En 7 día(s), 11 hora(s) y 50 minuto(s): El Repositorio Institucional UNAL informa a la comunidad universitaria que, con motivo del periodo de vacaciones colectivas, el servicio de publicación estará suspendido: Periodo de cierre: Del 20 de diciembre al 18 de enero de 2026. Sobre los depósitos: Durante este tiempo, los usuarios podrán continuar realizando el depósito respectivo de sus trabajos en la plataforma. Reanudación: Una vez reiniciadas las actividades administrativas, los documentos serán revisados y publicados en orden de llegada.

Modelo de optimización multiobjetivo para el algoritmo evolutivo HAEA (Hybrid Adaptive Evolutionary Algorithm)

dc.contributor.advisorGómez Perdomo, Jonatanspa
dc.contributor.authorCastro Pinto, Juan Camilospa
dc.contributor.researchgroupALIFE: Grupo de Investigación en Vida Artificialspa
dc.date.accessioned2020-06-12T00:13:43Zspa
dc.date.available2020-06-12T00:13:43Zspa
dc.date.issued2020-02-14spa
dc.description.abstractThis work introduces a new distributed multi-objective evolutionary algorithm which is an extension of the proposed Hybrid Adaptive Evolutionary Algorithm (HAEA). This new algorithm, called NSHAEA, defines a fitness function based on Pareto dominance. Like HAEA, a set of genetic operators can be used to change individuals, but only one can be used in an iteration. A new replacement method is used when the same fitness value are the same in a several number of individuals. This method uses a niching technique, which was proposed to solve multiobjective optimization problems with NSGA II and is based on the Crowding Distance technique. For the distributed part, a master-slave model is used and implemented on CPU, GPU and in a cloud service. Finally the proposed algorithm is tested using benchmark functions and the performance is compared with some others muti-objective algorithms. This comparison shows a competitive new multi-objective algorithm.spa
dc.description.abstractEste trabajo presenta un nuevo algoritmo distribuido de optimización multiobjetivo, el cual es una extensión del algoritmo HAEA (Hybrid Adaptive Evolutionary Algorithm). Este nuevo algoritmo, llamado NSHAEA, define una función de ajuste basada en la dominancia de Pareto. Al igual que HAEA, un conjunto de operadores genéticos es usado para crear una nueva población de individuos, pero sólo uno puede ser aplicado en cada iteración. Un nuevo método de reemplazo es propuesto con el fin de diferenciar los individuos que tengan el mismo valor en su función de ajuste. Este método de reemplazo usa una técnica de nichos que fue propuesta para resolver problemas multiobjetivos con el algoritmo NSGA II y que está basada en una distancia de apiñamiento (Crowding distance en inglés). En la parte distribuida, un modelo maestro-esclavo es implementado en CPU, GPU y en un servicio en la nube. Finalmente el algoritmo propuesto es probado utilizando funciones de prueba y su comportamiento es comparado con otros algoritmos multiobjetivo. Esta comparación muestra un nuevo algoritmo multiobjetivo competitivo.spa
dc.description.degreelevelMaestríaspa
dc.format.extent68spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationCastro, J. (2020). Modelo de optimización multiobjetivo para el algoritmo evolutivo HAEA (Hybrid Adaptive Evolutionary Algorithm) (Tesis de maestría). Universidad Nacional de Colombia, Bogotá, Colombiaspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77651
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería de Sistemas y Computaciónspa
dc.relation.referencesJin Hee Cho, Yating Wang, Ing Ray Chen, Kevin S. Chan, and Ananthram Swami. A Survey on Modeling and Optimizing Multi-Objective Systems.IEEE Communications Surveys and Tutorials, 19(3):1867–1901, 2017.spa
dc.relation.referencesDavid E. Goldberg.Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st edition, 1989.spa
dc.relation.referencesKalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and T. Meyarivan. A fast and el-tist multiobjective genetic algorithm: NSGA-II.IEEE Transactions on Evolutionary Computation, 6(2):182–197, apr 2002.spa
dc.relation.referencesEckart Zitzler, Marco Laumanns, and Lothar Thiele. SPEA2: Improving the Strength Pareto Evolutionary Algorithm.Evolutionary Methods for Design Optimization and Control with Applications to Industrial Problems, pages 95–100, 2001.spa
dc.relation.referencesYue-Jiao Gong, Wei-Neng Chen, Zhi-Hui Zhan, Jun Zhang, Yun Li, Qingfu Zhang, and Jing-Jing Li. Distributed evolutionary algorithms and their models: A survey of the state-of-the-art.Applied Soft Computing, 34:286 – 300, 2015.spa
dc.relation.referencesJ. J. Durillo, A. J. Nebro, F. Luna, and E. Alba. A study of master-slave approaches to parallelize nsga-ii. In2008 IEEE International Symposium on Parallel and Distributed Processing, pages 1–8, April 2008.spa
dc.relation.referencesG. Ewald, W. Kurek, and M. A. Brdys. Grid implementation of a parallel multiobjective genetic algorithm for optimized allocation of chlorination stations in drinking water distribution systems: Chojnice case study. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 38(4):497–509, July 2008.spa
dc.relation.referencesJonatan Gomez. Self Adaptation of Operator Rates in Evolutionary Algorithms. In GECCO 2004, LNCS, volume 3102, page 12, 2004.spa
dc.relation.referencesW Stadler. A survey of multicriteria optimization or the vector maximum problem, part I: 1776-1960. Journal of Optimization Theory and Applications, 29(1):1–52, 1979.spa
dc.relation.referencesK Deb. Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley and Sons Ltd, 2001.spa
dc.relation.referencesK M Miettinen. Nonlinear multiobjective optimization. Kluwer Academic Publishers, 1999.spa
dc.relation.referencesJ D Schaffer. Multiple objective optimization with vector evaluated genetic algorithms. Proceedings of the First International Conference on Genetic Algorithms, pages 93–100, 1985.spa
dc.relation.referencesM. Hyodo, T. Matsuo, and T. Ito. An optimal coalition formation among buyer agents based on a genetic algorithm. volume 2718, pages 759–767, 2003.spa
dc.relation.referencesS. Breban and J. Vassileva. Using inter-agent trust relationships for efficient coalition formation. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2338:221–236, 2002.spa
dc.relation.referencesH. Huo, L. Yue, and X. Shen. Trust game analysis between partners in the supply chain alliance. pages 947–950, 2011spa
dc.relation.referencesP. Beautement. Agile and adaptive coalition operations - leveraging the power of complex environments.Proc. 11th Int. Command Control Res. Technol. Symp. (ICCRTS), 2006.spa
dc.relation.referencesM. Chang, J.H. Cho, I.R. Chen, K.S. Chan, and A. Swami. Trustbased task assignment in military tactical networks. Proc. 17th Int. Command Control Res. Technol. Symp. (ICCRTS), 2012.spa
dc.relation.referencesS.D. Ramchurn, M. Polukarov, A. Farinelli, C. Truong, and N.R. Jennings. Coalition formation with spatial and temporal constraints. volume 2, pages 1181–1188, 2010.spa
dc.relation.referencesA. Anagnostopoulos, L. Becchetti, C. Castillo, A. Gionis, and S. Leonardi. Online team formation in social networks. pages 839–848, 2012.spa
dc.relation.referencesC. Dorn, F. Skopik, D. Schall, and S. Dustdar. Interaction mining and skill-dependent recommendations for multi-objective team composition. Data and Knowledge Engineering, 70(10):866–891, 2011spa
dc.relation.referencesR. Subrata, A.Y. Zomaya, and B. Landfeldt. A cooperative game framework for qos guided job allocation schemes in grids. IEEE Transactions on Computers, 57(10):1413–1422, 2008spa
dc.relation.referencesE. Bedeer, O.A. Dobre, M.H. Ahmed, and K.E. Baddour. Rate-interference tradeoff in ofdm-based cognitive radio systems. IEEE Transactions on Vehicular Technology, 64(9):4292–4298, 2015spa
dc.relation.referencesS. Kartik and C.S. Ram Murthy. Task allocation algorithms for maximizing reliability of distributed computing systems. IEEE Transactions on Computers, 46(6):719–724, 1997.spa
dc.relation.referencesL. Jiao, J. Lit, W. Du, and X. Fu. Multi-objective data placement for multi-cloud socially aware services. pages 28–36, 2014spa
dc.relation.referencesG. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and M. Protasi. Complexity and Approximation: Combinatorial Optimization Problems and Their Approximability Properties, 1999.spa
dc.relation.referencesM.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness, 1979.spa
dc.relation.referencesV L Huang, A K Qin, K Deb, E Zitzler, P N Suganthan, J J Liang, M Preuss, and S Huband. Problem definitions for performance assessment on multi-objective optimization algorithms. Problem Definitions for Performance Assessment on Multi-objective Optimization Algorithms, 2007.spa
dc.relation.referencesS Huband, P Hingston, L Barone, and L While. A review of multiobjective test problems and a scalable test problem toolkit. IEEE Transactions on EvolutionaryComputation, 10(5):477–506, 2006.spa
dc.relation.referencesH Li and Q Zhang. Multiobjective optimization problems with complicated pareto sets, MOEA/ D and NSGA-II. IEEE Transactions on Evolutionary Computation, 13(2):284–302, 2009.spa
dc.relation.referencesQ Zhang, A Zhou, S Zhao, P N Suganthan, W Liu, and S Tiwari. Multiobjective Optimization Test Instances for the CEC. Multiobjective Optimization Test Instances for the CEC, 2009.spa
dc.relation.referencesJ Knowles, L Thiele, and E Zitzler. A tutorial on the performance assessment of stochastic multiobjective optimizers. A Tutorial on the Performance Assessment of Stochastic Multiobjective Optimizers, 2006.spa
dc.relation.referencesE Zitzler, L Thiele, M Laumanns, C M Fonseca, and V G Da Fonseca. Performance assessment of multiobjective optimizers: An analysis and review. IEEE Transactions on Evolutionary Computation, 7(2):117–132, 2003.spa
dc.relation.referencesHenrik Esbensen and Ernest S Kuh. Design space exploration using the genetic algorithm. In Proceedings - IEEE International Symposium on Circuits and Systems, volume 4, pages 500–503, 1996.spa
dc.relation.referencesP Czyzak and A Jaszkiewicz. Pareto simulated annealing - A metaheuristic technique for multiple-objective combinatorial optimization. Journal of Multi-Criteria Decision Analysis, 7(1):34–47, 1998.spa
dc.relation.referencesE L Ulungu, J Teghem, P H Fortemps, and D Tuyttens. MOSA method: A tool for solving multiobjective combinatorial optimization problems. Journal of Multi-Criteria Decision Analysis, 8(4):221–236, 1999.spa
dc.relation.referencesD A Van Veldhuizen. Multiobjective evolutionary algorithms: Classifications, analyses, and new innovations. Multiobjective Evolutionary Algorithms: Classifications, Analyses, and New Innovations, 1999.spa
dc.relation.referencesJ R Schott. Fault tolerant design using single and multicriteria genetic algorithm optimization. Fault Tolerant Design Using Single and Multicriteria Genetic Algorithm Optimization, 1995.spa
dc.relation.referencesE Zitzler. Evolutionary algorithms for multiobjective optimization: Methods and applications. Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications, 1999.spa
dc.relation.referencesS Sayin. Measuring the quality of discrete representations of efficient sets in multiple objective mathematical programming. Mathematical Programming, Series B, 87(3):543–560, 2000.spa
dc.relation.referencesJ Wu and S Azarm. Metrics for quality assessment of a multiobjective design optimization solution set. Journal of Mechanical Design, Transactions of the ASME, 123(1):18–25, 2001.spa
dc.relation.referencesW Khan Mashwani, A Salhi, O Yeniay, H Hussian, and M A Jan. Hybrid non-dominated sorting genetic algorithm with adaptive operators selection. Applied Soft Computing Journal, 56:1–18, 2017.spa
dc.relation.referencesH Seada and K Deb. U-NSGA-III: A unified evolutionary optimization procedure for single, multiple, and many objectives: Proof-of-principle results. 9019:34–49, 2015.spa
dc.relation.referencesEckart Zitzler and Lothar Thiele. Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach. IEEE Transactions on Evolutionary Computation, 3(4):257–271, 1999.spa
dc.relation.referencesM Kim, T Hiroyasu, M Miki, and S Watanabe. SPEA2+: Improving the performance of the strength pareto evolutionary algorithm 2, 2004.spa
dc.relation.referencesR Storn and K Price. Differential evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces. Technical Report, TR-95-012, 1995.spa
dc.relation.referencesK V Price. An introduction to differential evolution. New Ideas in Optimization, pages 79–108, 1999.spa
dc.relation.referencesR Sarker and H A Abbass. Differential evolution for solving multiobjective optimization problems. Asia-Pacific Journal of Operational Research, 21(2):225–240, 2004.spa
dc.relation.referencesRussell Eberhart and James Kennedy. New optimizer using particle swarm theory. In Proceedings of the International Symposium on Micro Machine and Human Science, pages 39–43, 1995.spa
dc.relation.referencesJ Kennedy, R C Eberhart, and Y Shi. Swarm Intelligence. Morgan Kaufmann, 2001.spa
dc.relation.referencesJ Moore and R Chapman. Application of particle swarm to multiobjective optimization. Application of Particle Swarm to Multiobjective Optimization, 1999.spa
dc.relation.referencesS Janson, D Merkle, and M Middendorf. Molecular docking with multi-objective Particle Swarm Optimization. Applied Soft Computing Journal, 8(1):666–675, 2008.spa
dc.relation.referencesD S Liu, K C Tan, S Y Huang, C K Goh, and W K Ho. On solving multiobjective bin packing problems using evolutionary particle swarm optimization. European Journal of Operational Research, 190(2):357–382, 2008.spa
dc.relation.referencesWang Hu, Gary G. Yen, and Xin Zhang. Multiobjective particle swarm optimization based on Pareto entropy. Ruan Jian Xue Bao/Journal of Software, 25(5):1025–1050, 2014.spa
dc.relation.referencesC. Blum. Ant colony optimization: Introduction and recent trends. Physics of Life Reviews, 2(4):353–373, 2005spa
dc.relation.referencesM Dorigo and T Stützle. Ant Colony Optimization. Ant Colony Optimization, 2004.spa
dc.relation.referencesO. Dridi, S. Krichen, and A. Guitouni. A multi-objective optimization approach for resource assignment and task scheduling problem: Application to maritime domain awareness. 2012spa
dc.relation.referencesK Deb, M Mohan, and S Mishra. Evaluating the e-domination based multi-objective evolutionary algorithm for a quick computation of Pareto-optimal solutions. Evolutionary Computation, 13(4):501–525, 2005.spa
dc.relation.referencesK C Tan, Y J Yang, and C K Goh. A distributed cooperative coevolutionary algorithm for multiobjective optimization. IEEE Transactions on Evolutionary Computation,10(5):527–549, 2006.spa
dc.relation.referencesC.-K. Goh and K C Tan. A competitive-cooperative coevolutionary paradigm for dynamic multiobjective optimization. IEEE Transactions on Evolutionary Computation, 13(1):103–127, 2009.spa
dc.relation.referencesC K Goh, K C Tan, D S Liu, and S C Chiam. A competitive and cooperative co-evolutionary approach to multi-objective particle swarm optimization algorithm design. European Journal of Operational Research, 202(1):42–54, 2010.spa
dc.relation.referencesQ Zhang and H Li. MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Transactions on Evolutionary Computation, 11(6):712–731, 2007.spa
dc.relation.referencesK Li, K Deb, Q Zhang, and S Kwong. An evolutionary many-objective optimization algorithm based on dominance and decomposition. IEEE Transactions on Evolutionary Computation, 19(5):694–716, 2015.spa
dc.relation.referencesQ Zhang, W Liu, and H Li. The performance of a new version of MOEA/D on CEC09 unconstrained MOP test instances. Working Report CES-491, 2009.spa
dc.relation.referencesAlireza Askarzadeh. A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm. Computers and Structures, 169(Supplement C):1 – 12, 2016.spa
dc.relation.referencesH Nobahari and A Bighashdel. MOCSA: A Multi-Objective Crow Search Algorithm for Multi-Objective optimization. In 2nd Conference on Swarm Intelligence and Evolutionary Computation, CSIEC 2017 - Proceedings, pages 60–65, Department of Aerospace Engineering, Sharif University of Technology, Tehran, Iran, 2017.spa
dc.relation.referencesS F Adra and P J Fleming. Diversity management in evolutionary many-objective optimization. IEEE Transactions on Evolutionary Computation, 15(2):183–195, 2011.spa
dc.relation.referencesH.-L. Liu, L Chen, K Deb, and E D Goodman. Investigating the effect of imbalance between convergence and diversity in evolutionary multiobjective algorithms. IEEE Transactions on Evolutionary Computation, 21(3):408–425, 2017.spa
dc.relation.referencesMichael Kirley and Robert Stewart. Multiobjective evolutionary algorithms on complex networks. In Shigeru Obayashi, Kalyanmoy Deb, Carlo Poloni, Tomoyuki Hiroyasu, and Tadahiko Murata, editors, Evolutionary Multi-Criterion Optimization, pages 81–95, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.spa
dc.relation.referencesChen-An Huang and Chia-Feng Juang. Evolutionary fuzzy control of two cooperative object-carrying wheeled robots for wall following through multiobjective continuous ACO. In 2017 Joint 17th World Congress of International Fuzzy Systems Association and 9th International Conference on Soft Computing and Intelligent Systems (IFSA-SCIS), pages 1–3. IEEE, jun 2017.spa
dc.relation.referencesV. Averchenkov, P. Kazakov, V. Kazakov, A. Reutov, and F. Lozbinev. Application of evolutionary algorithm to multiobjective optimization of hydraulic actuation system. In 2015 International Conference on Mechanical Engineering, Automation and Control Systems (MEACS), pages 1–4. IEEE, dec 2015.spa
dc.relation.referencesKostas Georgoulakos, Kostas Vergidis, George Tsakalidis, and Nikolaos Samaras. Evolutionary Multi-Objective Optimization of business process designs with pre-processing. In 2017 IEEE Congress on Evolutionary Computation (CEC), pages 897–904. IEEE, jun 2017.spa
dc.relation.referencesNVIDIA. Cuda zone. https://developer.nvidia.com/cuda-zone, 2018.spa
dc.relation.referencesAmazon Web Services. Aws lambda. https://aws.amazon.com/lambda, 2018.spa
dc.relation.referencesAmazon Web Services. Amazon elasticache. https://aws.amazon.com/elasticache, 2018.spa
dc.relation.referencesK Deb and R. B. Agrawal. Simulated binary crossover for continuous search space. Complex Syst., 9:115–148, 04 1995.spa
dc.relation.referencesEva Ostertagova and Oskar Ostertag. Methodology and application of one-way anova. American Journal of Mechanical Engineering, 1:256–261, 11 2013.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::006 - Métodos especiales de computaciónspa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadoresspa
dc.subject.proposalMultiobjective optimizationeng
dc.subject.proposalOptimización multiobjetivospa
dc.subject.proposalEvolutionary algorithmseng
dc.subject.proposalAlgoritmos evolutivosspa
dc.subject.proposalSoluciones óptimas de Paretospa
dc.subject.proposalPareto-optimal solutionseng
dc.subject.proposalGenetic operatorseng
dc.subject.proposalOperadores genéticosspa
dc.subject.proposalHAEAspa
dc.subject.proposalOperator rateseng
dc.subject.proposalNSGA IIspa
dc.subject.proposalHAEAeng
dc.subject.proposalNSGA IIeng
dc.subject.proposalParalelizaciónspa
dc.subject.proposalParadigma maestro-esclavospa
dc.subject.proposalParallelizationeng
dc.subject.proposalMaster-slave paradigmeng
dc.titleModelo de optimización multiobjetivo para el algoritmo evolutivo HAEA (Hybrid Adaptive Evolutionary Algorithm)spa
dc.title.alternativeMulti-objective optimization model for the evolutionary algorithm HAEA (Hybrid Adaptive Evolutionary Algorithm)spa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1022369976.2020.pdf
Tamaño:
1.8 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.9 KB
Formato:
Item-specific license agreed upon to submission
Descripción: