mediante variaciones de ciclo útil para la variación del ancho de banda de energía prohibida. Para ello se diseñó una fuente conmutada de tensión máxima de salida de 357 V (DC no regulada), capacidad de ∼ 20 A y posibilidad de variaciones tanto de frecuencia entre 500 Hz y 5000 Hz y de ciclo útil de trabajo entre 1 y 99 %. Los recubrimientos se llevaron a cabo sobre sustratos de Ti de 2×2×1 mm, en una solución electrolítica de Na3PO4 e NaOH, con variaciones de ciclo útil de la fuente de 1, 10, 30 y 50 % respectivamente. Los resultados mediante AFM y SEM mostraron un aumento en la rugosidad de 40 nm a 263 nm y del tamaño de poro de 423 nm a 1324 nm en función del incremento del ciclo útil. Adicionalmente, se observó aumento en el contenido de P y de regiones nodulares, comportamiento atribuido a los canales de descargas mayores a ciclos útiles mayores. Mediante XRD se observó la fase anatasa para valores de ciclo útil entre 1 y 30 %, mientras que para la muestra obtenida a ciclo útil del 50 %, se evidenció un estado amorfo intermedio entre la anatasa y rutilo. Así mismo, estos resultados fueron corroborados mediante espectrocopía Raman en la cual se apreció la coexistencia de las fases anata y rutilo a ciclo útil de 50 %. Finalmente, se logró la disminución del GAP de 3,29 eV a 3,20 eV y desplazamiento de la absorción de 380 nm a 425 nm con el aumento del ciclo útil. Estos resultados de la modificación del GAP por ciclo útil puede tener alto potencial aplicativo en cuanto a procesos tecnológicos y como una posible alternativa para el uso de electrolitos de alto costo en trabajos futuros. (Texto tomado de la fuente)spa
dc.description.abstractThe electrolytic oxidation by plasma is a technique used in the formation of ceramic coatings of oxide type, which is economic and friendly with the environment, since, it does not generate toxic residues. In this work, the TiO2/P synthesis was made by duty cycle variations to get variations in the bandgap. For this, a commuted source with a maximum output voltage of 357 V (DC no regulated), 20 A of capacity, frequency variations between 500 and 5000 Hz and duty cycle between 1 and 99 % was designed. The coatings were implemented over Ti substrates with dimensions of 20×20×1 mm, in Na3PO4 and NaOH electrolytic solutions, with variations of the duty cycle of 1, 10, 30, 50 %, respectively. The results obtained by AFM and SEM showed an increase in roughness from 40 nm to 263 nm and in size pore from 423 nm to 1324 nm as duty cycle increases. Additionally, it was observed an increase in P content and nodular regions, a behaviour attributed to high duty cycles which form high discharge channels. Through XRD was observed anatase phase for duty cycles between 1 and 30 %, whereas for a sample obtained in 50 % duty cycle showed an amorphous intermediate state between anatase and rutile. Also, these results were confirmed by Raman spectroscopy that showed the coexistence between anatase and rutile phases for a 50 % duty cycle. Finally, a GAP reduction from 3.29 eV to 3.20 eV and displacement in the absorption peak from 380 nm to 425 nm was accomplished employing the increase of duty cycle. These results about the GAP modification by duty cycle can have high potential application in technological processes and a possible alternative for the use of high expensive electrolytes in future works.eng
dc.description.degreelevelMaestríaspa
dc.format.extent91spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationD. A. Torres-Cerón, E. Restrepo-Parra, and R. Ospina-Ospina, “Producción de recubrimientos de TiO2 mediante oxidación electrolítica por plasma (PEO), para posibles aplicaciones tecnológicas,” Universidad Nacional de Colombia, 2020.spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77566
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizalesspa
dc.publisher.departmentDepartamento de Ingeniería Químicaspa
dc.publisher.programManizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Ingeniería Químicaspa
dc.relation.references[1] X. Lu, M. Mohedano, C. Blawert, E. Matykina, R. Arrabal, K. U. Kainer, and M. L. Zheludkevich, “Plasma electrolytic oxidation coatings with particle additions - A review,” Surface and Coatings Technology, vol. 307, pp. 1165–1182, 2016. [2] H. Dong, “Surface engineering of light alloys: aluminium, magnesium and titanium alloys,” International Heat Treatment and Surface Engineering, vol. 4, no. 2, pp. 57– 57, jun 2010. [3] F. C. Walsh, C. T. J. Low, R. J. K. Wood, K. T. Stevens, J. Archer, A. R. Poeton, and A. Ryder, “Plasma electrolytic oxidation (PEO) for production of anodised coatings on lightweight metal (Al, Mg, Ti) alloys,” Transactions of the IMF, vol. 87, no. 3, pp. 122–135, may 2009. [4] A. L. Yerokhin, X. Nie, A. Leyland, A. Matthews, and S. J. Dowey, “Plasma electrolysis for surface engineering,” Surface and Coatings Technology, vol. 122, no. 2-3, pp. 73–93, 1999. [5] Y. Sheng, Z. Zhang, and W. Li, “Effects of pulse frequency and duty cycle on the plasma discharge characteristics and surface microstructure of carbon steel by plasma electrolytic nitrocarburizing,” Surface and Coatings Technology, vol. 330, no. September, pp. 113–120, 2017. [6] H. Khanmohammadi, S. Allahkaram, and N. Towhidi, “Microstructural, corrosion and mechanical behavior of two step plasma electrolyte oxidation ceramic coatings,” Transactions of Nonferrous Metals Society of China, vol. 27, no. 10, pp. 2225–2233, oct 2017. [7] S. Franz, D. Perego, O. Marchese, A. Lucotti, and M. Bestetti, “Photoactive TiO2 coatings obtained by Plasma Electrolytic Oxidation in refrigerated electrolytes,” Applied Surface Science, vol. 385, pp. 498–505, 2016. [8] T. Akatsu, Y. Yamada, Y. Hoshikawa, T. Onoki, Y. Shinoda, and F. Wakai, “Multifunctional porous titanium oxide coating with apatite forming ability and photocatalytic activity on a titanium substrate formed by plasma electrolytic oxidation,” Materials Science and Engineering C, vol. 33, no. 8, pp. 4871–4875, 2013. [9] J. Tian, Z. Luo, S. Qi, and X. Sun, “Structure and antiwear behavior of micro-arc oxidized coatings on aluminum alloy,” Surface and Coatings Technology, vol. 154, no. 1, pp. 1–7, 2002. [10] J. Liang, L. Hu, and J. Hao, “Characterization of microarc oxidation coatings formed on AM60B magnesium alloy in silicate and phosphate electrolytes,” Applied Surface Science, vol. 253, no. 10, pp. 4490–4496, mar 2007. [11] C. Blawert, V. Heitmann, W. Dietzel, H. M. Nykyforchyn, and M. D. Klapkiv, “Influence of process parameters on the corrosion properties of electrolytic conversion plasma coated magnesium alloys,” Surface and Coatings Technology, vol. 200, no. 1-4 SPEC. ISS., pp. 68–72, 2005. [12] S. Aliasghari, P. Skeldon, and G. Thompson, “Plasma electrolytic oxidation of titanium in a phosphate/silicate electrolyte and tribological performance of the coatings,” Applied Surface Science, vol. 316, pp. 463–476, oct 2014. [13] S. Gowtham, T. Arunnellaiappan, and N. Rameshbabu, “An investigation on pulsed DC plasma electrolytic oxidation of Cp-Ti and its corrosion behaviour in simulated body fluid,” Surface and Coatings Technology, vol. 301, pp. 63–73, 2016. [14] G. Cassar, A. Matthews, and A. Leyland, “Triode plasma diffusion treatment of titanium alloys,” Surface and Coatings Technology, vol. 212, pp. 20–31, 2012. [15] Z. Yao, F. Jia, Y. Jiang, C. Li, Z. Jiang, and X. Bai, “Photocatalytic reduction of potassium chromate by Zn-doped TiO2/Ti film catalyst,” Applied Surface Science, vol. 256, no. 6, pp. 1793–1797, jan 2010. [16] D. A. Torres Ceron, F. Gordillo Delgado, and J. Plazas Saldaña, “Formation of TiO2 nanostructure by plasma electrolytic oxidation for Cr(VI) reduction,” Journal of Physics: Conference Series, vol. 755, no. 1, p. 011001, oct 2016. [17] M. S. Vasilyeva, V. S. Rudnev, and D. A. Tarabrina, “Photocatalytic properties of Znand Cd-containing oxide layers on titanium formed by plasma electrolytic oxidation,” Protection of Metals and Physical Chemistry of Surfaces, vol. 53, no. 4, pp. 711–715, 2017. [18] S. Stojadinovic, N. Tadic, N. Radic, B. Grbic, and R. Vasilic, “CdS particles modified TiO2 coatings formed by plasma electrolytic oxidation with enhanced photocatalytic activity,” Surface and Coatings Technology, vol. 344, no. March, pp. 528–533, jun 2018. [19] S. Stojadinovic, N. Radic, R. Vasilic, M. Petkovic, P. Stefanov, L. Zekovic, and B. Grbic, “Photocatalytic properties of TiO2 WO3 coatings formed by plasma electrolytic oxidation of titanium in 12 tungstosilicic acid,” Applied Catalysis B: Environmental, vol. 126, pp. 334–341, sep 2012. [20] A. Madhan Kumar, S. H. Kwon, H. C. Jung, and K. S. Shin, “Corrosion protection performance of single and dual Plasma Electrolytic Oxidation (PEO) coating for aerospace applications,” Materials Chemistry and Physics, vol. 149, pp. 480–486, 2015. [21] S. Stojadinovic, N. Tadic, N. Radic, B. Grbic, and R. Vasilic, “Effect of Tb3+doping on the photocatalytic activity of TiO2 coatings formed by plasma electrolytic oxidation of titanium,” Surface and Coatings Technology, vol. 337, no. October 2017, pp. 279–289, 2018. [22] S. Stojadinovic, N. Radíc, B. Grbic, S. Maletic, P. Stefanov, A. Pacevski, and R. Vasilic, “Structural, photoluminescent and photocatalytic properties of TiO2:Eu3+ coatings formed by plasma electrolytic oxidation,” Applied Surface Science, vol. 370, pp. 218–228, 2016. [23] F. Gordillo-Delgado, S. Moya-Betancourt, A. Parra-López, J. A. Garcia-Giraldo, and D. Torres-Cerón, “S-incorporated TiO2 coatings grown by plasma electrolytic oxidation for reduction of Cr(VI)-EDTA with sunlight,” Environmental Science and Pollution Research, jul 2018. [24] A. Gusnterschultze and H. Betz, “Electrolytkondensatores,” Berlín, Berlín, Tech. Rep., 1937. [25] W. McNeill and L. Gruss, “US Patent 2 854 390,” 1966. [26] M. G.A. and M. G.V., “USSR Patent 526 961, Bul. Inv. 32,” 1976. [27] E. V. Parfenov, A. L. Yerokhin, and A. Matthews, “Frequency response studies for the plasma electrolytic oxidation process,” Surface and Coatings Technology, vol. 201, no. 21 SPEC. ISS., pp. 8661–8670, 2007. [28] D. A. Torres-Cerón, F. Gordillo-Delgado, and S. N. Moya-Betancourt, “Effect of the voltage pulse frequency on the structure of TiO2 coatings grown by plasma electrolytic oxidation,” Journal of Physics: Conference Series, vol. 935, p. 012067, dec 2017. [29] X. Zhang, Y. Zhang, L. Chang, Z. Jiang, Z. Yao, and X. Liu, “Effects of frequency on growth process of plasma electrolytic oxidation coating,” Materials Chemistry and Physics, vol. 132, no. 2-3, pp. 909–915, 2012. [30] J. M. Albella and I. Montero, “A Theory Of Avalanche Breakdown Oxidation during anodic oxidation,” Instituto de Fisica de1 Estado Sblido, CSIC, and Dpt. de Física Aplicada, Universidad Autónoma de Madrid, Cantoblanco, vol. 32, no. 1, pp. 255–258, 1986. [31] M. V. Diamanti and M. P. Pedeferri, “Effect of anodic oxidation parameters on the titanium oxides formation,” Corrosion Science, vol. 49, pp. 939–948, 2007. [32] S. V. Gnedenkov, O. A. Khrisanfova, A. G. Zavidnaya, S. L. Sinebryukhov, V. S. Egorkin, M. V. Nistratova, A. Yerokhin, and A. Matthews, “PEO coatings obtained on an Mg-Mn type alloy under unipolar and bipolar modes in silicate-containing electrolytes,” Surface and Coatings Technology, vol. 204, no. 14, pp. 2316–2322, 2010. [33] M. Babaei, C. Dehghanian, and M. Vanaki, “Effect of additive on electrochemical corrosion properties of plasma electrolytic oxidation coatings formed on CP Ti under different processing frequency,” Applied Surface Science, vol. 357, pp. 712–720, dec 2015. [34] R. O. Hussein, P. Zhang, X. Nie, Y. Xia, and D. O. Northwood, “The effect of current mode and discharge type on the corrosion resistance of plasma electrolytic oxidation (PEO) coated magnesium alloy AJ62,” Surface and Coatings Technology, vol. 206, no. 7, pp. 1990–1997, 2011. [35] Z. Shi, G. Song, and A. Atrens, “Influence of anodising current on the corrosion resistance of anodised AZ91D magnesium alloy,” Corrosion Science, vol. 48, no. 8, pp. 1939–1959, aug 2006. [36] Y. Tang, X. Zhao, K. Jiang, J. Chen, and Y. Zuo, “The influences of duty cycle on the bonding strength of AZ31B magnesium alloy by microarc oxidation treatment,” Surface and Coatings Technology, vol. 205, no. 6, pp. 1789–1792, 2010. [37] J. Zhang, Y. Fan, X. Zhao, R. Ma, A. Du, and X. Cao, “Influence of duty cycle on the growth behavior and wear resistance of micro arc oxidation coatings on hot dip aluminized cast iron,” Surface and Coatings Technology, vol. 337, no. December 2017, pp. 141–149, mar 2018. [38] V. Dehnavi, B. L. Luan, D. W. Shoesmith, X. Y. Liu, and S. Rohani, “Effect of duty cycle and applied current frequency on plasma electrolytic oxidation (PEO) coating growth behavior,” Surface and Coatings Technology, vol. 226, pp. 100–107, 2013. [39] S. F. Lu, B. S. Lou, Y. C. Yang, P. S. Wu, R. J. Chung, and J. W. Lee, “Effects of duty cycle and electrolyte concentration on the microstructure and biocompatibility of plasma electrolytic oxidation treatment on zirconium metal,” Thin Solid Films, vol. 596, pp. 87–93, 2015. [40] S. Stojadinovic, R. Vasilic, I. Belca, M. Petkovic, B. Kasalica, Z. Nedic, and L. Zekovic, “Characterization of the plasma electrolytic oxidation of aluminium in sodium tungstate,” Corrosion Science, vol. 52, no. 10, pp. 3258–3265, 2010. [41] S. Sreeja and K. Vidya Shetty, “Microbial disinfection of water with endotoxin degradation by photocatalysis using Ag@TiO2 core shell nanoparticles,” Environmental Science and Pollution Research, vol. 23, no. 18, pp. 18 154–18 164, 2016. [42] P. A. K. Reddy, P. V. L. Reddy, E. Kwon, K. H. Kim, T. Akter, and S. Kalagara, “Recent advances in photocatalytic treatment of pollutants in aqueous media,” Environment International, vol. 91, pp. 94–103, 2016. [43] C. Tsotsos, A. L. Yerokhin, A. D. Wilson, A. Leyland, and A. Matthews, “Tribological evaluation of AISI 304 stainless steel duplex treated by plasma electrolytic nitrocarburising and diamond-like carbon coating,” Wear, vol. 253, no. 9-10, pp. 986–993, 2002. [44] P. Laxma Reddy, B. Kavitha, P. A. Kumar Reddy, and K.-h. Kim, “TiO2 based photocatalytic disinfection of microbes in aqueous media: A review,” Environmental Research, vol. 154, no. January, pp. 296–303, apr 2017. [45] J. A. Curran and T. W. Clyne, “Thermo-physical properties of plasma electrolytic oxide coatings on aluminium,” Surface and Coatings Technology, vol. 199, no. 2-3 SPEC. ISS., pp. 168–176, 2005. [46] T. Umebayashi, T. Yamaki, H. Itoh, and K. Asai, “Band gap narrowing of titanium dioxide by sulfur doping,” Applied Physics Letters, vol. 81, no. 3, pp. 454–456, 2002. [47] G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, “Enhanced Photocleavage of Water Using Titania Nanotube Arrays,” Nano Letters, vol. 5, pp. 191–195, 2005. [48] Y. Jiang, J. Wang, B. Hu, Z. Yao, Q. Xia, and Z. Jiang, “Preparation of a novel yellow ceramic coating on Ti alloys by plasma electrolytic oxidation,” Surface and Coatings Technology, vol. 307, pp. 1297–1302, 2016. [49] R. Kumari, C. Blawert, and J. D. Majumdar, “Microstructures and Properties of Plasma Electrolytic Oxidized Ti Alloy (Ti 6Al 4V) for Bio implant Application,” Metallurgical and Materials Transactions A, vol. 47, no. 2, pp. 788–800, feb 2016. [50] H. Duan, C. Yan, and F. Wang, “Growth process of plasma electrolytic oxidation films formed on magnesium alloy AZ91D in silicate solution,” Electrochimica Acta, vol. 52, no. 15, pp. 5002–5009, 2007. [51] Y. liang Cheng, X. Q. Wu, Z. gang Xue, E. Matykina, P. Skeldon, and G. E. Thompson, “Microstructure, corrosion and wear performance of plasma electrolytic oxidation coatings formed on Ti-6Al-4V alloy in silicate-hexametaphosphate electrolyte,” Surface and Coatings Technology, vol. 217, pp. 129–139, 2013. [52] L. O. Snizhko, A. L. Yerokhin, A. Pilkington, N. L. Gurevina, D. O. Misnyankin, A. Leyland, and A. Matthews, “Anodic processes in plasma electrolytic oxidation of aluminium in alkaline solutions,” Electrochimica Acta, vol. 49, no. 13, pp. 2085–2095, 2004. [53] T. Arunnellaiappan, N. Kishore Babu, L. Rama Krishna, and N. Rameshbabu, “Influence of frequency and duty cycle on microstructure of plasma electrolytic oxidized AA7075 and the correlation to its corrosion behavior,” Surface and Coatings Technology, vol. 280, pp. 136–147, 2015. [54] K. Venkateswarlu, N. Rameshbabu, S. Sreekanth, A. C. Bose, V. Muthupandi, N. K. Babu, and S. Subramanian, “Role of electrolyte additives on in-vitro electrochemical behavior of micro arc oxidized titania films on Cp Ti,” Applied Surface Science, vol. 258, no. 18, pp. 6853–6863, 2012. [55] J.-H. Song, K.-S. Nam, J.-I. Moon, Y.-J. Choi, and D.-Y. Lim, “Influence of the duty cycle on structural and mechanical properties of oxide layers on Al-1050 by a plasma electrolytic oxidation process,” Metals and Materials International, vol. 20, no. 3, pp. 451–458, 2014. [56] F.-C. Chang, C.-J. Wang, J.-W. Lee, and B.-S. Lou, “Microstructure and mechanical properties evaluation of molybdenum disulfide-titania nanocomposite coatings grown by plasma electrolytic oxidation,” Surface and Coatings Technology, vol. 303, pp. 68–77, 2016. [57] K. R. Shin, Y. S. Kim, G. W. Kim, H. W. Yang, Y. G. Ko, and D. H. Shin, “Effects of concentration of Ag nanoparticles on surface structure and in vitro biological responses of oxide layer on pure titanium via plasma electrolytic oxidation,” Applied Surface Science, vol. 347, pp. 574–582, 2015. [58] S. A. Adeleke, S. Ramesh, A. R. Bushroa, Y. C. Ching, I. Sopyan, M. A. Maleque, S. Krishnasamy, H. Chandran, H. Misran, and U. Sutharsini, “The properties of hydroxyapatite ceramic coatings produced by plasma electrolytic oxidation,” Ceramics International, vol. 44, no. 2, pp. 1802–1811, 2018. [59] T. Soejima, H. Yagyu, and S. Ito, “One pot synthesis and photocatalytic activity of Fe doped TiO2 films with anatase rutile nanojunction prepared by plasma electrolytic oxidation,” Journal of Materials Science, vol. 46, no. 16, pp. 5378–5384, 2011. [60] V. S. Rudnev, I. V. Lukiyanchuk, M. V. Adigamova, V. P. Morozova, and I. A. Tkachenko, “The effect of nanocrystallites in the pores of PEO coatings on their magnetic properties,” Surface and Coatings Technology, vol. 269, no. 1, pp. 23–29, 2015. [61] Q. Li, J. Liang, and Q. Wang, “Plasma Electrolytic Oxidation Coatings on Lightweight Metals,” Modern Surface Engineering Treatments, 2013. [62] R. Marchand, L. Brohan, and M. Tournoux, “TiO2(B) a new form of titanium dioxide and the potassium octatitanate K2Ti8O17,” Materials Research Bulletin, vol. 15, no. 8, pp. 1129–1133, 1980. [63] J. R. V. Diego Pacheco S., “Estudio de propiedades estructurales y electrónicas del TiO2.” Revista Colombiana de Materiales, pp. 179–185, 2011. [64] P. J. Chu, S. Y. Wu, K. C. Chen, J. L. He, A. Yerokhin, and A. Matthews, “Nanostructured TiO2 films by plasma electrolytic oxidation combined with chemical and thermal post-treatments of titanium, for dye-sensitised solar cell applications,” Thin Solid Films, vol. 519, no. 5, pp. 1723–1728, 2010. [65] H. Yan, X. Wang, M. Yao, and X. Yao, “Band structure design of semiconductors for enhanced photocatalytic activity: The case of TiO2,” Progress in Natural Science: Materials International, vol. 23, no. 4, pp. 402–407, 2013. [66] E. N. Mendieta Reyes, “Estudio de la Reducción de CO2 y la Degradación Sonofotocatalítica de Contaminantes Sobre Óxidos de Metales de Transición,” Ph.D. dissertation, Universidad de Alicante, 2018. [67] V. Dehnavi, W. J. Binns, J. J. Noël, D. W. Shoesmith, and B. L. Luan, “Growth behaviour of low-energy plasma electrolytic oxidation coatings on a magnesium alloy,” Journal of Magnesium and Alloys, vol. 6, no. 3, pp. 229–237, 2018. [68] S. Ono, S. Moronuki, Y. Mori, A. Koshi, J. Liao, and H. Asoh, “Effect of Electrolyte Concentration on the Structure and Corrosion Resistance of Anodic Films Formed on Magnesium through Plasma Electrolytic Oxidation,” Electrochimica Acta, vol. 240, pp. 415–423, 2017. [69] D. S. Tsai and C. C. Chou, “Review of the soft sparking issues in plasma electrolytic oxidation,” Metals, vol. 8, no. 2, pp. 1–22, 2018. [70] Bruker AXS, “EVA,” Karlsruhe, Germany, p. software, 2001. [71] A. Yerokhin, E. V. Parfenov, and A. Matthews, “In situ impedance spectroscopy of the plasma electrolytic oxidation process for deposition of Ca- and P-containing coatings on Ti,” Surface and Coatings Technology, vol. 301, pp. 54–62, 2016. [72] M. Shokouhfar, C. Dehghanian, M. Montazeri, and A. Baradaran, “Preparation of ceramic coating on Ti substrate by plasma electrolytic oxidation in different electrolytes and evaluation of its corrosion resistance: Part II,” Applied Surface Science, vol. 258, no. 7, pp. 2416–2423, 2012. [73] E. Urbanczyk, A. Krzakała, A. Kazek-Kesik, J. Michalska, A. Stolarczyk, G. Dercz, and W. Simka, “Electrochemical modification of Ti-13Nb-13Zr alloy surface in phosphate based solutions,” Surface and Coatings Technology, vol. 291, pp. 79–88, 2016. [74] K. Whitten, R. Davis, P. Larry, and G. Stanley, Qumica, 10th ed., F. Valenzuela, Ed. México, D.F.: Cengage Learning, 2015. [75] A. Ghanbari, A. Bordbar Khiabani, A. Zamanian, B. Yarmand, and M. Mozafari, “The competitive mechanism of plasma electrolyte oxidation for the formation of magnesium oxide bioceramic coatings,” Materials Today: Proceedings, vol. 5, no. 7, pp. 15 677–15 685, 2018. [76] J. Huheey, E. Keiter, and R. Keiter, Química inorgánica Principios de estructura y reactividad, 4th ed., R. L. Cruz, Ed. Oxford: Alfaomega, 1997. [77] H. Tang, D. Yu, Y. Luo, and F. Wang, “Preparation and characterization of HA microflowers coating on AZ31 magnesium alloy by micro arc oxidation and a solution treatment,” Applied Surface Science, vol. 264, pp. 816–822, jan 2013. [78] R. Arrabal, E. Matykina, P. Skeldon, and G. Thompson, “Coating formation by plasma electrolytic oxidation on ZC71/SiC/12p T6 magnesium metal matrix composite,” Applied Surface Science, vol. 255, no. 9, pp. 5071–5078, feb 2009. [79] A. G. Rakoch, V. V. Khokhlov, V. A. Bautin, N. A. Lebedeva, Y. V. Magurova, and I. V. Bardin, “Model concepts on the mechanism of microarc oxidation of metal materials and the control over this process,” Protection of Metals, vol. 42, no. 2, pp. 158–169, 2006. [80] F. Gordillo-Delgado, D. A. Torres-Ceron, and J. A. Garcia-Giraldo, “Implementacion de una fuente conmutada para uso en la tecnica de oxidacion electrolitica con plasma,” Revista de la Facultad de Ciencias, vol. 6, no. 2, pp. 46–57, jul 2017. [81] I. A. Alhomoudi and G. Newaz, “Residual stresses and Raman shift relation in anatase TiO2 thin film,” Thin Solid Films, vol. 517, no. 15, pp. 4372–4378, jun 2009. [82] I.-J. Hwang, H.-C. Choe, and W. A. Brantley, “Electrochemical characteristics of Ti-6Al-4V after plasma electrolytic oxidation in solutions containing Ca, P, and Zn ions,” Surface and Coatings Technology, vol. 320, pp. 458–466, jun 2017. [83] Y. X. Zhu, R. Y. Zheng, L. Lin, J. L. Xie, and Y. C. Xie, “State of phosphor and its influence on the physicochemical and photocatalytic properties of P-doped titania,” Journal of Physical Chemistry C, vol. 112, no. 39, pp. 15 502–15 509, 2008. [84] N. O. Gopal, H. H. Lo, T. F. Ke, C. H. Lee, C. C. Chou, J. D.Wu, S. C. Sheu, and S. C. Ke, “Visible light active phosphorus-doped TiO 2 nanoparticles: An EPR evidence for the enhanced charge separation,” Journal of Physical Chemistry C, vol. 116, no. 30, pp. 16 191–16 197, 2012. [85] Y. Lv, L. Yu, H. Huang, H. Liu, and Y. Feng, “Preparation, characterization of P-doped TiO2 nanoparticles and their excellent photocatalystic properties under the solar light irradiation,” Journal of Alloys and Compounds, vol. 488, no. 1, pp. 314–319, 2009. [86] V. Alexander, A. Naumkin, Kraut-Vass, W. Stephen, Gaarenstroom., and J. P. Cedric, “NIST X-ray Photoelectron Spectroscopy Database,” p. 20899, 2012. [87] C. Ocal and S. Ferrer, “The strong metal-support interaction (SMSI) in Pt-TiO2 model catalysts. A new CO adsorption state on Pt-Ti atoms,” The Journal of Chemical Physics, vol. 84, no. 11, pp. 6474–6478, jun 1986. [Online]. Available: http://aip.scitation.org/doi/10.1063/1.450743 [88] G. Silversmit, G. De Doncker, and R. De Gryse, “A Mineral TiO2(001) Anatase Crystal Examined by XPS,” Surface Science Spectra, vol. 9, no. 1, pp. 21–29, dec 2002. [Online]. Available: http://avs.scitation.org/doi/10.1116/11.20020701 [89] J. H. Richter, A. Henningsson, P. G. Karlsson, M. P. Andersson, P. Uvdal, H. Siegbahn, and A. Sandell, “Electronic structure of lithium-doped anatase TiO2 prepared in ultrahigh vacuum,” Physical Review B, vol. 71, no. 23, p. 235418, jun 2005. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevB.71.235418 [90] V. V. Atuchin, V. G. Kesler, N. V. Pervukhina, and Z. Zhang, “Ti 2p and O 1s core levels and chemical bonding in titanium-bearing oxides,” Journal of Electron Spectroscopy and Related Phenomena, vol. 152, no. 1-2, pp. 18–24, jun 2006. [91] D. Gonbeau, C. Guimon, G. Pfister-Guillouzo, A. Levasseur, G. Meunier, and R. Dormoy, “XPS study of thin films of titanium oxysulfides,” Surface Science, vol. 254, no. 1-3, pp. 81–89, 1991. [92] P. Swift, “Adventitious carbon the panacea for energy referencing” Surface and Interface Analysis, vol. 4, no. 2, pp. 47–51, apr 1982. [Online]. Available: http://doi.wiley.com/10.1002/sia.740040204 [93] G. Wulfsberg, Inorganic Chemistry, 1st ed., J. Stiefel, Ed., Sausalito, California, 2000. [94] S. B. Rempe and L. R. Pratt, “The hydration number of Na+ in liquid water,” Fluid Phase Equilibria, vol. 183-184, pp. 121–132, 2001. [95] C. E. Myers, H. F. Franzen, and J. W. Anderegg, “X-ray Photoelectron Spectra and Bonding in Transition-Metal Phosphides,” Inorganic Chemistry, vol. 24, no. 12, pp. 1822–1824, 1985. [96] M. Iwase, K. Yamada, T. Kurisaki, O. O. Prieto-Mahaney, B. Ohtani, and H. Wakita, “Visible-light photocatalysis with phosphorus-doped titanium(IV) oxide particles prepared using a phosphide compound,” Applied Catalysis B: Environmental, vol. 132-133, pp. 39–44, 2013. [97] G. Berhault, P. Afanasiev, H. Loboué, C. Geantet, T. Cseri, C. Pichon, G. D. Catherine, and A. Lafond, “In Situ XRD, XAS, and magnetic susceptibility study of the reduction of ammonium nickel phosphate NiNH 4PO 4 · H 2O into Nickel Phosphide,” Inorganic Chemistry, vol. 48, no. 7, pp. 2985–2992, 2009. [98] D. W. Boukhvalov, D. M. Korotin, A. V. Efremov, E. Z. Kurmaev, I. S. Zhidkov, D. V. Gunderov, R. Z. Valiev, N. V. Gavrilov, and S. O. Cholakh, “Modification of titanium and titanium dioxide surfaces by ion implantation: Combined XPS and DFT study,” Phys. Status Solidi, vol. 7, pp. 1–7, 2014. [99] L. Wan, J. F. Li, J. Y. Feng, W. Sun, and Z. Q. Mao, “Anatase TiO2 films with 2.2 eV band gap prepared by micro-arc oxidation,” Materials Science and Engineering B: Solid-State Materials for Advanced Technology, vol. 139, no. 2-3, pp. 216–220, 2007. [100] B. Choudhury, S. Bayan, A. Choudhury, and P. Chakraborty, “Narrowing of band gap and effective charge carrier separation in oxygen deficient TiO2 nanotubes with improved visible light photocatalytic activity,” Journal of Colloid and Interface Science, vol. 465, pp. 1–10, mar 2016. [101] S. Ebrahimi, A. Bordbar-Khiabani, B. Yarmand, and M. A. Asghari, “Improving optoelectrical properties of photoactive anatase TiO2 coating using rGO incorporation during plasma electrolytic oxidation,” Ceramics International, vol. 45, no. 2, pp. 1746–1754, 2019.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc600 - Tecnología (Ciencias aplicadas)spa
dc.subject.ddc660 - Ingeniería químicaspa
dc.subject.proposalKeywords: Plasma electrolytic oxidation , band gap, duty cycle, anatase phase amorphization.eng
dc.subject.proposalOxidación electrolítica por plasmaspa
dc.subject.proposalAncho de banda de energía prohibidaspa
dc.subject.proposalPlasma electrolytic oxidationeng
dc.subject.proposalCiclo útilspa
dc.subject.proposalBand gapeng
dc.subject.proposalAmorfización de la fase anatasaspa
dc.subject.proposalDuty cycleeng
dc.subject.proposalAnatase phase amorphizationeng
dc.titleProducción de recubrimientos de TiO2 mediante oxidación electrolítica por plasma (PEO), para posibles aplicaciones tecnológicasspa
dc.title.alternativeTiO2 coating production by plasma electrolytic oxidation (PEO) for possible technological applicationsspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1083866409.2020.pdf
Tamaño:
7.53 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.9 KB
Formato:
Item-specific license agreed upon to submission
Descripción: